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To facilitate the intuitional analysis of protein sequences, a novel graphical representation of protein sequences called ADLD
(Alignment Diagonal Line Diagram) is introduced in this paper first, and then a new ADLD based method is proposed and utilized
to analyze the similarity/dissimilarity of protein sequences. Comparing with existing methods, our ADLD based method is proved
to be effective in the similarity/dissimilarity analysis of protein sequences and have the merits of good intuition, visuality, and
simplicity. The examinations of the similarities/dissimilarities for both the 16 different ND5 proteins and the 29 different spike
proteins illustrate the utility of our ADLD based approach.

1. Introduction

Homology analysis is one of the hot topics in the area
of protein sequences analysis. Up to now, lots of methods
have been proposed for the homology analysis of protein
sequences [1–3], and among themauseful one is the graphical
representation of protein sequences, which is proved to be a
powerful tool for visual comparison of protein sequences.

At first, graphical representation methods were intro-
duced for representation of DNA sequences on the basis of
multiple dimension space [4–7]. After obtaining the sequence
invariants from the graphics, one can compare the sequences
based on comparison of sequence invariants. Graphical
representation methods were proposed as an alternative
approach of direct comparison of DNA sequences, which are
computational intensive (even those of a restricted length)
[8]. Protein sequences are to some degree similar to DNA
sequences, which are composed of different units. Thus
the graphical representation methods can be extended to
describe protein sequences obviously.

Currently, many researchers have proposed different
methods for the graphical representation of protein
sequences [9–24]. For example, Feng and Zhang [25]
suggested Zp-curve based on the hydrophobicity and

charged properties of amino acid residues along the
primary sequence. Randić et al. [26] introduced a graphical
representation of protein sequences based on a graphical
representation of triplets of DNA in which the interior
of a square or a tetrahedron is utilized to accommodate
64 sites for the 64 codons. Bai and Wang [27] derived a
2D graphical representation of protein sequences based
on nucleotide triplet codons. Yao et al. [28] outlined a
2D graphical representation of protein sequences based
on two classifications of amino acids. Abo el Maaty et al.
[29] proposed a novel unique 3D graphical representation of
protein sequences based on three physicochemical properties
of amino acid side chains. Abo-Elkhier introduced a 3D
graphical representation of protein sequence based on a right
cone of a unit base and unit height on protein sequences
interfaces [30]. El-Lakkani and El-Sherif [31] proposed
a graphical representation of protein sequence to help
similarity analysis of protein sequences based on 2D and 3D
amino acid adjacency matrices. Ma et al. [32] introduced a
family of Iterated Function Systems (IFS) to outline a 2D
graphical representation of protein sequences.

In most of these existing methods, the main draw-
backs are that the higher the dimension of the protein
sequence graphs, the heavier the computation complexity of
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the methods or the lower the recognition degree of the pro-
tein sequence graphs. For example, in the methods proposed
in [26, 28], the main drawback is that the lines will cross each
other, which will decrease the visibility of the graphics. In the
methods proposed in [29–31], the main drawbacks are that
the 3D graphics seem to be more complex and have lower
visibility than the 2D graphics, and, in addition, to obtain the
sequence invariants from the graphics, complex matrixes are
required to be constructed, which need much computation
and storage.

Sequence alignment is a way of arranging the sequences
of DNA, RNA, or protein to identify regions of similarity
that may be a consequence of functional, structural, or
evolutionary relationships between the sequences [33]. Up
to now, there are many kinds of algorithms having been
implemented for sequence alignment [34–37]. These meth-
ods are usually efficient but complex and time consuming.
Comparing with the alignment methods, existing graphical
representation methods can also display the inner structure
of the protein sequences and can be utilized to find the sim-
ilarity/dissimilarity more visible according to their graphics.
In this paper, we proposed a novel method for analyzing the
similarity/dissimilarity by combining the idea of the sequence
alignment and the graphical representation methods to some
degree avoid the weakness of both of these two methods.

Principal components analysis (PCA) is a standard tool
in multivariate data analysis to reduce the number of dimen-
sions, which has been proved to be effective in the process
of protein sequence analysis [38–40]. Therefore, in order to
overcome the main drawbacks of existing methods, in this
paper, a novel graphical representation of protein sequences
called ADLD (Alignment Diagonal Line Diagram) is intro-
duced based on PCA, and then a newADLD basedmethod is
proposed and utilized to analyze the similarity/dissimilarity
of protein sequences. And, in addition, to validate the
effectiveness of our ADLD based method, we adopt it to
analyze the similarity/dissimilarity of both the 16 different
ND5 proteins and the 29 different spike proteins, respectively,
which are widely used as the test data [16–26]. The analysis
results show that our method is not only visual, intuitional,
and effective in the similarity/dissimilarity analysis of protein
sequences but also quite simple, since there are no high
dimensional matrixes required to be constructed.

2. Materials and Methods

2.1. Procedure of OurMethod for Analysis of Protein Sequences.
In this section, we will illustrate the overall procedures of our
method for analyzing protein sequences as follows at first.

(1) Select the same 9 different properties for each amino
acid and construct a 20 × 9 matrix as the input data
of the PCA algorithm on the basis of total 20 different
amino acids.

(2) According to the PCA algorithm, we can obtain a
unique feature for each amino acid.

(3) For each protein sequence in the test data, we will
replace each amino acid in the protein sequence

with its corresponding unique feature, and then we
can transform the protein sequence into a numerical
sequence.

(4) For any two numerical sequences, we can draw
a graph, named ADLD, and then abstract some
numerical characteristics of it, which can be utilized
to analyze the similarity/dissimilarity of these two
sequences.

