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Abstract

Recent availability of large-scale genomic resources enables us to conduct so called genome-

wide association studies (GWAS) and genomic prediction (GP) studies, particularly with next-

generation sequencing (NGS) data. The effectiveness of GWAS and GP depends on not only their

mathematical models, but the quality and quantity of variants employed in the analysis. In NGS

single nucleotide polymorphism (SNP) calling, conventional tools ideally require more reads for

higher SNP sensitivity and accuracy. In this study, we aimed to develop a tool, Heap, that enables

robustly sensitive and accurate calling of SNPs, particularly with a low coverage NGS data, which

must be aligned to the reference genome sequences in advance. To reduce false positive SNPs,

Heap determines genotypes and calls SNPs at each site except for sites at the both ends of reads

or containing a minor allele supported by only one read. Performance comparison with existing

tools showed that Heap achieved the highest F-scores with low coverage (7X) restriction-site as-

sociated DNA sequencing reads of sorghum and rice individuals. This will facilitate cost-effective

GWAS and GP studies in this NGS era. Code and documentation of Heap are freely available

from https://github.com/meiji-bioinf/heap (29 March 2017, date last accessed) and our web site

(http://bioinf.mind.meiji.ac.jp/lab/en/tools.html (29 March 2017, date last accessed)).
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1. Introduction

DNA polymorphisms including single nucleotide polymorphisms
(SNPs), insertions and deletions (INDELs), among inbred lines or
collected individuals have been employed to identify loci associated
with traits or to predict phenotypes by genotypes. To identify genes
associated with phenotypes and implement high-throughput breed-
ing, genome-wide association studies (GWAS) and genomic predic-
tion (GP) studies have been performed with next-generation
sequencing (NGS) data1–4. In GWAS and GP studies, SNPs are
widely used as genetic markers. SNPs are determined by mapping
NGS reads and consequent variant calls with conventional tools.
Widely used software, such as Burrows-Wheeler Aligner (BWA) or
Bowtie 2 performs alignments of NGS reads to reference genomes5,6,
whereas SAMtools/BCFtools or Genome Analysis Toolkit (GATK)
call variants based on alignments produced during the mapping
steps7–11. The accuracy of both mapping and variant calling should
be key factors for the effectiveness of GWAS and GP.

SAMtools/BCFtools and GATK accurately call SNPs if provided
with enough number of reads. When read coverage (depth) is 20X or
more, SNPs have been called with sufficient sensitivity in human ge-
nome resequencing12. It is also reported that SNP calling becomes
difficult under low read coverage (7X or lower)12. In large-scale
GWAS or GP studies, the number of NGS reads in each individual
tends to be small in order to genotype as many individuals as possi-
ble with a limited budget. In these cases, methodologies that accu-
rately detect large number of SNPs based on a relatively low number
of reads are paramount for an efficient implementation of GWAS
and GP studies.

Restriction-site associated DNA sequencing, or genotype-by-
sequencing (RAD-seq/GBS), is an economical strategy to identify ge-
nome wide polymorphisms13. While whole genome shotgun (WGS)
sequencing methods provide sequencing information from the whole
genome, the RAD-seq/GBS methods confine sequencing regions to
the fragments neighbouring particular restriction sites. To be precise,
in RAD-seq/GBS, regions neighbouring particular restriction sites are
sequenced in combination with high-throughput sequencing methods
and with subsequent mapping and variant calling steps on reference
genome sequences to identify genomic polymorphisms. For example,
RAD-seq/GBS reads sets of HindIII which covers only 0.24% of the
chicken genome on average (i.e. coverage¼0.0024x) could show 3�
or more depth of coverage on the RAD fragments14. Compared with
WGS sequencing methods, the RAD-seq/GBS strategy under the
same sequencing cost generally assures a relatively higher coverage
at each sequencing region, even when the total number of reads is
lower in each sample (e.g. inbred lines, individuals, or libraries) with
the RAD-seq/GBS strategy.

Stacks is a specialized tool for identifying SNPs from RAD-seq/
GBS reads15,16. In the Stacks pipeline, identical reads, which are
called ‘stack’, are collected from each sample. Then, SNPs among
samples are identified by comparing among stacks obtained from
multiple samples. Stacks are capable of calling many SNPs compared
to SAMtools/BCFtools and GATK with low coverage RAD-seq/GBS
reads. However, Stacks can call false positive SNPs more frequently
than other methods (as is shown in this work).

