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Elastic instabilities in planar 
elongational flow of monodisperse 
polymer solutions
Simon J. Haward1, Gareth H. McKinley2 & Amy Q. Shen1

We investigate purely elastic flow instabilities in the almost ideal planar stagnation point elongational 
flow field generated by a microfluidic optimized-shape cross-slot extensional rheometer (OSCER). We 
use time-resolved flow velocimetry and full-field birefringence microscopy to study the behavior of a 
series of well-characterized viscoelastic polymer solutions under conditions of low fluid inertia and over 
a wide range of imposed deformation rates. At low deformation rates the flow is steady and symmetric 
and appears Newtonian-like, while at high deformation rates we observe the onset of a flow asymmetry 
resembling the purely elastic instabilities reported in standard-shaped cross-slot devices. However, for 
intermediate rates, we observe a new type of elastic instability characterized by a lateral displacement 
and time-dependent motion of the stagnation point. At the onset of this new instability, we evaluate a 
well-known dimensionless criterion M that predicts the onset of elastic instabilities based on geometric 
and rheological scaling parameters. The criterion yields maximum values of M which compare well 
with critical values of M for the onset of elastic instabilities in viscometric torsional flows. We conclude 
that the same mechanism of tension acting along curved streamlines governs the onset of elastic 
instabilities in both extensional (irrotational) and torsional (rotational) viscoelastic flows.

Extensional kinematics occur locally in all flows that possess streamwise velocity gradients, including flows 
through intersections (like T- or Y-shaped junctions), flows through contractions or expansions, and flows 
around obstacles such as sedimenting particles. Many industrial and technological processes involve the flow of 
viscoelastic polymeric fluids under conditions of strong extensional deformation, resulting in a complex rheolog-
ical response from the fluid. The maximum rates at which many processing operations involving polymeric fluids 
can be carried out are restricted by the onset of elastic instabilities, which would be entirely unexpected for the 
equivalent flow of a Newtonian fluid1–3. Understanding of the conditions resulting in the onset of elastic instabili-
ties in viscometric shearing flows is now quite advanced4–6, however the same is not true for extension-dominated 
or “shear-free” flows, which are much more difficult to study under well-controlled and well-defined conditions7,8. 
Gaining a complete understanding of the factors causing the onset of elastic instabilities in arbitrary flow kin-
ematics will be of benefit to the optimization of widespread applications and processes including extrusion, 
fiber-spinning, blow-moulding, inkjet printing, lab-on-chip design and laboratory microfluidics experiments3.

The cross-slot device is a common flow geometry that is widely utilized for generating a controllable planar 
extensional flow field. It consists of mutually bisecting rectangular channels with two opposing inlets and two 
opposing outlets and, under ideal conditions, the symmetry of the geometry results in the occurrence of an iso-
lated stagnation point at the precise center of the flow field9. Planar elongation occurs as fluid elements accelerate 
away from the stagnation point along the axis of the outlet channels. This extensional flow field has proven itself 
extremely useful in laboratory applications9. In particular, cross-slot devices have yielded significant insights into 
the stretching dynamics of polymers in dilute solution under strong elongational flow fields10–13. Experiments 
with solutions of flexible polymers have confirmed that as the strength of the extensional flow is increased such 
that the magnitude of the Weissenberg number exceeds a critical value given by τε= > .Wi 0 5 (where τ is the 
characteristic relaxation time of the fluid and ε  is the applied elongation rate), polymer molecules in the region of 
the stagnation point can undergo a conformational change from a random coil to a highly stretched state, known 
as the coil→​stretch transition14–17. This has been shown by measuring the resulting optical anisotropy, or 
flow-induced birefringence, in the polymer solution using polarized light techniques10,18–20, and also by direct 
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observations of single molecules of fluorescently-labelled DNA unraveling at the stagnation point11,12. The 
stretching of polymer molecules at the stagnation point and the entropic elasticity driving their relaxation as they 
are advected downstream results in the formation of an elastic strand localized along the outflowing symmetry 
plane of the cross-slot, a so-called “birefringent strand”10,21–23. Within these regions, the highly extended polymers 
strongly resist additional deformation, elastic tensile stresses dominate and lead to a non-Newtonian increase in 
the local extensional viscosity of the fluid. The effective viscosity within the elastic strand of highly-aligned poly-
mer can be orders of magnitude greater than the viscosity of the fluid surrounding the strand, in which the poly-
mers are only weakly deformed from their equilibrium coil configurations21,20. The extensional viscosity of the 
elastic strand can be deduced by measurements of the non-linear increase in the bulk pressure drop across the 
cross-slot device as ε  is increased, or alternatively by measuring the local birefringence and invoking the 
stress-optical rule (SOR)19,20,24–27. The local increase in extensional viscosity within the birefringent strands is so 
great that they can even be modeled to a good approximation as internal elastic boundary layers in the flow field21. 
This can cause severe perturbations to the flow field compared with the Newtonian case20,21,28–31. Feedback 
between the polymer elongation in the strand and the resulting flow field modification can give rise to a variety of 
theoretically predicted and experimentally observed elasticity-influenced flow instabilities22,30,32–37. Of particular 
relevance to the present study is a flow asymmetry, first reported by Gardner et al.30 that can occur for viscoelastic 
flows in cross-slot devices at high deformation rates.