Next, in Sections 2.2–2.6 we will introduce the details
of constructing the ADLDs and obtaining some of the
numerical characteristics of them. In Section 3.1, we will give
the method for constructing the similarity/dissimilarity of
our test sequence groups.

2.2. AminoAcids andTheir Properties. Proteins are composed
of 20 different amino acids, and these amino acids have many
different physicochemical and biological properties such as
the molecular weight (mW), hydropathy index (hI), the pKa
value for terminal amino acid groups COOH (pK1), the pKa
value for terminal amino acid groupsNH

3

+ (pK2), isoelectric
point (pI), solubility (𝑆), the number of triplet codons (cN),
frequency of human proteins (𝐹), and van der Waals radius
of side chains (vR). The names and symbols of the 20 amino
acids and the value of their 9 major properties are illustrated
in Table 1.

2.3. Principal Components Analysis. Principal components
analysis (PCA) is a common technique for dimensionality
reduction and pattern recognition in datasets of high dimen-
sion [41]. The main purposes of PCA are the analysis of
data to identify patterns and finding patterns to reduce the
dimensions of the dataset with minimal loss of information.
The general steps of conducting PCA are as follows.
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Next, based on thematrixX, construct the corresponding
𝑚 × 𝑛 standardized matrix X∗ according to the following
formula:
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𝑖 ∈ {1, 2, . . . , 𝑚} and 𝑗 ∈ {1, 2, . . . , 𝑛}.
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Table 1: The full list of 20 amino acids and the value of their 9 different properties.

Amino acid Symbol mW hI pK1 pK2 pI 𝑆 cN 𝐹 (%) vR
Alanine A 89.079 1.8 2.34 9.69 6.01 167.2 4 7.8 67
Cysteine C 121.145 2.5 1.96 10.28 5.07 0 2 1.9 86
Aspartic acid D 133.089 −3.5 1.88 9.6 2.77 5 2 5.3 91
Glutamic acid E 147.116 −3.5 2.19 9.67 3.22 8.5 2 6.3 109
Phenylalanine F 165.177 2.8 1.83 9.13 5.48 27.6 2 3.9 135
Glycine G 75.052 −0.4 2.34 9.6 5.97 249.9 4 7.2 48
Histidine H 155.141 −3.2 1.82 9.17 7.59 0 2 2.3 118
Isoleucine I 131.16 4.5 2.36 9.68 6.02 34.5 3 5.3 124
Lysine K 146.17 −3.9 2.18 8.95 9.74 739 2 5.9 135
Leucine L 131.16 3.8 2.36 9.6 5.98 21.7 6 9.1 124
Methionine M 149.199 1.9 2.28 9.21 5.74 56.2 1 2.3 124
Asparagine N 132.104 −3.5 2.02 8.8 5.41 28.5 2 4.3 96
Proline P 115.117 1.6 1.99 10.96 6.48 1620 4 5.2 90
Glutamine Q 146.131 −3.5 2.17 9.13 5.65 7.2 2 4.2 114
Arginine R 174.188 −4.5 2.17 9.04 10.76 855.6 6 5.1 148
Serine S 105.078 −0.8 2.21 9.15 5.68 422 6 6.8 73
Tyrosine T 119.105 −0.7 2.11 9.62 5.87 13.2 4 5.9 93
Valine V 117.133 4.2 2.32 9.62 5.97 58.1 4 6.6 105
Tryptophan W 204.213 −0.9 2.38 9.39 5.89 13.6 1 1.4 163
Threonine Y 181.176 −1.3 2.2 9.11 5.66 0.4 2 3.2 141

Step 2. Based on thematrixX∗, construct the 𝑛×𝑛 correlation
matrix R according to the following formula:
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respectively. And, from now on, we can obtain 𝑛 principal
components 𝐹
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Step 4. For each principal component 𝐹
𝑖
for 𝑖 ∈ {1, 2, . . . , 𝑛},

obtain its contribution rate CR
𝑖
and accumulated contribution

rate ACR
𝑖
according to the following formulas, respectively:

CR
𝑖
=

𝜆
𝑖

∑
𝑛

𝑘=1
𝜆
𝑘

, (6)

ACR
𝑖
=

𝑖

∑

𝑘=1

CR
𝑘
. (7)

Generally, in order to lower the computation complexity,
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Then, for each 𝑖 ∈ {1, 2, . . . , 𝑚}, we can obtain the total score
of the 𝑖th sample as follows:
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Table 2: The 9 eigenvalues (𝜆) of R and the contribution rates (CR)
and the accumulative contribution rates (ACR) of the 9 principal
components obtained by conducting PCA of the 20 amino acids.

Number 𝜆 CR ACR
1 3.2237 0.3582 0.3582
2 1.9132 0.2126 0.5708
3 1.4048 0.1561 0.7269
4 1.1876 0.1320 0.8588
5 0.4959 0.0551 0.9139
6 0.4467 0.0496 0.9635
7 0.1992 0.0221 0.9857
8 0.1218 0.0135 0.9992
9 0.0071 0.0008 1.0000

Table 3:The 4 eigenvectors {𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
} corresponding to the first

4 eigenvalues in Table 2.