In this study, we developed a new tool, Heap, that identifies nu-
merous SNPs with high accuracy from RAD-seq/GBS or WGS se-
quencing reads. Heap is capable of detecting SNPs with high
sensitivity, which is the ratio of correctly identified SNPs (True posi-
tives) to all the existing SNPs (True positivesþFalse negatives), and
high positive predictive values (PPVs), which is the ratio of True pos-
itives to all the identified SNPs (True positivesþFalse positives),

from even reads with a low coverage aligned to the reference genome
sequences. To confirm the performance of Heap, we identified SNPs
from RAD-seq/GBS reads and calculated an accuracy index F-score,
which is the harmonic mean between sensitivity and PPV, of SNP
calling in 17 inbred sorghum lines and 4 inbred rice lines.

2. Materials and methods

2.1. Software details

2.1.1. Algorithms of Heap
We designed Heap to identify SNPs from short read sequences of
diploid species. In Heap analysis, short read sequences must
be aligned to reference genome sequences in advance, and informa-
tion on aligned reads, which is stored in either Sequence Alignment/
MAP (SAM) format files or the binary version of SAM (BAM) for-
mat files7, must be employed (Fig. 1A).

After importing information on read alignments from a SAM or
BAM file, Heap performs read filtering to obtain high quality reads
(Fig. 1B). By default setting of Heap, reads with a phred scaled map-
ping quality score (MAPQ) below 20 are removed. Bases with a
phred scaled quality score in base calling below 13 are also elimi-
nated from the search scope of valid SNP sites. Heap also trims both
ends of each read before mining SNPs, because it is empirically ob-
served that these regions contain many base calling errors. By default
setting, both ends with n¼2bp are not counted for SNP searches.
Moreover, flanking regions within i¼5bp of each INDEL site are
also removed in SNP calling. To determine the default setting of the
n and i values, we examined the empirical distribution of F-scores
under multiple conditions (for F-scores, see Performance comparison
among SNP calling tools with RAD-seq reads in sorghum in results
and discussions) (Supplementary Fig. S1). The highest F-score was
obtained under around n¼2–3, while F-score reached a plateau un-
der around i¼4–5. Therefore, we determined that n¼2 and i¼5 as
default values.

Next, Heap determines each sample’s genotype in every site that
passes quality filtering (Fig. 1C). On each nucleotide site, the allele
frequency is calculated from the number of nucleotide bases (A, T, C
or G) aligned on it. Heap ignores any sites with three or more allele
variants, since any allele possibilities above 2 on diploid organisms
are likely due to sequencing errors. To determine the zygosity of each
allele, a binomial test with allele frequency is performed (the null hy-
pothesis H0: the allele is heterozygous). When the P value of the bi-
nomial test is<0.05, the null hypothesis is rejected thus the zygosity
on the site is determined as homozygous. Conversely, when the P
value is�0.05 and the minor allele is supported by two or more
NGS reads, the zygosity is determined as heterozygous. When neither
is the case, the genotype is included in subsequent analyses as missing
genotype (./.). This genotyping step is repeated for all samples.

Heap then performs SNP calling by comparing the genotypes be-
tween the sample (e.g. an inbred line) and the reference genome
(Fig. 1D). The information on all SNPs between the sample and the
reference genome is stored in a Variant Call Format (VCF) file. In a
VCF file, reference allele, first alternative allele, second alternative al-
lele, and missing is presented as ‘0’, ‘1’, ‘2’, and ‘.’ in the genotype field,
respectively. Finally, to determine SNPs among all samples, the VCF
files for all samples are merged in a single VCF file by BCFtools
(Fig. 1E).

2.1.2. Software implementation and requirements
Heap is implemented in Cþþprogramming languages and is able to
be installed on a Linux/UNIX-like operating system including, but
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not limited to, CentOS, Ubuntu and Mac OS X. The following addi-
tional software and libraries are required: Boost Cþþ libraries,
BCFtools (� ver. 1.2), HTSlib (� ver. 1.2), and gþþ compiler (� ver.
4.1.2). All steps of Heap algorithm can be invoked with a single com-
mand line. For the usage and options of Heap, see the README text
file. Heap is released under the GNU General Public License Version
3 (see the COPYING text file).