Over the past decade, there has been an increasing interest among the experimental and computational fluid 
dynamics and rheology communities in the flow asymmetry observed by Gardner et al.30 as an example of a 
“purely-elastic” flow instability34,35,38–43. This symmetry-breaking flow bifurcation occurs when inertia is negligi-
ble (i.e. the Reynolds number, Re, is low) but elastic effects, as characterized by the Weissenberg number (Wi), 
become significant. The instability is characterized by the unequal division of the inlet flow between the two outlet 
channels of the cross-slot. Although first reported in the 1980’s30, study of this phenomenon has only proceeded 
in earnest since the advent of widely accessible techniques for the fabrication of microfluidic devices44. Since 

∼ Re  and ε ∼ −� � 1, the inherently small length scales  of microfluidic devices allow fluids to be deformed at 
high rates while inertia remains low45, and give ready access to regimes of very high elasticity El =​ Wi/Re at which 
elastic instabilities become prevalent3,46–50.

Purely elastic instabilities, i.e. those arising when inertial forces are negligible compared with elasticity, have 
been reported for viscoelastic fluids in a wide variety of flow configurations2–4,6. An example pertinent to the 
present investigation is the flow of polymer solutions into abrupt contractions, which is a widely studied problem 
due to its great industrial relevance in polymer processing51–56. In this case a rich sequence of instabilities can 
be observed as the flow rate through the contraction is increased. These instabilities have been characterized 
extensively over a wide range of Wi and Re by varying fluid properties and channel dimensions in microfluidic 
planar abrupt contraction geometries46,47,57–59. For fluids of high elasticity (El >​ 1), the Weissenberg number is 
the dominant parameter controlling the initial onset of instability. For low Wi, the flow is steady and appears 
Newtonian-like, but as the Weissenberg number is increased streamlines may begin to diverge as they approach 
the contraction throat, a feature which is often soon followed by the formation of “lip-vortices” at the reentrant 
corners and the onset of unsteady flow46,47,57–59. Further increases in Wi are usually associated with the formation 
of vortices in the salient corners upstream of the contraction throat, which may grow large distances upstream as 
the Weissenberg number is progressively increased. Here, depending on the elasticity number El, various scenar-
ios are possible: the upstream corner vortices may remain steady and symmetric, or they may grow asymmetri-
cally and may oscillate in size either periodically or aperiodically46,47,57–59.

