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The importance of immunity in tissue repair and regeneration is now evident. Thus,

promoting tissue healing through immune modulation is a growing and promising field.

Targeting microRNAs (miRNAs) is an appealing option since they regulate immunity

through post-transcriptional gene fine-tuning in immune cells. Indeed, miRNAs are

involved in inflammation as well as in its resolution by controlling immune cell phenotypes

and functions. In this review, we first discuss the immunoregulatory role of miRNAs

during the restoration of tissue homeostasis after injury, focusing mainly on neutrophils,

macrophages and T lymphocytes. As tissue examples, we present the immunoregulatory

function of miRNAs during the repair and regeneration of the heart, skeletal muscles, skin

and liver. Secondly, we discuss recent technological advances for designing therapeutic

strategies which target miRNAs. Specifically, we highlight the possible use of miRNAs and

anti-miRNAs for promoting tissue regeneration via modulation of the immune system.

Keywords: microRNAs, regeneration, inflammation, immune system, biomaterials, neutrophils, macrophages,

Tcells

INTRODUCTION

Tissue injury is followed by a cascade of processes leading to the restoration of tissue homeostasis
and it is well recognized that the immune system is strongly involved in tissue healing. While
numerous regulators are known to coordinate the immune response following injury, microRNAs
(miRNAs) have emerged as important actors. Therefore, targeting the immunoregulatory roles
of miRNAs could become an attractive option for regenerative therapies. miRNAs are well
conserved among species and are involved in a variety of key biological processes by controlling
post-transcriptional gene expression through decreasing mRNA stability and/or inhibiting
translation. Currently, 1982 human miRNAs precursors are annotated into the miRBase (release
22), each of which are thought to regulate hundreds of target genes (Bartel, 2018; Zhang et al.,
2018). Their small size and relatively long half-life (Marzi et al., 2016) make them attractive agents
for clinical use. Moreover, a single miRNA can modulate numerous genes, thus having a stronger
output than single gene therapy. Here, we first focus on the immunoregulatory role of miRNAs
during tissue repair and regeneration. Then, we discuss various delivery systems and the potential
targeting of miRNAs in immune cells to promote regeneration.
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IMMUNOREGULATORY ROLE OF MIRNAS
DURING TISSUE REPAIR AND
REGENERATION

After injury, immune cells trigger a phase of acute inflammation
that represents the first line of defense against pathogens.
Moreover, inflammation and the immune response are critical
to drive tissue repair and regeneration. Nevertheless, a sustained
inflammation often impairs the healing process and its resolution
is necessary to restore homeostasis. Various immune cell types
are mobilized following tissue injury including neutrophils,
monocytes/macrophages and Tcells (Julier et al., 2017; Larouche
et al., 2018). Neutrophils are rapidly recruited to the injury
site and promote monocyte recruitment which differentiate
into macrophages. While pro-inflammatory macrophages
(commonly named M1) maintain inflammation and initiate
the first steps of tissue healing, anti-inflammatory macrophages
(commonly named M2) contribute to resolve inflammation
and promote tissue remodeling. Tcells are also important – for
instance, pro-inflammatory macrophages are able to stimulate
conventional Tcells in a positive-feedback loop, which in turn
inhibit tissue repair via inflammatory cytokines or cytotoxic
activity. In contrast, regulatory Tcells (Tregs) help maintaining
an anti-inflammatory environment.

Because neutrophils, macrophages and Tcells are strongly
involved in the tissue healing process, they are interesting targets
for regenerative medicine. Activities of these immune cells can
be modulated by delivering cells, cytokines and biomaterials.
Alternatively, targeting miRNAs provides an interesting way to
modulate the immune response following injury, since miRNAs
are an endogenous mechanism to fine-tune gene expression. For
instance, miR-21, miR-146a and miR-155 have been intensely
investigated due to their involvement in Toll-like receptor (TLR)
activation and inflammation. The anti-inflammatory miR-21 and
miR-146a act in a negative feedback loop with the NF-kB pathway
(Hou et al., 2009; Sheedy et al., 2010). By contrast, miR-155
is widely considered as a pro-inflammatory miRNA promoting
interferon signaling (O’Connell et al., 2009). Other miRNAs are
linked to the regulation of innate (Aalaei-andabili and Rezaei,
2013; He et al., 2014) and adaptive immunity (Baumjohann and
Ansel, 2013; Tang et al., 2014; Liang et al., 2015). Moreover,
immune cells communicate with each other or with neighboring
cells by delivering miRNA-containing exosomes (Fernández-
Messina et al., 2015). In the next sections, we discuss the
immunoregulatory roles ofmiRNAs in the context of tissue repair
and regeneration, highlighting examples in heart, skeletal muscle,
skin, and liver (Figure 1).