2.2. Wet lab procedures

2.2.1. DNA extraction from sorghum and rice plants
DNA samples were extracted from 17 inbred lines of Sorghum bi-
color (GULUM ABIAD, A-6129, AGIRA, LR 399, CRIOLLO
CABEZA APRETADA, B2AR3043, RTx430, B3Tx2817, ZIRA-EL-
SABI, ITALIAN, CAPRICORN, SOR 1, 15065, SAP-155, RCV, SC
56, and SIL-05) and 4 inbred lines of Oryza sativa (Omachi,
Yamada Nishiki, Hitomebore, and Kameji). Methods of DNA ex-
traction are described in Supplementary Methods.

2.2.2. RAD-seq of sorghum
We performed RAD-seq in the 17 inbred sorghum lines using an
Illumina HiSeq 2000 platform with 100 cycles with single end lay-
out. Detailed methods for DNA libraries construction and RAD-seq
are described in Supplementary Methods. These RAD-seq data have
been submitted to DDBJ Sequence Read Archive (DRA)
(DRR045054-DRR045070).

2.2.3. WGS sequencing of sorghum
WGS sequencing was performed in the 17 inbred sorghum lines us-
ing an Illumina HiSeq 2000 platform with 100 cycles with paired
end layout. Detailed methods for DNA libraries construction and
WGS sequencing are described in Supplementary Methods. These
WGS sequencing data have been submitted to DRA (DRR045071-
DRR045087).

2.2.4. RAD-seq of rice
We performed RAD-seq in the 4 inbred rice lines using an Illumina
HiSeq 2000 platform with 50 cycles with single end layout. Detailed
methods for DNA libraries construction and RAD-seq are described
in Supplementary Methods. These RAD-seq data have been submit-
ted to DRA (DRR045088-DRR045091).

2.2.5. WGS sequencing data of rice
Besides the sequencing data mentioned above, WGS sequencing data
of the 4 inbred rice lines (DRR000719, DRR000720, DRR003652,
DRR003655, DRR004451, DRR004452, DRR004453, DRR00
3648, DRR003649, and DRR003658) were downloaded from
DRA. Each of them corresponds to each of 4 inbred lines mentioned
in RAD-seq of rice.

2.3. Benchmarking

2.3.1. Preprocessing of reads
In order to correctly map the WGS sequencing reads and the RAD-
seq reads to the reference genome sequences, we performed adapter
trimming and quality filtering as described previously17. After quality
control by FastQC (http://www.bioinformatics.babraham.ac.uk/proj
ects/fastqc/ (29 March 2017, date last accessed)), we trimmed adap-
tor sequences by cutadapt (https://cutadapt.readthedocs.io/en/stable/
(29 March 2017, date last accessed)). Low-quality reads were also
filtered out by an empirically optimized custom Perl script as the fol-
lowing: (i) both ends of each read must have QV�10 (if not, the end
base with QV<10 is trimmed away until QV�10 is exposed); (ii)
each read must have average QV�17 (if not, the read is discarded);
(iii) final length of each read must be�20 bp (if not, the read is dis-
carded); (iv) each read must have low-quality positions (QV<10) no
more than 10% of final length (if not, the read is discarded); and (v)
each read must not contain any N bases (if not, the read is dis-
carded). The Perl script for filtering out low-quality reads are avail-
able from our website (http://bioinf.mind.meiji.ac.jp/lab/en/
download/readPreprocessingScripts.tar.gz (29 March 2017, date last
accessed)).

Figure 1. Workflow of Heap algorithm.
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2.3.2. Mapping of reads to the reference genome
sequences
We downloaded the genome sequences of S. bicolor (cv. BTx623)
(Sbicolor_v2.1) and O. sativa (Japonica group, cv. Nipponbare) (Os-
Nipponbare-Reference-IRGSP-1.0) from Phytozome (http://www.phy
tozome.net/ (29 March 2017, date last accessed)) and the Rice
Annotation Project Database (RAP-DB) (http://rapdb.dna.affrc.go.jp/
(29 March 2017, date last accessed)), respectively18–21. We aligned the
preprocessed reads on the reference genome sequences using BWA
with the default options. We then performed realignment of the reads
of neighbouring INDELs using the RealignerTargetCreator and
IndelRealigner commands of GATK (with default settings). Finally, we
selected uniquely mapped reads with the X0:i:1 and X1:i:0 tags in the
optional fields of the SAM files.