Despite being widely studied and well-characterized, gaining a deeper understanding of the underlying phys-
ical mechanism of the onset of elastic instabilities in the abrupt contraction geometry has been elusive. The main 
reasons for this are the complex mixed kinematics of the flow field (which contains both strong shear at the 
walls and strong non-homogeneous elongational components as fluid accelerates into the contraction), com-
bined with the large number of variable geometric parameters that can affect the instability. Far more success at 
understanding the onset conditions of elastic instabilities in polymer solutions has been achieved by examining 
well-defined, viscometric shearing flows, such as those generated by the Taylor-Couette60,61, the cone-plate62–64 
and the plate-plate62,63,65 geometries (see extensive reviews provided by Larson2, Shaqfeh4 and Muller6). Such 
geometries are of great importance as they are the most frequently used devices for characterizing the rheology 
of complex fluids on rotational rheometers. Therefore understanding the critical conditions that result in flow 
instability is vital since this bounds the upper limit of the measurement range of the rheometer. The culmination 
of these studies of viscometric torsional flows via experiment, theory, simulation and linear stability analysis has 
been the development of a universal criterion for the onset of elastic instabilites, which couples streamwise nor-
mal stresses with the curvature of streamlines:
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Here v  is the magnitude of the local flow velocity, R is the local radius of curvature of a streamline, σ11 is the 
normal stress in the streamwise direction, η0 is the zero shear rate viscosity of the fluid, τ is the characteristic 
relaxation time of the fluid, and  γ


 is the magnitude of the local deformation rate5,66. The first term on the left can 

be thought of as a ratio of lengthscales: the product τ v  describes a distance over which perturbations to the flow 
field due to elastic stresses relax – if this distance is large relative to the streamline radius of curvature, the flow 
becomes prone to instability. However, the magnitude of the elastic stress acting along the curved streamline is 
also important, and this is accounted for by the coupling with the second term on the left. For a fixed geometry, 
increases in fluid flow rate generally lead to proportionate increases in both the local velocity and the shear rate. 
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In addition, since for a given fluid η0 and τ are material constants, it is apparent from Eq. 1 that the most impor-
tant parameters governing the magnitude of M are R and σ11. It is important to note that Eq. 1 does not anticipate 
a numerical value for Mcrit but only describes how it should scale with rheological and geometric parameters. The 
scaling has been shown to hold in the Taylor-Couette and the cone-plate geometry providing values of .M 5 9crit  
and .M 4 6crit , respectively5. McKinley et al.5 have also demonstrated expected scalings for some more complex 
two-dimensional flows, arriving at values of .M 4 8crit  for the lid-driven cavity, and .M 6 1crit  for flow past a 
confined cylinder. McKinley et al.5 also consider the planar contraction geometry and point out that the curvature 
of streamlines depends on the contraction ratio Λ = w w/u d, where wu and wd are the upstream and downstream 
channel widths, respectively. Therefore, for a given viscoelastic fluid, contraction geometries with higher values of 
Λ should be more prone to instability, which appears to be consistent with experimental results obtained in 
microchannels59. This highlights an interesting point that is in fact clear by inspection of Eq. 1: if the contraction 
ratio Λ → 1, then the geometry becomes a straight planar channel, → ∞R  and M becomes identically equal to 
zero. Whether it is possible to observe elastic instabilities for viscoelastic fluids flowing in an infinitely long 
straight channel without some external perturbation being imposed is extremely challenging to test  
experimentally67 and is a matter of current debate, with some theoretical works indicating that nonlinear  
instability is still possible in the absence of any streamline curvature68.

Returning to the case in point of the cross-slot flow asymmetry, recently Cruz et al.43 have attempted to spa-
tially evaluate the instability criterion M as a function of the applied Wi in cross-slot devices by means of numeri-
cal simulations performed with the upper-convected Maxwell (UCM) and simplified Phan-Thien Tanner (sPTT) 
viscoelastic constitutive models. These simulations were performed in geometries with sharp square reentrant 
corners at the channel intersections (which we will refer to from now on as “standard-shaped” cross-slot devices). 
Near the corners of such devices, finite elastic stresses are generated, which are of lower magnitude than at the 
stagnation point, however the streamline curvature near the corners is large and the flow velocity there is much 
higher than it is close to the stagnation point. Cruz et al. found that the highest values of M occur near the cor-
ners of the flow geometry and suggest that these are the primary instability-driving regions in the flow field, as 
opposed to the central stagnation point43. This supports the earlier work of Rocha et al. 39 who found the onset of 
the flow asymmetry was delayed to higher Wi if the corners of the standard-shaped cross-slot were rounded off.