𝑎
1

𝑎
2

𝑎
3

𝑎
4

0.5036 0.1436 0.0571 0.2158
−0.2454 −0.1875 0.2304 0.6547
−0.1634 0.1820 0.6298 0.2288
−0.3101 −0.1883 −0.3964 0.5071
0.0702 0.6464 −0.0786 0.0532
−0.1665 0.4465 −0.5280 0.1877
−0.3872 0.3931 0.1003 −0.0532
−0.4377 0.1844 0.2544 −0.2273
0.4349 0.2643 0.1738 0.3495

2.4. PCA of the Amino Acids. Observing Table 1, if we
consider the 20 amino acids as 20 different samples and the
9 properties of each amino acid as its 9 components, then,
according to the general steps of conducting PCA illustrated
in Section 2.3, we can obtain a 20 × 9 matrix X and its
standardized matrix X∗, a 9 × 9 correlation matrix R, and
9 principal components {𝐹

1
, 𝐹
2
, . . . , 𝐹

9
}. And, therefore, as

illustrated in Table 2, we can obtain the 9 eigenvalues of R
and the contribution rates and the accumulative contribution
rates of the 9 principal components {𝐹

1
, 𝐹
2
, . . . , 𝐹

9
}, respec-

tively.
From Table 2, we can see that the accumulative con-

tribution rate of the first 4 principal components amounts
to 0.8588 (=85.88%), which is already bigger than 85%.
Therefore, we can keep the first 4 principal components only.
Let {𝜆

1
, 𝜆
2
, 𝜆
3
, 𝜆
4
} be the 4 eigenvalues corresponding to the

first 4 principal components, respectively; then, as illustrated
in Table 3, we can obtain the 4 eigenvectors {𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
}

corresponding to the 4 eigenvalues {𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
} separately.

Based on Table 3, we can obtain the first 4 principal
components {𝐹

1
, 𝐹
2
, 𝐹
3
, 𝐹
4
} as follows:

𝐹
1
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9
,

Table 4: The total scores of the 20 amino acids.

Symbols of amino acids Total scores
A −0.9324
C −0.5985
D −0.6709
E −0.2296
F 0.4298
G −1.1780
H 0.4476
I 0.1435
K 0.7868
L −0.1205
M 0.5735
N −0.0242
P −0.9822
Q 0.2848
R 1.1169
S −0.7077
T −0.4525
V −0.2643
W 1.4729
Y 0.9050
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.

(10)

Observing the above 4 formulas, it is easy to find that
there are three big coefficients in the first formula, which
are 0.5036 (corresponding to mW), 0.4377 (corresponding to
𝐹), and 0.4349 (corresponding to vR), respectively.Therefore,
it means that the three properties such as mW, 𝐹, and
vR will have a major role in the first principal component
𝐹
1
. Similarly, we can also know that the three properties

such as pI, 𝑆, and cN will have a major role in the second
principal component 𝐹

2
, the third principal component 𝐹

3
is

mainly determined by pK1 and 𝑆, and the fourth principal
component 𝐹

4
is closely linked with hI and pK2 and so forth.

Hence, we can obtain the total scores of the 20 amino acids as
illustrated in Table 4 according to formula (9).
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2.5. Numerical Sequences of Protein Sequences. LetΩ = {A,C,

D,E, F,G,H, I,K, L,M,N,P,Q,R, S,T,V,W,Y} and suppose
that Ψ = 𝑝

1
𝑝
2
𝑝
3
. . . 𝑝
𝑁
represents a protein sequence with

𝑁 amino acids, where 𝑝
𝑖

∈ Ω for 𝑖 ∈ {1, 2, . . . , 𝑁}; then
we can obtain a numerical sequence 𝑆

Ψ
= (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑁
)

corresponding to the protein sequence Ψ through replacing
each amino acid 𝑝

𝑖
in Ψ with its corresponding value of

TotalScore(𝑖) for 𝑖 ∈ {1, 2, . . . , 𝑁}.
For example, consider the following 3 abbreviated protein

sequences:

Hu = MTMHTTMTTL,
Gor = MTMYATMTTL,
Opo = MKVINISNTM.

According to the above descriptions and Table 4, then
we can obtain their corresponding numerical sequences as
follows:
𝑆Hu = {0.5735, −0.4525, 0.5735, 0.4476, −0.4525, −0.4525,

0.5735, −0.4525, −0.4525, −0.1205} ;

𝑆Gor = {0.5735, −0.4525, 0.5735, 0.9050, −0.9324, −0.4525,

0.5735, −0.4525, −0.4525, −0.1205} ;

𝑆Opo = {0.5735, 0.7868, −0.2643, 0.1435, −0.0242, 0.1435,

−0.7077, −0.0242, −0.4525, 0.5735} .

(11)

2.6. ASDs and ADLDs of Protein Sequence Pairs. For a
given protein sequence pair (𝑠

1
, 𝑠
2
), suppose that the protein

sequence 𝑠
1
includes 𝑁

1
amino acids, 𝑠

2
includes 𝑁

2
amino

acids, and 𝑁
1

⩾ 𝑁
2
; then, in order to measure the

similarity/dissimilarity between them, in this section, we will
present a new method called Alignment Scatter Diagram
(ASD) to plot the two sequences into a scatter diagram first.
And, for convenience, we call the points in the ASD the
alignment-plots (APs). The ASD of the protein sequence pair
(𝑠
1
, 𝑠
2
) can be obtained through the following steps.

Step 1. According to the method given in Section 2.5, trans-
late the protein sequence pair (𝑠

1
, 𝑠
2
) into two numerical

sequences with the same length as follows:

𝑆
1
= {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑁
1

} ,

𝑆
2
= {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑁
2

, 0, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁
1
−𝑁
2

} .