2.3.3. SNP calling with RAD-seq reads
To compare performance of Heap (ver. 0.7.8), Stacks (ver. 1.29),
SAMtools/BCFtools (ver. 1.1), and GATK (ver. 3.2) under similar
conditions, we called SNPs with RAD-seq reads as follows.

Analysis with Heap, Stacks and GATK, SNPs supported by 3 or
more reads were used. In SAMtools/BCFtools and GATK analysis,
SNPs with low genotype quality scores (GQs) (GQ<13) were excluded.

In Heap analysis, we executed ‘heap’ command with the parame-
ter of a minimum read depth (-d 3). Consequently, Heap provides an
SNP list, which contains SNPs between samples.

In Stacks analysis, to obtain SNPs between samples, we executed
by the pipeline via the ref_map.pl. To obtain SNPs supported stacks,
we executed the ref_map.pl with the parameter of a minimum stack
depth (-m 3). SNPs sites were obtained by the ‘populations’ com-
mand of Stacks in VCF format.

In SAMtools/BCFtools analysis, we ran the ‘mpileup’ command
of SAMtools and the ‘call’ command of BCFtools. To describe GQs
in FORMAT fields of the VCF file for subsequent filtering, the ‘call’
command was performed with the format fields parameter (-f GQ).

In GATK analysis, for each sample, we obtained genotypes at all
nucleotide sites by the ‘HaplotypeCaller’ command. This command
provides genotypes for all sites in Genomic VCF (gVCF) format,
therefore, it contains both homozygous and heterozygous SNPs in
each site. We then created a VCF file containing information of all
SNPs between samples, which was integrated with all gVCF files by
the ‘GenotypeGVCFs’ command using the default parameters.

To compare the SNPs derived by the multiple tools, we filtered
the SNP sites, because conditions of SNP calling are different be-
tween Stacks and the other three tools (SAMtools/BCFtools, GATK,
and Heap). Stacks calls SNPs at only nucleotide sites containing
more than one allele among multiple samples. On the other hand,
SAMtools/BCFtools, GATK, and Heap call SNPs at nucleotide sites
containing one or more alternative alleles among multiple
samples. For example, in three samples, a site containing genotypes
‘0/1’, ‘0/1’, and ‘./.’, is reported by the four tools. On the other hand,
a site containing genotypes ‘1/1’, ‘1/1’, and ‘./.’, is not reported by
Stacks but reported by the other tools. To equalize the conditions
of the SNP lists derived by the multiple tools, we selected polymorphic
SNP sites which contained 2 or more genotypes with more than one al-
lele among samples, from the VCF files by a custom AWK script
(http://bioinf.mind.meiji.ac.jp/lab/en/download/awkScriptToExtract
PolySNPsitesFromVcf.sh (29 March 2017, date last accessed)).

2.3.4. Mapping of the WGS reads and Genotyping of
the ‘definitive answer genotypes’
To determine if genotypes obtained from the low coverage RAD-seq
reads are correct or not at each nucleotide site, we determined more

probable genotypes as ‘definitive answer genotypes’ by using the high
coverage WGS sequencing reads. In order to establish the definitive an-
swer genotypes at each nucleotide site in each sorghum and rice line,
we aligned WGS sequencing reads to the reference genome sequences
and determined the definitive answer genotypes stringently at each nu-
cleotide site with the aligned WGS sequencing reads (Fig. 2A).

After adapter trimming and quality filtering, we aligned the
WGS sequencing reads to the reference genome sequences by using
BWA. We obtained bases of the mapped WGS sequencing reads us-
ing the mpileup command of SAMtools. To ensure the high-quality
calls from accurately mapped reads, we used the MAPQ 20 and the
minimum base quality 20 for the mpileup command. Additionally,
to obtain bases that had sufficient read coverages from the mpileup
result, nucleotide sites supported with 20 or more reads were ex-
tracted by the awk command (awk -F 0\t0 0{if($4>¼20){print $0}}0).
We counted reads for each nucleotide base (A, T, G, or C) and cal-
culated frequencies of the nucleotide bases at each nucleotide site
using custom Perl scripts. We then determined each genotype ac-
cording to the following rigorous conditions: (i) when the major al-
lele frequency is�0.95, the genotype is homozygous; (ii) when the
major allele frequency is�0.5 and�0.6, the genotype is heterozy-
gous; (iii) otherwise, the genotype is not available (NA). Finally,
we filtered out the monomorphic sites, which contained a single ge-
notype among samples. A shell script and Perl scripts for making
definitive answer genotypes are available from our website (http://
bioinf.mind.meiji.ac.jp/lab/en/download/benchMarkingScripts.tar.
gz (29 March 2017, date last accessed)).