Heart
Mammalian adult heart cannot regenerate, due to the loss of
cardiomyocytes proliferation capacity seven days after birth
(Porrello et al., 2011). Indeed, myocardial infarction and
other cardiovascular diseases leading to loss of tissue are
frequently followed by fibrosis rather than the generation of
new cardiomyocytes. Targeting the immune response after
cardiac injury may improve current strategies, since excessive

inflammation leads to further damage and infarct expansion.
Macrophages are central regulators of cardiac repair (Fernández-
Velasco et al., 2014; Fujiu et al., 2014) and affect fibroblast
functions, which have a major role in fibrosis through
extracellular matrix production (Takeda and Manabe, 2011).
miR-155 has been associated with macrophage-induced cardiac
hypertrophy (Heymans et al., 2013), inflammation and injury
in viral heart disease (Corsten et al., 2012) and diabetic heart
(Jia et al., 2017), by enhancing a pro-inflammatory phenotype.
Furthermore, miR-155-enriched-exosomes from macrophages
suppress fibroblast proliferation and enhance inflammation
during cardiac injury (Wang et al., 2017a). Anti-inflammatory
miRNAs such as miR-146a have been linked to improvement
of cardiac function in sepsis mouse models (Gao et al., 2015).
miR-146a reduces the expression of myocardial intercellular
adhesion molecule 1 and vascular cell adhesion protein 1,
thus decreasing infiltrating macrophages and neutrophils into
the heart (Cavaillon and Adib-Conquy, 2005; Alves-Filho
et al., 2008). Interestingly, cardiosphere-derived cells have
demonstrated to have a role in macrophage polarization
through exosome-mediated signaling. Exosomes secreted by
cardiospheres delivered after myocardial infarction modulate
macrophages toward a cardioprotective phenotype via miR-
181b which is, at least partially, responsible for reduced
proinflammatory signaling and enhanced phagocytosis (De
Couto et al., 2017). The phagocytic activity of anti-inflammatory
macrophages (efferocytosis) is likewise important for cardiac
repair since it allows clearance of debris and apoptotic
cardiomyocytes and neutrophils (Lörchner et al., 2015). In
diabetic mouse models where efferocytosis is impaired, miR-126
overexpression rescues efferocytosis (Suresh Babu et al., 2016).
This miRNA is also implicated in Treg regulation as it enhances
Foxp3 expression, which drives Treg immuno-suppressive
functions through interleukin (IL)-10 and transforming growth
factor-β (TGF-β) production. While the role of Tcells in cardiac
healing is becoming evident (Weirather et al., 2014), little is
known about their regulation by miRNA in this context. Yet,
in a mouse model of myocarditis, miR-155 drives Th17/Treg
imbalance and its inhibition through a synthetic oligonucleotide
(antagomir-155) demonstrated to be promising (Yan et al., 2016).
Moreover, in patients carrying acute myocardial infarction, the
number of circulating Tregs was lower and inversely correlated
with miR-21, which seems to negatively regulate Tregs through
the Foxp3-TGF-β1 axis (Li et al., 2015c).