(12)

Step 2. Let 𝑤 be the alignment width (AW) of the protein
sequence pair (𝑠

1
, 𝑠
2
); that is, let 𝑠

1
= 𝑝
1
, 𝑝
2
, 𝑝
3
, . . . , 𝑝

𝑁
1

, 𝑠
2
=

𝑞
1
, 𝑞
2
, 𝑞
3
, . . . , 𝑞

𝑁
2

; then, for any amino acid 𝑝
𝑖
in the protein

sequence 𝑠
1
, we will compare it with these 2𝑤 + 1 amino

acids {𝑞
𝑖−𝑤

, . . . , 𝑞
𝑖−1

, 𝑞
𝑖
, 𝑞
𝑖+1

, . . . , 𝑞
𝑖+𝑤

} in the protein sequence
𝑠
2
, and then 𝑤 can be simply defined as follows:

𝑤 = {

𝜉, if 𝑁
1
− 𝑁
2
≤ 𝜉,

𝑁
1
− 𝑁
2
, else,

(13)

where 𝜉 > 0 is a given threshold to guarantee that the AW
of the protein sequence pair (𝑠

1
, 𝑠
2
) will not be too small to

expose the association of the inner structures of the protein
sequence pair (𝑠

1
, 𝑠
2
). In actual applications, we suggest that

𝜉 shall be no less than 10.

Step 3. Let 𝜀 > 0 be the dissimilarity degree (DD) of two
amino acids; that is, if 𝜀 = 0, then it means that the two amino
acids are the same; otherwise, it means that the two amino
acids are different from each other to some degree, and then
the APs in the ASD of the protein sequence pair (𝑠

1
, 𝑠
2
) can

be briefly defined as follows:

𝐴
𝜀

𝑖𝑗
= Θ (






𝑡
𝑖
− 𝑡
𝑗






− 𝜀) , (14)

where 𝑖 ∈ {1, 2, . . . , 𝑁
1
}, 𝑗 ∈ {1, 2, . . . , 𝑁

1
}, and Θ is a

Heaviside function, which can be defined as follows:

Θ (𝑥) = {

1, if 𝑥 ≤ 0,

0, else.
(15)

Thereafter, we can obtain an 𝑁
1
× 𝑁
1
alignment matrix

(AM) as follows:

AM = (𝐴
𝜀

𝑖𝑗
)
𝑁
1
×𝑁
1

. (16)

Step 4. For the𝑁
1
×𝑁
1
elements in the alignmentmatrix AM,

we can plot points on 𝑖-𝑗 plane for these elements in the AM
with 𝐴

𝜀

𝑖𝑗
= 1 and |𝑖 − 𝑗| ≤ 𝑤. And, for convenience, we call

the obtained graph the Alignment Scatter Diagram (ASD) of
the protein sequence pair (𝑠

1
, 𝑠
2
).

For example, considering the three 𝛽-globin pro-
tein sequences of chimpanzee [GenBank: AAA16334.1],
human [GenBank: CAA26204.1], and gorilla [GenBank:
CAA43421.1] obtained from the GenBank, respectively, we
illustrate the ASDs of the 𝛽-globin protein sequence pair
(chimpanzee, human) and the 𝛽-globin protein sequence
pair (human, gorilla) in Figures 1(a) and 1(b) separately while
letting 𝜀 = 0.

From Figure 1, it is easy to see that there are lots of disor-
dered points in these ASDs, which will lower the visuality of
the ASDs remarkably and obstruct us fromdistinguishing the
similarity/dissimilarity between the protein sequence pairs
intuitively while observing these ASDs.Therefore, in order to
improve the intuition of theASD, wewill propose a simplified
variant diagram of the ASD, which is called the Alignment
Diagonal Line Diagram (ADLD).

For convenience, in an ASD, we call its main diagonal
line the artery tracks (ATs) and the lines parallelling to its
main diagonal line the by-path tracks (BTs), respectively. And,
in addition, we define a set consisting with no less than 𝛿

consecutive APs on the AT or BTs as a CAPS, where 𝛿 ≥ 1

is a given threshold.
For a given CAPS caps

1
, if there is no CAPS caps

2

satisfying caps
1

⊂ caps
2
, then we call the caps

1
a maximum

CAPS. And, for convenience, we call the line formed by
connecting all of the APs in a maximum CAPS a similar
fragment (SF), and simultaneously we call all of the APs on
the AT but not on any SFs the free points (FPs).
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Obviously, in an ASD, if keeping all of the SFs and FPs
only and omitting all those other APs, then we will obtain a
simplified variant diagram of the ASD, and, for convenience,
we call it the Alignment Diagonal Line Diagram (ADLD).
Apparently, if 𝛿 = 1, then an ADLD will degenerate into an
ASD. Therefore, in actual applications, we suggest that 𝛿 will
be no less than 2. And, particularly, in order to find more
accurate SFs in the ADLD of a protein sequence pair, the
longer the protein sequences in the protein sequence pair are
the bigger the value of 𝛿 shall be.

For convenience of analysis, in an ADLD, suppose that
there are 𝐾

1
different SFs and 𝐾

2
different FPs on its AT,

𝐾 different BTs locating above its AT, and 𝐾 different BTs
locating below its AT; then we get the following.

(1) For these 𝐾
1
different SFs and 𝐾

2
different FPs

on the AT of the ADLD, we will number these
𝐾
1
SFs and 𝐾

2
FPs from left to right and utilize

{ASF1,ASF2, . . . ,ASF𝐾1} and {FP1, FP2, . . . , FP𝐾2} to
represent these 𝐾

1
SFs and 𝐾

2
FPs separately. And,

in addition, we would also call these SFs on the AT of
the ADLD the ASFs.

(2) For these 𝐾 different BTs locating above the AT, we
will number these BTs from down to up and utilize
{BT
1
,BT
2
, . . . ,BT

𝐾
} to represent these BTs separately,

and, for these 𝐾 different BTs locating below the
AT, we will number these BTs from up to down and
utilize {BT

−1
,BT
−2

, . . . ,BT
−𝐾

} to represent these BTs
separately.