3. Results and discussion

To compare the sensitivities and PPVs of SNP calling for Heap, Stacks,
SAMtools/BCFtools, and GATK with low read coverage, we detected
SNPs using low coverage RAD-seq reads by the tools in two plant spe-
cies, sorghum and rice. Sensitivities and PPVs of the SNPs were calcu-
lated by comparing the SNPs detected with RAD-seq reads, and SNPs
rigorously detected by a conventional strategy with more than ade-
quate amounts of WGS sequencing reads, i.e. definitive answer geno-
types. Then, we calculated the F-score, which represents a total
performance index for sensitivity and accuracy of SNP mining.

3.1. Genotyping with WGS sequencing reads for the

‘definitive answer genotypes’

Firstly, to establish the ‘definitive answer genotypes’, we aligned
the WGS sequencing read to the reference genome sequences in sor-
ghum and rice. An overview of the preprocessing and the mapping
for the WGS sequencing reads are presented in Tables 1 and 2.
Averages of the WGS read coverages were 21.5 and 38.5 in the 17
sorghum lines and in the 4 rice lines, respectively. These read cover-
ages (around 20–40) should be sufficient to perform definitively ac-
curate genotyping12. Subsequently, we conservatively determined
the definitive answer genotypes at each nucleotide site. In average,
4,045 SNP sites and 2,955,720 non-SNP sites were obtained in sor-
ghum; 122 SNP sites and 2,779,362 non-SNP sites were obtained
in rice. These results indicated that the number of non-SNP sites
was very larger than the SNP sites. In this situation, specificity
shows a large value, and is not informative value. In fact, all specif-
icity values were over than 0.999 in this study (data not shown).
Therefore, we adopted PPV to examine rate of precisely called
SNPs in all SNPs.
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3.2. Performance comparison among SNP calling tools

with RAD-seq reads in sorghum

We compared performances of Heap, Stacks, SAMtools/BCFtools,
and GATK with RAD-seq reads in sorghum. At first, in 17 sorghum
lines, we conducted RAD-seq and mapped the RAD-seq reads on the
reference genome sequences (Table 3). The average RAD-seq read

coverage in RAD-regions was around 7.4, which is low for conven-
tional SNP calling using SAMtools/BCFtools or GATK12. We de-
tected 47,901, 53,410, 30,316 and 26,728 SNP sites among the 17
inbred sorghum lines using Heap, Stacks, SAMtools/BCFtools, and
GATK with the RAD-seq reads (Fig. 2B), respectively. We then cal-
culated sensitivities and PPVs of the SNPs detected from RAD-seq

Figure 2. Schematic representation of performance comparison of SNP calling by Heap, Stacks, SAMtools/BCFtools, and GATK. (A) Schematic view of the calcu-

lation of definitive answer genotypes with WGS sequencing reads. MAPQ are measures of mapping quality. (B) Schematic view of SNP calling from RAD-seq

reads employing Heap, Stacks, SAMtools, and GATK. GQ indicates genotype quality. (C) Definitions of sensitivity, positive predictive value (PPV), and F-score

for SNP calling.

Table 1. Summary of WGS sequencing reads and mapping of the reads in Sorghum

Sample Raw reads Preprocessed reads Mapped reads Uniquely mapped reads

Count
(�106)

Total
length (Gb)

Count
(�106)

Total
length (Gb)

Count
(�106)

Rate
(%)a

Count
(�106)

Rate
(%)a

Coverage

Mean 1st quartile Median 3rd quartile

GULUM ABIAD 219.2 22.1 200.5 19.9 189.0 94.3 100.3 50.0 21.2 11 20 27
A-6129 205.1 20.7 191.9 19.1 181.1 94.4 97.0 50.5 20.2 12 19 26
AGIRA 214.0 21.6 195.4 19.4 185.5 94.9 104.5 53.5 18.7 10 18 24
LR 399 232.7 23.5 213.7 21.2 202.6 94.8 113.4 53.1 20.8 11 20 27
CRIOLLO CABEZA