Skeletal Muscle
Skeletal muscle regeneration is complex, relying on satellite cells
(Chang and Rudnicki, 2014) along with immune cells (Bosurgi
et al., 2011) and other cell types such as fibroblasts (Murphy
et al., 2011). After injury, pro-inflammatory macrophages
positively influence satellite cells and myoblast proliferation
(Tidball, 2005; Arnold et al., 2007; Perdiguero et al., 2011).
Then, anti-inflammatory macrophages induce myoblast
differentiation/fusion and collagen production (Arnold et al.,
2007). miR-155-deficient mice manifest delayed muscle
regeneration, mainly due to unbalances between pro- and
anti-inflammatory macrophages (Nie et al., 2016). This
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FIGURE 1 | Targeting miRNA regulation to promote tissue repair and regeneration: ↑, overexpression; ⊥, inhibition; ↑↓, balanced expression. Blue and yellow cells

represent Tcells and macrophages respectively. Refer to the text for the specific immune cell subtypes. miRNAs reported in blue refer to tissue-derived miRNAs

affecting the related immune cell functions.

balance is also regulated by miR-21 which acts through the
p38-miR-21-AKT pathway, which prevents anti-inflammatory
polarization (Perdiguero et al., 2011). The importance of
early inflammation controlled by miRNAs is confirmed in
human where miR-146a expression, known to negatively
regulate pro-inflammatory macrophage migration, is lower in
polymyositis/dermatomyositis patients compared to normal
subjects (Yin et al., 2016). Though many studies focused
on macrophages, the role of Tcells in muscle regeneration
has gained interest. For example, Burzyn and colleagues
have demonstrated that Tregs enhance satellite cells colony-
forming capacity and control Tcell infiltration, thus restricting
the negative impact of T helper and cytotoxic Tcells on
muscle repair. Treg accumulation in muscle coincides with
the switch from pro- to anti-inflammatory macrophages
(Burzyn et al., 2013) and IL-33 has been reported to be
crucial for Tregs accumulation in muscle (Kuswanto et al.,
2016). Interestingly, miR-155 appears to regulate IL-33
responsiveness in type 2 innate lymphoid cells (Johansson
et al., 2017), but a direct link between miRNA regulation
of Tcell functions and muscle regeneration has not yet been
established.

Skin
Scarring is a common feature of wound healing and the
immune system is strongly involved in this process (Larouche
et al., 2018). For example, mice lacking pro-inflammatory
macrophages during the first/mid-stages of wound healing show
impaired repair (Lucas et al., 2010). Nevertheless, polarization
of macrophages to an anti-inflammatory phenotype is needed
to continue the healing process. miR-146a, miR-132, and miR-
21 have been shown to be important for wound healing
immune regulation. For instance, miR-132 is up-regulated during
the inflammatory-to-proliferative transition phases where it is
mostly induced in keratinocytes, promoting their growth and
decreasing chemokines production (Li et al., 2015a). Along with
miR-146a, miR-132 promotes an anti-inflammatory macrophage
polarization (Essandoh et al., 2016) and is highly expressed
in skin-infiltrated neutrophils (Larsen et al., 2013). miR-146a
contributes to inflammation resolution acting mainly through
keratinocytes. This miRNA is up-regulated upon injury via the
NF-kB pathway and its long-lasting expression is necessary to
down-regulate keratinocytes inflammatory cytokines expression
(IL-17, IL-8, and TNF-α) (Meisgen et al., 2014; Srivastava
et al., 2017). miR-21 regulates efferocytosis in macrophages,
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where its expression level increases after apoptotic neutrophil
engulfment (Das et al., 2014). miR-21 is found overexpressed
in infiltrating T helper cells in skin psoriasis, but in this
context, it may contribute to inflammation by supporting Tcell
survival (Meisgen et al., 2012). Further evidences regarding Tcell
regulation via miRNA during skin healing principally come from
two studies. miR-155 and miR-223 have been shown to worsen
psoriasis conditions, potentiating Tcell response and Th17-IL-17
production (Løvendorf et al., 2015), while high level of miR-
138 could ameliorate skin healing through Th2-IL4 (Fu et al.,
2015).