(3) For each BT
𝑙
, where 𝑙 ∈ {1, 2, . . . , 𝐾}, suppose

that there are 𝐾
3
different SFs on the BT

𝑙
; then we

will number these 𝐾
3
SFs from left to right and

utilize {BSF1
𝑙
,BSF2
𝑙
, . . . ,BSF𝐾3

𝑙
} to represent these SFs

separately. And, in addition, we would also call these
SFs on the BTs of the ADLD the BSFs.

According to the above assumptions, in Figure 2, we show
the two ADLDs corresponding to the ASDs illustrated in
Figures 1(a) and 1(b) while letting 𝛿 = 3. And, in addition,
to make the ADLDs more visual and intuitional, in Figure 2,
we use the red “∗” to represent the FPs on the AT and the blue
lines to represent the SFs on the AT or BTs.

From Figure 2(a), it is easy to see that there are two SFs
in the ADLD of the sequence pair (chimpanzee, human);
one is ASF1, that is, the line segment from the point (1, 1)

to the point (32, 32), and the other is BSF1
−4
, that is, the

line segment from the point (35, 31) to the point (125, 121).
And, in addition, there are totally 6 FPs in the ADLD, which
are FP1(46, 46), FP2(66, 66), FP3(111, 111), FP4(114, 114),
FP5(115, 115), and FP6(123, 123), respectively.

Observing Figure 2(b), we can easily find that there are
also two SFs in the ADLD of the sequence pair (human,
gorilla). But, different from that in Figure 2(a), the two SFs
in Figure 2(b) are both ASFs; one is ASF1, that is, the line
segment from the point (1, 1) to the point (104, 104), and
the other is ASF2, that is, the line segment from the point
(106, 106) to the point (121, 121). And, in addition, the two
ASFs in Figure 2(b) are separated by one gap, and there exist
no FPs or BSFs on the AT or BTs.

Through analysis, we can know that, for a given protein
sequence pair, if there exist some deletions or insertions of
amino acid segments between the two protein sequences,
then there will exist some misalignments of SFs in their
ADLD; that is, some ASFs on the AT will be transformed
into BSFs on some BTs. And, in addition, if there exist some
substitutions of the amino acids between the two protein
sequences, then, in their ADLD, there will exist some gaps
between two neighboring SFs or FPs on the AT. Furthermore,
if there exist some insertions, deletions, or substitutions of the
amino acid segments at the end of the two protein sequences,
then, in their ADLD, there will exist no SFs or FPs on the AT
or BTs.

From the above descriptions, it is easy to know that
the ADLD of any given protein sequence pair obtained
by our above proposed method reflects some inner and
specific differences between these two protein sequences in
the given protein sequence pair, which may be useful in the
similarity/dissimilarity analysis of protein sequence pairs.

3. Results and Discussion

3.1. Method for Similarity/Dissimilarity Analysis of Protein
Sequences Based on the ADLDs. According to the above
analysis, we have known that the ADLDs may be useful in
analyzing the differences of the inner structures of protein
sequence pairs. In this section, we will show how to utilize
the ADLDs to analyze the similarity/dissimilarity of a group
of protein sequences.

Generally, suppose that there are 𝑁 protein sequences
{Ψ
1
, Ψ
2
, . . . , Ψ

𝑁
}; then while applying the ADLDs to analyze

the similarity/dissimilarity of these𝑁 sequences, the similar-
ity/dissimilarity matrix of these𝑁 sequences can be obtained
through the following steps.

Step 1. According to the method given in Section 2.5, trans-
form these 𝑁 protein sequences into𝑁 numerical sequences
{𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑁
}.

Step 2. For a given protein sequence pair {Ψ
𝑎
, Ψ
𝑏
}, 𝑎 ∈

{1, 2, . . . , 𝑁}, 𝑏 ∈ {1, 2, . . . , 𝑁}, we can obtain their ADLD
through adopting the method proposed in Section 2.6, and
then we can obtain all of the SFs (including ASFs and BSFs)
and FPs in the ADLD. Hence, we can obtain the lengths of
theseASFs, the lengths of these BSFs, and the number of these
FPs, respectively.

Step 3. Suppose that there are totally 𝐿
1
different ASFs

such as {ASF1,ASF2, . . . ,ASF𝐿1}, 𝐿
2
different BSFs such

as {BSF1
𝑙
1

,BSF2
𝑙
2

, . . . ,BSF𝐿2
𝑙
𝐿2

}, and 𝐿
3
different FPs such as

{FP1, FP2, . . . , FP𝐿3} in the ADLD. And, in addition, for each
ASF𝑖 and BSF𝑗

𝑙
𝑗

, let their length be length𝑖 and length
𝑗
,

respectively, where 𝑖 ∈ {1, 2, . . . , 𝐿
1
} and 𝑗 ∈ {1, 2, . . . , 𝐿

2
};

then we can define the similarity degree (SD) of {Ψ
𝑎
, Ψ
𝑏
} as

follows:

SD (Ψ
𝑎
, Ψ
𝑏
) =

𝐿
1

∑

𝑖=1

length𝑖 +
𝐿
2

∑

𝑗=1

length
𝑗
+ 𝐿
3
. (17)
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Figure 1: (a)TheASD of the 𝛽-globin protein sequence pair (chimpanzee, human) with 𝜉 = 12; (b) the ASD of the 𝛽-globin protein sequence
pair (human, gorilla) with 𝜉 = 16.
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Figure 2: (a) The ADLD of the protein sequence pair (chimpanzee, human); (b) the ADLD of the protein sequence pair (human, gorilla).