APRETADA
260.9 26.4 239.2 23.8 230.0 96.2 131.1 54.8 24.8 14 24 32

B2AR3043 206.7 20.9 181.4 18.4 171.9 94.8 98.5 54.3 19.1 12 18 24
RTx430 215.2 21.7 196.4 19.5 188.4 95.9 105.8 53.8 20.4 12 19 25
B3Tx2817 226.5 22.9 209.8 20.9 203.3 96.9 118.7 56.6 21.7 12 21 28
ZIRA-EL-SABI 235.7 23.8 218.1 21.7 210.3 96.4 118.0 54.1 22.9 14 22 29
ITALIAN 192.2 19.4 177.0 17.6 170.2 96.1 97.5 55.1 19.2 12 18 24
CAPRICORN 250.0 25.3 233.1 23.2 225.2 96.6 129.1 55.4 24.6 16 24 31
SOR 1 270.0 27.3 237.4 23.4 225.8 95.1 120.1 50.6 23.8 14 23 30
15065 232.4 23.5 207.2 20.5 196.7 94.9 105.9 51.1 20.8 12 20 26
SAP-155 217.6 22.0 200.4 19.8 191.7 95.6 107.9 53.9 20.9 13 20 26
RCV 216.8 21.9 197.0 19.4 188.7 95.8 108.9 55.3 20.8 12 20 26
SC 56 203.8 20.6 177.8 17.4 170.3 95.8 96.9 54.5 19.3 12 18 24
SIL-05 272.4 27.5 239.2 23.5 229.6 96.0 129.9 54.3 25.7 15 25 33
Total 3871.3 391.0 3515.5 348.6 3360.2 – 1883.3 – – – – –
Average 227.7 23.0 206.8 20.5 197.7 95.6 110.8 53.6 21.5 12.6 20.5 27.2

All read counts and lengths are shown in millions and billions, respectively.
aMapping rates are calculated as the ratio of the number of the mapped reads against the number of the preprocessed reads.
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reads by referring to the definitive answer genotypes, as shown in
Fig. 2C. The results indicated that Heap demonstrated a fairly high
sensitivity (0.884) and the highest PPV (0.956) (Fig. 3) among the 4
tools. Additionally, we calculated F-score (F), which is the harmonic
mean between sensitivity (S) and PPV (P) (Fig. 2C).

F ¼ 2SP
Sþ P

The F-score is commonly used in the field of statistical classification
and employed as a measure of a test’s accuracy. We found that Heap
exhibited the significantly highest F-score (0.918) compared to the
other tools according to the Tukey-Kramer honestly significant dif-
ference (HSD) test (Fig. 3). In SAMtools/BCFtools and GATK analy-
sis, F-scores were low due to the low sensitivities of these tools. Here
it should be noted that, in SAMtools/BCFtools and GATK analyses,
not negligible amounts of SNPs with lower GQ (<13) had been elim-
inated by the filtering on VCF files in advance. This could lead to an
underestimation of sensitivities for the 2 tools.

With the aim of conducting a fair benchmarking for each tool, we
also conducted GQ filtering-free analyses of SAMtools/BCFtools and
GATK. The results showed that their sensitivities increased
(SAMtools/BCFtools: 0.925, GATK: 0.686), but PPVs decreased
(SAMtools/BCFtools: 0.843) or did not change considerably (GATK:
0.937) in the GQ filtering-free condition (Fig. 3). Importantly, Heap
still showed the highest F-score (0.918) in this benchmarking, while
the F-scores of GQ filtering-free SAMtools/BCFtools and GATK
were 0.882 and 0.792, respectively. These results demonstrated that
Heap is the best performance tool for SNP calling from RAD-seq
reads, showing sufficient sensitivity and accuracy among the 17 in-
bred sorghum lines.

3.3. Performance comparison among SNP calling tools

with RAD-seq reads in rice

To confirm the advantages of Heap with multiple datasets, we also
compared performances of the 4 tools in 4 inbred lines of rice,
Omachi, Yamada Nishiki, Hitomebore, and Kameji. Prior to the

Table 2. Summary of WGS sequencing reads and mapping of the reads in rice

Sample Raw reads Preprocessed reads Mapped reads Uniquely mapped reads

Count
(�106)

Total length
(Gb)

Count
(�106)

Total length
(Gb)

Count
(�106)

Rate
(%)a

Count
(�106)