Liver
The liver possesses a high regenerative ability and can regenerate
after a partial hepatectomy (Michalopoulos, 2017). However, this
capacity does not improve the outcome of many liver diseases,
particularly those associated with chronic inflammation, leading
to fibrosis and cirrhosis (Marcellin and Kutala, 2018). miR-122 is
a liver-specific miRNA accounting for more than half of all liver
miRNA species. The miRNA is abundant in hepatocytes where
involved in hepatic functions and diseases (Otsuka et al., 2017)
and intercellular communication through exosomes. High levels
of miR-122-enriched exosomes are present in the sera of mice
and healthy individuals after alcohol consumption or chronic
consumption. miR-122-enriched exosomes are horizontally
transferred to monocytes, sensitizing them to lipopolysaccharide
and inducing inflammatory reactions (Momen-Heravi et al.,
2015). Other miRNAs involved in alcoholic liver disease (ALD)
progression through immune cells modulation are miR-181b,
miR-155 and miR-223. miR-181b and miR-155 are, respectively,
down-regulated and up-regulated in Kupffer cells of ALD mouse
models resulting in sensitization of inflammatory pathways
through NF-kB signaling (miR181b) (Saikia et al., 2017) and
TNF-α mRNA stabilization (miR-155) (Bala et al., 2011). miR-
223 acts in neutrophils, by inhibiting the oxidative stress pathway
and thus reducing injury exacerbation and fibrosis by reactive
oxygen species (Li et al., 2017). Decreasing the pro-inflammatory
miR-155 has proven to positively affect non-alcoholic diseases.
miR-155 deficiency in ischemia-reperfusion injury mice induces
the development of anti-inflammatory macrophages (Tang et al.,
2015), while miR-182 and miR-146a overexpression protects
the liver by inactivating TLR4 pathway (Jiang et al., 2014,
2016). In non-alcoholic steatohepatitis, TLRs play important
roles (Roh and Seki, 2013) and it has been demonstrated that
TLR2-enhanced expression of Nod-like receptor protein 3 via
NF-kB, promotes NLRP3-inflammasome activation in concert
with saturated fatty acid in Kupffer cells (Miura et al., 2013).
A study in a mouse model of non-alcoholic steatohepatitis
identified decreased miR-144 expression in Kupffer cells with
consequent induction of TLR2 (Li et al., 2015b). Regarding
the immunoregulatory role of miRNA in Tcells, two studies
that used a concanavalin A-treated mice model of liver injury
revealed miR-155 and miR15a/16-1 as potential miRNA targets
to restore liver homeostasis. Blaya et al. found an altered miR-155
expression in both liver and peripheral blood mononuclear cells,
with significant lower Treg recruitment in miR-155−/− mouse
(Blaya et al., 2018), while Lu et al. demonstrated that the deletion

of miR15a/16-1 in CD4+ cells promotes liver regeneration
through IL-22 up-regulation (Lu et al., 2018).

POTENTIAL MIRNA AND ANTI-MIRNA
DELIVERY SYSTEMS TO PROMOTE
TISSUE REGENERATION VIA
IMMUNOREGULATION

miRNA are emerging as a novel therapeutic approach and
numerous miRNAs have reached clinical trials for the treatment
of various diseases from cancer (van Zandwijk et al., 2017)
to regenerative medicine (Curtin et al., 2018) (Table 1A).
Therapeutic miRNA agents include a wide range of miRNA
modifications, mostly regarding miRNA inhibition strategies
(Table 1B). In addition, many delivery methods have been
developed and tested in animal models (Table 1C).

While direct injections of miRNAs or miRNA inhibitors
have been widely used, this simple approach present limitations
such as in vivo stability and biodistribution. The development
of advanced delivery systems could overcome direct injection
limitations (Zhang et al., 2013; Frith et al., 2014). Among delivery
systems, exosomes have been explored to some extent, because
they are the natural delivery system of miRNA in vivo. They
protect miRNAs from degradation during systemic transport
and can target specific cell types through membrane ligands. In
addition, although they carry MHC-I and/or MHC-II peptides,
allogenic exosomes have low immunogenicity. Their cargo
composition is tightly regulated, but can change according to
specific microenvironment conditions and this may lead to
unwanted miRNA species. The main obstacles are the low
amount of exosomes secreted by mammalian cells and the
complex process of purification, which limit their usage in
regenerative medicine. Artificial mimetic exosomes have the
potential to overcome these disadvantages and avoid possible
immune responses. The challenge is to engineer mimetic
exosomes with components of natural exosomes that are still
not well defined (Barile and Vassalli, 2017; Bjørge et al., 2018;
Kim et al., 2018). Among artificial lipid-based vectors, liposomes
are extensively used for in vitro application. Cationic vesicles
share the advantages of exosomes and bind miRNA/anti-miRNA
molecules via electrostatic interactions. Their composition can
be modified to mimic exosomes, but they usually exhibit higher
toxicity than their natural counterpart and can activate the
complement (Szebeni, 2005; Gori et al., 2015; Peng et al.,
2015). For instance, locked nucleic acid (LNA)-based anti-miR-
21 and anti-miR-712 have been delivered in mouse models of
atherosclerosis and nerve trauma, through liposomes or cationic
lipids-coated nanoparticles (NPs), to reduce the inflammatory
macrophage number (Kheirolomoom et al., 2015; Simeoli et al.,
2017).