And, therefore, according to these 𝑁 protein sequences
{Ψ
1
, Ψ
2
, . . . , Ψ

𝑁
}, we can obtain an 𝑁 × 𝑁 matching matrix

(MM) as follows:

MM = [𝑑
𝑖𝑗
]
𝑁×𝑁

, (18)

where

𝑑
𝑖𝑗

= {

SD (Ψ
𝑖
, Ψ
𝑗
) , if 𝑖 ≥ 𝑗,

0, else,

for 𝑖 ∈ {1, 2, . . . , 𝑁} , 𝑗 ∈ {1, 2, . . . , 𝑁} .

(19)

Step 4. Based on the matching matrixMM and all of its com-
ponents 𝑑

𝑖𝑗
, where 𝑖 ∈ {1, 2, . . . , 𝑁} and 𝑗 ∈ {1, 2, . . . , 𝑁}, then

we can obtain an 𝑁 × 𝑁 similarity/dissimilarity matrix (SM)
of these 𝑁 protein sequences {Ψ

1
, Ψ
2
, . . . , Ψ

𝑁
} as follows:

SM = [𝑠
𝑖𝑗
]
𝑁×𝑁

, (20)

where

𝑠
𝑖𝑗

=

{
{

{
{

{

1 − Λ(

𝑑
𝑖𝑗

𝑑
𝑖𝑖

) , if 𝑖 ≥ 𝑗,

0, else,

Λ(

𝑑
𝑖𝑗

𝑑
𝑖𝑖

) =

{
{
{

{
{
{

{

1, if
𝑑
𝑖𝑗

𝑑
𝑖𝑖

≥ 1,

𝑑
𝑖𝑗

𝑑
𝑖𝑖

, else,

for 𝑖 ∈ {1, 2, . . . , 𝑁} , 𝑗 ∈ {1, 2, . . . , 𝑁} .

(21)

According to the above steps, we present an example
through implementing the ADLDs to analyze the similar-
ity/dissimilarity of 16 ND5 proteins (illustrated in Table 5)
while letting 𝛿 = 3 and illustrate the results of similar-
ity/dissimilarity matrix in Table 6.

Observing Table 6, it is easy to find that there are some
similar pairs such as (c-chim, pi-chim) with the distance
0.0510, (human, c-chim) with the distance 0.0814, (human,
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Table 5: The basic information of 16 ND5 protein sequences.

Number Name Abbreviation Access number Length
1 Human Human ADT80430.1 603
2 Gorilla Gorilla NP 008222 603
3 Pigmy chimpanzee Pi-chim NP 008209 603
4 Common chimpanzee C-chim NP 008196 603
5 Fin-whale Fin-whale NP 006899 606
6 Blue-whale Blue-whale NP 007066 606
7 Rat Rat AP 004902.1 610
8 Mouse Mouse NP 904338 607
9 Opossum Opossum NP 007105 602
10 Sheep Sheep ABW22903.1 606
11 Goat Goat BAN59258.1 606
12 Lemur Lemur CAD13431.1 603
13 Cattle Cattle ADN11902.1 606
14 Hare Hare CAD13291.1 603
15 Gallus Gallus BAE16036.1 605
16 Rabbit Rabbit NP 007559.1 603
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0.0770

0.0243

0.0176

0.0288

0.0163

0.0458

0.0142

0.000.050.100.150.20

Figure 3: The phylogenetic tree of the 16 species based on the ADLDs based method.

pi-chim) with the distance 0.0720, (gorilla, c-chim) with the
distance 0.0865, (gorilla, pi-chim) with the distance 0.0833,
and (fin-whale, blue-whale) with the distance 0.0324. And,
among them, the opossum seems to be a peculiar mammal,
since the shortest distance between it and the remaining

mammals is more than 0.4023. Obviously, the result is
consistent with the fact that opossum is the most remote
species from the remaining mammals.

Additionally, gallus seems to be more peculiar than
opossum, since the shortest distance between it and



Computational and Mathematical Methods in Medicine 9

Ta
bl
e
6:
Th

es
im

ila
rit
y/
di
ss
im

ila
rit
y
m
at
rix

fo
rt
he

16
N
D
5
pr
ot
ei
ns

ba
se
d
on

th
eA

D
LD

sb
as
ed

m
et
ho

d.