However, ideal planar elongational flow, as described by the streamfunction ψ ε= xy, has hyperbolic stream-
lines whose curvature decreases continuously with increasing distance from the stagnation point and does not 
possess the sharp re-entrant corners of the standard-shaped cross-slot device. In this case the highest curvature is 
along streamlines passing close to the stagnation point, which must turn sharply through 90°. Numerous experi-
ments invloving flow-induced birefringence measurements in stagnation point devices20,27,32,37,69, as well as simu-
lations35,36,39 and theory22,33,70,71, show clearly that the birefringent strand of fluid carries high elastic stresses in a 
band of finite width about the stagnation point. Thus, close to the stagnation point, conditions exist for non-zero 
values of the M criterion to be possible, and this was shown by Öztekin et al.72 using simulations of the Oldroyd-B 
model in planar stagnation point flow. In terms of experiment, the microfluidic optimized-shape cross-slot exten-
sional rheometer (OSCER) device (see Fig. 1) has been shown to generate an excellent approximation to the ideal 
streamfunction describing planar elongation9,27,73. Flows of highly elastic polymer solutions in the OSCER device 
indeed exhibit flow asymmetries of very similar appearance to those observed in the standard-shaped cross-slot 
device37. However, until now no experimental evaluation of the elastic instability criterion M has been performed 
in either the standard or the optimized-shape cross-slot type devices.

In this work we perform a detailed experimental study of the onset of elastic flow instabilities in the 
well-defined hyperbolic flow field within the OSCER geometry. We use a series of well-characterized nearly 
monodisperse polymer samples dissolved in a thermodynamically ideal θ-solvent, which we anticipate will be 
amenable to comparison with future numerical simulations. We use micro-particle image velocimetry (μ-PIV) 

Figure 1.  (a) 3D drawing of a portion of the Optimized Shape Cross-slot Extensional Rheometer (OSCER) 
device, indicating the principal channel dimensions (width w =​ 200 μm, depth d =​ 2 mm) and the coordinate 
system with origin at the geometric center. (b) Streak photograph obtained from fluorescent tracer particles in a 
Newtonian fluid at Re =​ 0.35. Superimposed colored hyperbolae represent streamlines expected for ideal planar 
elongational flow and the arrows indicate the flow direction (inflow along ±​y, outflow along ±​x).
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to characterize the flow field and quantitative flow-induced birefringence measurements to quantify the stress 
fields in the polymer solutions as the imposed flow rate is progressively increased until the flow becomes unsta-
ble. Our detailed, time-resolved μ-PIV measurements reveal that the flow asymmetry in the OSCER geometry 
does not occur spontaneously but rather represents the later stage of development of an instability that begins at 
a much lower Wi (in a manner similar to the instability progression observed in the planar contraction geometry, 
described above). We evaluate the magnitude of the elastic instability criterion M at the onset of the first signs of 
instability (which corresponds to a lateral displacement and quasiperiodic lateral motion of the stagnation point) 
and we obtain maximum values of M in localized regions close to the stagnation point, as shown numerically by 
Öztekin et al.72 In the almost ideal planar elongational flow field provided by the OSCER device, we find good 
agreement with the scaling suggested by Eq. (1) and we obtain an estimate of Mcrit for the onset of the first elastic 
instability that is comparable with values obtained previously in viscometric torsional shearing flows.