In contrast to liposomes, NPs may show less immunogenicity
issues. NPs present various advantages such as small size (10–
1,000 nm), high surface area, good stability in physiological
media and great cellular uptake. Inorganic NPs are made of
various solid materials such as gold, silicon, magnesium, silver,
and iron (Gori et al., 2015; Ahmadzada et al., 2018). For
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Table 1A | miRNA in pre-clinical and clinical trials for regenerative medicine.

Agent Method of

administration

Therapeutic effect Clinical trial BioPharmaceutical

company

References

miR-29 mimics MRG-201 Direct skin

injection

Anti-fibrous scar formation Phase I miRagen

Therapeutics

ClinicalTrials.gov identifier:

NCT02603224

LNA-anti-miR-208

MGN-9103

Intravenous

injection

Treatment of chronic heart failure,

preventing hypertrophy, fibrosis and

pathological remodeling

Pre-clinical trial miRagen

Therapeutics

Montgomery et al., 2011;

Eding et al., 2017

LNA-anti-miR-15 family

MGN-1374

Intravenous

injection

Post-myocardial infarction

remodeling, enhances

cardiomyocytes proliferation

Pre-clinical trial miRagen

Therapeutics

Hullinger et al., 2012

2′Ome anti-miR-21 RG-012 Subcutaneous

injection

Alport syndrome, decreases renal

fibrosis progression

Phase II Regulus

Therapeutics

ClinicalTrials.gov identifier:

NCT02855268

2′MOE, 2
′
fluoro-sugar

modified nucleosides

anti-miR-155

Intraperitoneal

injection

Amyotrophic lateral sclerosis Preclinical trial Regulus

Therapeutics

Koval et al., 2013

Table 1B | miRNA modifications to achieve miRNA inhibition or upregulation, both in vitro and in vivo.

Strategy Synthesis Characteristic Advantages Disadvantages References

miRNA

inhibition

AMO Ribose 2′ hydroxyl group

methylation (OMe)

Higher RNA binding affinity, little

improvement in nuclease

resistance

Poor stability in serum Esau, 2008; Lennox

et al., 2013

Antagomirs 2′-OMe, 3′-end conjugated

cholesterol

Nuclease resistance, crossing of

plasma membrane without

delivery vectors

High doses required, in vivo

off-targets

Krützfeldt et al., 2005,

2007; Rebustini et al.,

2016

LNA Ribose 2′-O:4′-C methylene

bridge

Highly resistant to nuclease,

lower doses required (compared

to antagomir)

Possible off-targets Mook et al., 2010;

Obad et al., 2011

PMO Substitution of ribose

(6-morpholine rings) and

phosphodiester bonds

(phosphorodiamidates)

Neither nuclease nor enzymatic

degradation

Lower binding affinity to

miRNA

Warren et al., 2012

PNA Synthetic DNA analog, repeated

units of N-(2-aminoethyl) glycine

linked by peptide bonds

Neither nuclease nor enzymatic

degradation, high DNA/RNA

binding affinity and specificity

Poor uptake by cells Nielsen, 1999; Oh

et al., 2009

miRNA

sponge

Plasmid encoding transcript with

multiple competitive miRNA

binding sites

Longer expression, ideal for

chronic disease

High miRNA concentration

needs strong promoters or

multiple vector copies for

miRNA inhibition, high

sponge expression level

leads to off-targets

Ebert and Sharp, 2010;