H
um

an
G
or
ill
a

Pi
-c
hi
m

C-
ch
im

Fi
n-
w
ha
le

Bl
ue
-w

ha
le

ra
t

m
ou

se
op

os
su
m

sh
ee
p

go
at

le
m
ur

ca
ttl
e

ha
re

ga
llu

s
ra
bb
it

H
um

an
0.
00

00
G
or
ill
a

0.
11
11

0.
00
00

Pi
-c
hi
m

0.
07

20
0.
08

33
0.
00

00
C-

ch
im

0.
08

14
0.
08

65
0.
05

10
0.
00

00
Fi
n-
w
ha
le

0.
33
96

0.
32
85

0.
32
22

0.
33
01

0.
00
00

Bl
ue
-w

ha
le

0.
34
74

0.
33
33

0.
32
85

0.
33
01

0.
03
24

0.
00

00
Ra

t
0.
36
93

0.
36
22

0.
36
36

0.
37
16

0.
33
33

0.
33
81

0.
00

00
M
ou

se
0.
37
40

0.
36
86

0.
37
16

0.
37
48

0.
33
17

0.
33
33

0.
18
83

0.
00

00
O
po

ss
um

0.
44

76
0.
45
51

0.
42
90

0.
44

18
0.
45
15

0.
45
19

0.
45
13

0.
44

79
0.
00

00
Sh
ee
p

0.
30
20

0.
29
33

0.
28
71

0.
29
51

0.
20
23

0.
20
67

0.
31
49

0.
32
19

0.
41
21

0.
00
00

G
oa
t

0.
30
36

0.
29
01

0.
28
71

0.
29
19

0.
19
58

0.
21
47

0.
31
66

0.
34
68

0.
42
02

0.
07

12
0.
00

00
Le
m
ur

0.
29
89

0.
27
08

0.
28
39

0.
29
67

0.
25
57

0.
27
24

0.
31
66

0.
36
70

0.
40

55
0.
20
87

0.
23
17

0.
00

00
Ca

ttl
e

0.
31
14

0.
30
45

0.
30
46

0.
30
62

0.
19
58

0.
20
51

0.
31
49

0.
31
73

0.
42
35

0.
09

06
0.
12
54

0.
21
84

0.
00

00
H
ar
e

0.
31
46

0.
31
57

0.
30
62

0.
30
46

0.
28
32

0.
27
88

0.
31
66

0.
34
21

0.
40
23

0.
22
17

0.
25
08

0.
20
53

0.
25
32

0.
00

00
G
al
lu
s

0.
47
26

0.
49
20

0.
47
37

0.
50
08

0.
44

50
0.
44

23
0.
49
03

0.
47
43

0.
46
91

0.
42
39

0.
45
24

0.
46

80
0.
41
83

0.
46

60
0.
00
00

Ra
bb

it
0.
32
55

0.
31
89

0.
32
22

0.
31
42

0.
28
96

0.
27
56

0.
30
84

0.
33
90

0.
43
32

0.
21
84

0.
26
03

0.
22
82

0.
26
12

0.
08

37
0.
44

34
0.
00

00



10 Computational and Mathematical Methods in Medicine

the remaining animals is more than 0.4423, which is bigger
than 0.4023 (the shortest distance between Opossum and
the remaining mammals). Obviously, the result is consistent
with the fact that gallus is not a kind of mammal.

Therefore, it is apparent that the results illustrated in
Table 6 are wholly consistent with the results of the known
fact of evolution. That is to say, our ADLDs based method
can be utilized as an effective way to analyze the similari-
ties/dissimilarities of protein sequences.

3.2. The Phylogenetic Tree of the Protein Sequences Based on
the ADLDs. A phylogenetic tree is a diagram that is used to
represent the evolutionary relationships of organisms that are
thought to have a common ancestry, and it is a commonly
used tool for researchers in some fields to help them analyze
the clustering of different species.

Obviously, only through observing the similarity/
dissimilaritymatrix illustrated inTable 6, wewill find that it is
not very convenient to distinguish the similarity/dissimilarity
of protein sequences. Therefore, in order to show the
similarity/dissimilarity of the protein sequences more vividly
and intuitively, according to the similarity/dissimilarity
matrix illustrated in Table 6, then we will construct the
phylogenetic tree of the above 16 ND5 proteins through
adopting the software MEGA 6.06 that is provided by
Tamura et al. [41], and the result is illustrated in Figure 3.

From Figure 3, it is obvious that we can not only find
out the evolutionary relationships of these 16 ND5 protein
sequences visually and intuitively but also know easily that
the constructed phylogenetic tree is consistent with the
results of the known fact of evolution to some degree.

To further validate the performance of our ADLDs based
method, we applied our method to analyze the similar-
ity/dissimilarity of another group of proteins including 29
spike proteins of coronavirus and compared ourmethodwith
the method proposed by Wen and Zhang [17] based on the
above given 16 ND5 proteins and the following 29 spike
proteins, respectively. The basic information of the 29 spike
proteins is illustrated in Table 7.

For the 29 spike proteins illustrated in Table 7, we
construct the phylogenetic tree in Figure 4. Since the spike
protein sequences are very long (with more than 1100 amino
acids), therefore, during simulation, we set 𝛿 = 5 to avoid the
effect of noise points.

Generally, coronavirus can always be classified into four
classes such as the Group I, the Group II, the Group III,
and the SARS-CoVs (Severe Acute Respiratory Syndrome
Coronaviruses). And, among these four classes, the Group
I includes the Canine coronavirus (CCoV), the Feline coron-
avirus (FCoV), the Human coronavirus 229E (HCoV-229E),
the Porcine epidemic diarrhea virus (PEDV), and the Trans-
missible gastroenteritis virus (TGEV). The Group II includes
the Bovine coronavirus (BCoV), Human coronavirus OC43
(HCoV-OC43), the Murine coronavirus, Mouse hepatitis
virus (MHV), the Porcine hemagglutinating encephalomyeli-
tis virus (HEV), and the Rat coronavirus (RtCoV).TheGroup
III contains theAvian infectious bronchitis virus (IBV) and the
Turkey coronavirus (TCoV).

Table 7: The basic information of 29 spike proteins.

Number Access number Abbreviation Length
1 CAB91145 TGEVG 1447
2 NP 058424 TGEV 1447
3 AAK38656 PEDVC 1383
4 NP 598310 PEDV 1383
5 NP 937950 HCoVOC43 1361
6 AAK83356 BCoVE 1363
7 AAL57308 BCoVL 1363
8 AAA66399 BCoVM 1363
9 AAL40400 BCoVQ 1363
10 AAB86819 MHVA 1324
11 YP 209233 MHVJHM 1376
12 AAF69334 MHVP 1321
13 AAF69344 MHVM 1324
14 AAP92675 IBVBJ 1169
15 AAS00080 IBVC 1169
16 NP 040831 IBV 1162
17 AAS10463 GD03T0013 1255
18 AAU93318 PC4127 1255
19 AAV49720 PC4137 1255
20 AAU93319 PC4205 1255
21 AAU04646 civet007 1255
22 AAU04649 civet010 1255
23 AAV91631 A022 1255
24 AAP51227 GD01 1255
25 AAS00003 GZ02 1255
26 AAP30030 BJ01 1255
27 AAP50485 FRA 1255
28 AAP41037 TOR2 1255
29 AAQ01597 TaiwanTC1 1255

From observing Figure 4, it is easy to know that the 29
spike proteins of coronavirus can be perfectly classified into
the above four classes by our ADLDs based method.