Rate
(%)a

Coverage

Mean 1st quartile Median 3rd quartile

Omachi 297.9 22.3 260.7 18.3 257.0 98.6 185.4 71.1 41.6 27 42 56
Yamada Nishiki 218.3 19.3 184.7 15.8 181.3 98.2 140.6 76.1 37.4 30 40 47
Hitomebore 221.9 16.6 202.2 14.9 198.0 97.9 144.3 71.4 34.2 18 35 48
Kameji 233.8 20.7 219.4 18.7 214.0 97.6 154.3 70.4 40.5 27 44 54
Total 971.9 79.1 866.8 67.7 850.2 – 624.6 – – – – –
Average 243.0 19.8 216.7 16.9 212.6 98.1 156.1 72.2 38.5 25.5 40.3 51.3

All read counts and lengths are shown in millions and billions, respectively.
aMapping rates are calculated as the ratio of the number of the mapped reads against the number of the preprocessed reads.

Figure 3. Performance comparison among SNP calling tools with RAD-seq reads in 17 inbred sorghum lines. Mean values of sensitivities (left), positive predic-

tive values (PPVs) (center), and F-scores (right) of SNP calling by Heap, Stacks, SAMtools, and GATK from RAD-seq reads in 17 inbred sorghum lines are shown.

Statistical analysis was performed using the Tukey-Kramer HSD test. Letters above the bars indicate groups that are significantly different (P< 0.05).
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SNP calling, we conducted RAD-seq and reference mapping of the
RAD-seq reads (Table 4). The average RAD-seq read coverage in
RAD-regions was low (9.7) for conventional SNP calling. We de-
tected 842, 1,021, 437 and 242 SNP sites among the 4 rice lines us-
ing Heap, Stacks, SAMtools/BCFtools and GATK with the RAD-

seq reads, respectively. Again, we calculated sensitivities, PPVs,
and F-scores as mentioned above. Heap showed a high sensitivity
(0.803) (Fig. 4) with a sufficiently high PPV (0.722). Here we
would mention that although Stacks showed the highest sensitivity
(0.843), the sensitivities of Heap and Stacks were not significantly

Table 3. Summary of RAD-seq reads and mapping of the reads in Sorghum

Sample Raw reads Preprocessed reads Mapped reads Uniquely mapped reads

Count
(�106)

Total length
(Gb)

Count
(�106)

Total length
(Gb)

Count
(�106)

Rate
(%)a

Count
(�106)

Rate
(%)a

Coverage in RAD-region

Mean 1st quartile Median 3rd quartile

GULUM ABIAD 1.6 0.2 1.5 0.1 1.4 91.4 0.6 41.8 5.8 1 2 4
A-6129 1.9 0.2 1.9 0.2 1.8 92.7 0.9 45.0 7.8 1 2 7
AGIRA 2.2 0.2 2.1 0.2 2.0 94.3 1.0 47.8 8.1 1 2 7
LR 399 1.4 0.1 1.4 0.1 1.3 94.0 0.6 42.4 5.5 1 2 5
CRIOLLO CABEZA

APRETADA
1.5 0.2 1.4 0.1 1.3 93.8 0.6 45.2 6.2 1 2 6

B2AR3043 2.7 0.3 2.6 0.3 2.5 93.6 1.3 48.1 9.2 1 2 7
RTx430 2.3 0.2 2.2 0.2 2.1 93.3 1.1 47.7 8.5 1 2 7
B3Tx2817 1.7 0.2 1.7 0.2 1.6 94.0 0.8 48.3 6.8 1 2 7
ZIRA-EL-SABI 2.4 0.2 2.3 0.2 2.2 94.2 1.1 48.6 7.9 1 2 7
ITALIAN 2.3 0.2 2.2 0.2 2.1 91.9 1.1 48.6 9.3 1 2 7
CAPRICORN 1.4 0.2 1.4 0.1 1.3 93.1 0.7 45.8 6.4 1 3 6
SOR 1 2.9 0.3 2.9 0.3 2.7 92.2 1.4 47.8 9.8 1 2 6
15065 1.8 0.2 1.8 0.2 1.6 92.3 0.8 45.2 6.4 1 2 5
SAP-155 2.2 0.2 2.1 0.2 2.0 93.7 1.0 48.0 7.9 1 2 6
RCV 2.0 0.2 2.0 0.2 1.9 93.9 1.0 48.8 7.4 1 2 6
SC 56 1.1 0.1 1.1 0.1 1.0 93.3 0.5 45.7 5.4 1 2 6
SIL-05 4.1 0.4 4.0 0.4 3.5 86.4 1.9 47.5 6.9 1 1 3
Total 35.3 3.6 34.8 3.3 32.1 – 16.3 – – – – –
Average 2.1 0.2 2.1 0.2 1.9 92.8 1.0 46.6 7.4 1.0 2.0 6.0

All read counts and lengths are shown in millions and billions, respectively.
aMapping rates are calculated as the ratio of the number of the mapped reads against the number of the preprocessed reads.