Tay et al., 2015

miRNA

replacement

Mimics Artificial double-stranded RNA Directly loaded into the RISC Higher degradation in

biological fluids, possible

dose-related off-targets

Wang, 2009

AMO, Anti-miRNA oligonucleotide; LNA, locked nucleic acid; PMO, Phosphorodiamidate morpholino oligonucleotide; PNA, peptide nucleic acid.

example, two recent studies have used gold NPs as carriers of
miRNAs mimics and antagomirs to promote mouse osteogenic
differentiation and osseointegration of implants (Liu et al., 2017b;
Yu et al., 2017). Organic NPs are lipid-, proteic-, or polymer-
based and have been exploited in clinical studies. Cationic
polymer-based NPs made of natural/synthetic polymers have a
great binding affinity for miRNA and are frequently complexed
with hyaluronic acid (HA), which enhances biocompatibility and
gene transfection efficiency. HA-chitosan-based NPs have been

used in two studies to promote osteogenesis through in vitro
miRNA mimics and in vivo antagomirs transfection, in human
and mice mesenchymal stem cells respectively (Wang et al.,
2016; Wu et al., 2016). As another example, hyaluronic acid-
poly(ethylenimine)-based NPs or polymer complexes have been
used in mice to deliver miR-125 and miR-155 into macrophages
(Liu et al., 2017a; Parayath et al., 2018).

As an alternative to these delivery systems, scaffold-mediated
delivery is particularly interesting in the context of tissue

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 July 2018 | Volume 6 | Article 98

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Piotto et al. Promoting Regeneration via miRNA-Mediated Immunoregulation

Table 1C | miRNA and anti-miRNA delivery strategies.

Method of

delivery

Advantages Disadvantages References

Direct injection Easiest method, lower doses required Limited access to certain tissues/organs, rapid clearing by kidneys Frith et al., 2014

Viral based

methods

Long-term/inducible expression of transgene,

high transfection efficiency

Inherent toxicity and immunogenicity, possible mutagenic insertion Frith et al., 2014;

Gori et al., 2015

Non-viral or

synthetic

methods

Lower toxicity and immunogenicity, lower cost

and higher versatility (compared to viral

methods)

Less efficiency (compared to viral methods)

Cationic

Liposomes

Protect RNA from nucleases increase

circulation half-life, lower degree of genetic

perturbation

Cytotoxicity; poor in vivo stability and reproducibility Gori et al., 2015;

Peng et al., 2015

Exosomes Biocompatibility, stability in the circulation,

biological barrier permeability, specific targeting

upon engineering with recognition factor, low

immunogenicity, low toxicity

Contents not fully characterized, could aggravate present disease

or tumor depending on their source of isolation

Bjørge et al., 2018

Cationic Polymer

Vectors (synthetic

and natural)

High flexibility (weight, molecular structure,

composition, stimuli-sensitivity), low toxicity and

immunogenicity, high transfection efficiency

Synthetic: often poorly biodegradable and toxic (PEI),

accumulation in the liver (PAMAMs) Natural: biodegradability in

sera (CPPs)

Gori et al., 2015;

Peng et al., 2015;

Yang, 2015

Nanoparticles Non-immunogenic, most are non-toxic, less

susceptible to nucleases, greater cellular

uptake

Toxicity of some metal NP, possible agglomeration, possible cause

of inflammation

Fu et al., 2014;

Gori et al., 2015;

Fernandez-Piñeiro

et al., 2017

Scaffold-based

methods

Controlled, localized and prolonged transgene

expression, combination with stem cells and

other therapies, offers protection from immune

response to viral or non-viral miRNA delivery

methods when combined

Possible immune reaction with natural scaffold, possible miRNA

inactivation during sterilization process (avoided with miRNA

immobilization directly onto the scaffold surface after sterilization)

Gori et al., 2015;

Peng et al., 2015

Cells as delivery

vehicles (MSCs,

mostly used)