Finally, for the convenience of comparison, we illustrate
the phylogenetic trees of the above given 29 spike proteins of
coronavirus and 16ND5proteins, constructed by adopting the
method proposed byWen and Zhang [17], in Figures 5 and 6,
respectively.

Comparing Figure 3 with Figure 6 and Figure 4 with
Figure 5, respectively, it is obvious that the phylogenetic trees
obtained by the method proposed by Wen and Zhang are
quite unreasonable and not consistent with the known facts
of evolution at all. But, on the contrary, the phylogenetic
trees obtained by our ADLDs based method are not only
quite reasonable but also consistent with the known facts of
evolution to some degree. Therefore, there is no doubt that
the performance of our method is much better than that of
the method proposed by Wen and Zhang.

3.3. The Analysis of Intuition and Visuality of the ADLDs.
In Section 2.6, we have stated that the ADLDs of protein
sequence pairs are intuitional and visual. In this section, we
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Figure 4: The phylogenetic tree of the 29 spike proteins of coronavirus constructed by adopting the ADLDs based method with 𝛿 = 5.

will further discuss the intuition and visuality of the ADLDs
in detail.

From Table 6, we can obtain some similar pairs such
as (fin-whale, blue-whale), (pi-chim, c-chim), (Human, c-
chim), (cheep, goat), (human, pi-chim), and (hare, rabbit)
and some dissimilar pairs such as (human, opossum) and
(human, gallus), among the above given 16 ND5 proteins.
From these similar/dissimilar pairs, wewill choose three pairs
including (human, gorilla), (human, opossum), and (human,
gallus) as examples to further show the intuition and visuality
of the ADLDs of these three protein sequence pairs. The
ADLDs of these three similar/dissimilar pairs are illustrated
in Figure 7, while letting 𝛿 = 3.

Observing Figure 7, we can clearly find that the total
length of all of the SFs in each of these three ADLDs satisfies
the total length of all of the SFs in the ADLD of Figure 7(a) >
the total length of all of the SFs in the ADLD of Figure 7(b) >
the total length of all of the SFs in the ADLD of Figure 7(c).
Therefore, we can intuitively identify that the similarity of the
proteins in each of these three protein sequence pairs satisfies
the similarity of the proteins in the pair (human, gorilla) > the
similarity of the proteins in the pair (human, opossum) > the
similarity of the proteins in the pair (human, gallus).

Moreover, from Figure 7, we can also intuitively identify
that the two protein sequences in the protein sequence pair
(human, gorilla) are very similar to each other, since the total
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Figure 5: The phylogenetic tree of the 29 spike proteins of coronavirus constructed by adopting the method proposed by Wen and Zhang.

length of all of the SFs in the ADLD of Figure 7(a) looks
very long. But, on the contrary, we can intuitively identify
that the two protein sequences in either the protein sequence
pair (human, opossum) or the protein sequence pair (human,
gallus) are apparently dissimilar to each other, since both the
total length of all of the SFs in the ADLD of Figure 7(b) and
that in the ADLD of Figure 7(c) look very short.

And, through statistic, we can know that the actual total
lengths of all of the SFs in the ADLDs of these three protein
sequence pairs (human, gorilla), (human, opossum), and
(human, gallus) are 556, 288, and 248, respectively.

Additionally, observing Figures 2(a) and 2(b), hardly can
we distinguish the total length of all of the SFs (including
ASFs and BSFs) in the ADLD of Figure 2(a) and that in
the ADLD of Figure 2(b), since the total lengths of all of
the SFs in these two ADLDs look nearly the same. And,
through statistic, we can know that the actual total lengths
of all of the SFs in the ADLDs of Figures 2(a) and 2(b)
are 123 and 120, respectively, and are really close to each
other. But, through comparing Figure 2(a) with Figure 2(b)
more carefully, we can further discover that, different from
Figure 2(b), except for the SFs, there are also 6 different FPs
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Figure 6: The phylogenetic tree of the 16 ND5 proteins constructed by adopting the method proposed by Wen and Zhang.

700

600

500

400

300

200

100

0
7006005004003002001000

(a)

700

600

500

400

300

200

100

0
7006005004003002001000

(b)

700

600

500

400

300

200

100

0
7006005004003002001000

(c)

Figure 7: (a) The ADLD of the similar pair (human, gorilla); (b) the ADLD of the dissimilar pair (human, opossum); (c) the ADLD of the
dissimilar pair (human, gallus).
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in the ADLD of Figure 2(a), while there are no FPs in the
ADLD of Figure 2(b); therefore, we can intuitively identify
that the two protein sequences in the protein sequence pair
(chimpanzee, human) are more similar to the two protein
sequences in the protein sequence pair (human, gorilla).

Hence, from the above descriptions, we can know that the
ADLDs obtained by our newly proposed method are quite
visual and intuitional andmay be a powerful and effective tool
for visual comparison of protein sequences and numerical
sequences in other research fields.

4. Conclusions

In this paper, a novel ADLDs based graphical representation
of protein sequences is proposed, which is utilized to analyze
the similarity/dissimilarity of protein sequences. To validate
the performances of the newmethod, we select two groups of
well-known protein sequences as examples, and, additionally,
in order to observe the similarity/dissimilarity of protein
sequences more intuitively, we construct the phylogenetic
trees of protein sequences. The results show that our ADLDs
based method not only has good performances and effects in
the similarity/dissimilarity analysis of protein sequences but
also does not require complex computation, since there are
no high dimensional matrixes required. Therefore, it means
that our ADLDs based method can work well in the analysis
of protein sequences.
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