Figure 4. Performance comparison among SNP calling tools with RAD-seq reads in 4 inbred rice lines. Mean values of sensitivities (left), PPVs (center), and

F-scores (right) of SNP calling by Heap, Stacks, SAMtools, and GATK from RAD-seq reads in 4 inbred rice lines are shown. Letters above the bars indicate

groups that are significantly different (P<0.05), according to the Tukey-Kramer HSD test.
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different, according to the Tukey-Kramer HSD test (Fig. 4).
Additionally, the PPV of SNPs detected by Heap (0.722) was
higher than that by Stacks (0.553). Importantly, the F-score of
Heap (0.757) was the highest among the tools examined. These re-
sults indicate that Heap calls SNPs with a high sensitivity and
high PPV with a reasonable balance between them in rice samples,
too.

3.4. Performance comparison among SNP calling tools

with high read coverages in sorghum

To assess the performance of Heap even with high read coverage,
we identified SNPs with WGS sequencing reads among the 17 in-
bred sorghum lines by Heap, SAMtools/BCFtools, and GATK,
and benchmarked them in sensitivities, PPVs, and F-scores. We
did not adopt Stacks in this test, because Stacks is incompatible
with WGS sequencing reads. As a result, we detected 6,153,145,
5,160,730 and 5,587,400 SNP sites using Heap, SAMtools/
BCFtools and GATK, respectively. The results showed that Heap
had a high F-score of 0.9949, which was not significantly different
from the highest F-score of SAMtools/BCFtools (0.9952)
(Supplementary Fig. S2). Compared to the F-scores under low
read coverage, the F-scores of SNPs detected by SAMtools/
BCFtools and GATK turned out to be considerably high (Fig. 3
and Supplementary Fig. S2). Also in Heap’s case, the more read
coverage available, the higher the F-score achieved. This result re-
confirms the importance of read coverage for accurate SNP call-
ing. However, surprisingly, the F-scores of SNPs detected by Heap
with the high read coverage were not substantially different from
that of low read coverage (Fig. 3 and Supplementary Fig. S2).
These results demonstrate that Heap is applicable not only to SNP
calling with high read coverage but also to that with low read cov-
erage, with fairly high performance.

3.5. Scope of Heap

In this study, Heap exhibited the highest F-score in SNP calling with
low read coverage when compared with the conventional tools.
Heap will contribute to reducing costs of work requiring the identifi-
cation of many SNP markers among multiple samples, such as with
GWAS and GP studies. Heap also demonstrated sufficiently high per-
formance compared to the other tools in situations with high read
coverage.

3.6. Conclusion

In GWAS and GP studies, a large number of SNP markers are required
to detect associations between SNP markers and phenotypes. On the
other hand, false positive SNPs would disturb precise association or
prediction. In this study, we have developed a new tool Heap. In the
low read coverage condition, we demonstrated Heap’s advantages in
sensitivity and PPV by calculating and benchmarking F-scores of SNPs
as long as the sorghum and the rice datasets were used. Therefore,
Heap would offer fairly reliable SNPs with special reference to GWAS
and GP studies. As genomic information becomes available in many
species22–25, their SNP information serves as a useful platform on com-
parative functional analyses. In the future, we will be maintaining and
updating the function for SNP mining in Heap.

Availability of data and program

The datasets supporting the conclusions of this article are available in
the DDBJ DRA repository (http://trace.ddbj.nig.ac.jp/dra/index_e.html
(29 March 2017, date last accessed)), under accession numbers
DRR045054-DRR045091. The source code of Heap is freely available
from the git repository (https://github.com/meiji-bioinf/heap (29
March 2017, date last accessed)) and our web site (http://bioinf.mind.
meiji.ac.jp/lab/en/tools.html (29 March 2017, date last accessed)).
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