Naturally migrate to the injured area, have

immuno-suppressive properties, influence both

ECM and other cells through factors release

and miRNA-EVs, can be genetically engineered

with selected miRNA mimics

The large number of required MSCs needs in vitro expansion that

may result in mutations accumulation, MSCs could support

undiagnosed tumor, difficulties in brain homing, difficulties in

tracking all single MSCs to control proper homing to target tissue,

origin tissue microenvironment affects stem cell functions

Gori et al., 2015;

Sherman et al.,

2015

MSC, mesenchimal stem cells; EV, extracellular vesicles; ECM, extracellular matrix; NP, nanoparticles; PEI, Polyethylenimines; PAMAMs, poly-amidoamines; CPP, cell penetrating peptide.

regeneration. The scaffold can be delivered directly in the
injured site and can naturally contain or be functionalized with
additional pro-regenerative molecules (Peng et al., 2015; Curtin
et al., 2018). For instance, a single injection of HA hydrogel-
miR-302 mimics complexes in mice hearts after ischemic injury
promotes cardiomyocytes proliferation (Wang et al., 2017b). As
other examples, a porous collagen-nanohydroxyapatite scaffold
containing the antogomir-133a has been used to promote bone
regeneration via mesenchymal stem cell-mediated osteogenesis
(Menciá Castanõ et al., 2016), and a polymer-based scaffold
(polyethylene glycol and polyethylenimine) has been used for
miR-26 mimics delivery to promote angiogenesis and osteoclast
formation (Zhang et al., 2016).

FUTURE DIRECTIONS

Targeting miRNA still presents limitations. The complex
regulatory network of a single miRNA renders the precise
identification of all its target difficult, leading to possible
unwanted mRNA silencing. Dosage is also critical—low level
of miRNA may be insufficient to achieve the desired outcome,

while high level of miRNA is likely to hold the RNA-induced
silencing complex (RISC), preventing the action of endogenous
miRNAs and leading to off target consequences. This is a problem
in common with anti-miRNA therapy, since mature miRNAs
are bound to RISC proteins and their inhibition does not allow
the release of the complex. Most anti-miRNA molecules are
perfectly complementary to the seed region of miRNAs and
are chemically modified to increase the melting temperature
of the anti-miRNA-miRNA complex. However, the inhibitory
interaction under physiological conditions is less strict and anti-
miRNAs are frequently unable to distinguish among miRNAs of
the same family. An alternative anti-miRNA method could act at
precursor stages of miRNA maturation. The longer sequence of
primary (>1,000 nt) and precursor (∼70 nt) miRNAs contains
non-conserved regions that differ even among miRNAs of the
same family. Although this strategy may be a viable approach
to overcome cross-family miRNA inhibition, further efforts are

necessary to develop diverse anti-miRNA species since most of

them concentrate on mature miRNAs.
Examples of systems that specifically deliver miRNAs/anti-

miRNAs to immune cells are still sparse. The use of ligands,
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peptides or antibodies with nanotechnology allow targeting
specific cells. For instance, lipid nanoparticles coated with a
single-chain antibody specific for a dendritic cell receptor enable
the release of siRNAs to a subset of dendritic cells (Katakowski
et al., 2016). Interesting nanocarriers are for example nucleic
acid aptamers, single-stranded DNA or RNA oligonucleotides
that bind the target molecule with high affinity. They are
remarkably stable, present a very low immunogenicity and allow
extensive site-specific chemical modification, offering a wide
range of targets such as proteins, nucleic acids, carbohydrates or
whole cells (Zhou and Rossi, 2018). For example, an aptamer-
siRNA conjugate has been developed to target Tcells, thus
releasing anti-HIV siRNAs in HIV-infected mice (Zhou et al.,
2013). This approach to engineering miRNA-carriers that target
specific immune cells could be used for regenerative medicine
applications.

In conclusion, further advances are necessary to better
understand the complex regulatory network of miRNAs

and to predict the outcome of miRNA replacement or
inhibition in vivo. The development of novel and specific
miRNA delivery strategies to immune cells could create new
opportunities to promote tissue regeneration via immune
regulation.
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