Results
Flow experiments are performed in the microfluidic OSCER device9,27,37,73,74,75 illustrated schematically in Fig. 1a. 
The device has a shape that has been determined by a numerical optimization procedure27,73,75 in order to provide 
a close approximation to ideal planar elongational flow over a wide region of the flow field surrounding the cen-
tral stagnation point. The fidelity of the flow field has been confirmed experimentally9,27,75 and is illustrated qual-
itatively in Fig. 1b, which shows a streak image obtained for low Reynolds number flow of a Newtonian fluid 
compared with theoretical hyperbolic streamlines obtained using the ideal streamfunction, ψ ε= xy. Test fluids 
are pumped through the OSCER device at controlled volume flow rates, Q, using four high precision syringe 
pumps (neMESYS, Cetoni GmbH). Two pumps simultaneously inject fluid at equal rates into the two opposing 
inlets while an additional two pumps withdraw fluid simultaneously at an equal and opposite rate from the two 
diametrically-opposed outlets. Syringe volumes are selected to ensure minimal pulsation in the resulting flow; the 
pumps displace fluid at a rate of at least 600 increments per second even for the lowest applied Q

Newtonian flow characterization in the OSCER.  Control experiments involve pumping the Newtonian 
solvent dioctyl phthalate (DOP) through the OSCER device over a range of applied flow rates and using 
micro-particle image velocimetry (μ-PIV)76,77,78 to confirm the expected characteristics of the flow field at 
Reynolds numbers spanning the range covered in later experiments with viscoelastic polymer solutions. The 
Reynolds number here is defined by ρ η=Re UD /h s, where ρ = .0 985 g mL−1 and ηs =​ 59 mPa s are the density 
and viscosity of the DOP, respectively, =U Q wd/  is the average flow velocity, and = +D wd w d2 /( )h  is the 
hydraulic diameter; w =​ 200μm and d =​ 2 mm are the characteristic width and depth of the channel, respectively 
(see Fig. 1a).

Over a wide range of Re, the Newtonian flow field shows good self-similarity, as exemplified by the normalized 
velocity magnitude fields shown in Fig. 2a–c. These are ensemble-averaged over 20 individual velocity fields cap-
tured over a 5 s period and show a centrally-located stagnation point and a velocity magnitude that continuously 
increases with distance from the stagnation point along the flow axes. Profiles of the x-component of the velocity 
along the x-axis (i.e. 

=
v x( )x y 0

) are extracted from such velocity fields and are shown in Fig. 2d. At each applied 
flow rate (or Re), vx is proportional to x, i.e. the velocity gradient ∂ ∂v x/x  along y =​ 0 is constant over the measured 
range of x. This velocity gradient ∂ ∂v x/x  defines the elongation rate ε  imposed on fluid elements passing through 
the OSCER device. The inset to Fig. 2d shows the relationship between the measured value of ε  and the average 
imposed flow velocity U, which provides the following best linear fit :

ε =
.

.

w
U0 214

(2)

The constant of proportionality in Eq. 2 (0.214/w) is close to the expectation from two-dimensional (2D) 
numerical simulations (0.2/w) and the discrepancy is consistent with the finite aspect ratio of the experimental 
OSCER device (α =​ d/w =​ 10)27. Time-resolved μ-PIV measurements with the solvent confirm the temporal sta-
bility of the flow field in the Newtonian case. Velocity fields are collected at a rate of 4 Hz over a 30 s time period 
and profiles of 

=
v x( )x y 0

 are extracted from each field. Figure 2e shows a space-time diagram composed of such 
velocity profiles for the case of Newtonian flow at Re =​ 0.49, and shows clearly how the stagnation point remains 
centrally-located and that spatio-temporal velocity fluctuations are low (at any position along the y-axis, rms 
velocity deviations over time are  . U0 02 ).

The local components of the velocity fields (v x y( , )x  and v x y( , )y ) obtained from the μ-PIV experiments can be 
used to locally evaluate the components of the deformation rate = ∇ + ∇v vD ( )T1

2
 and vorticity 

Ω = ∇ − ∇v v( )1
2

T  tensors. In Fig. 3a we show the xx component of the deformation rate tensor (γ
 xx) in normal-

ized form. This was evaluated using the velocity field shown in Fig. 2b for the flow of the DOP solvent at Re  =​  0.49. 
The result agrees very well with a 2D numerical prediction obtained for Newtonian creeping flow and illustrates the 
homogeneity of the flow field over the central region of the geometry27. It is also possible to locally evaluate the 
flowtype parameter, ξ according to the criterion of Astarita79,80,81. The flowtype parameter is defined as:

γ
γ

ξ
Ω
Ω

=
−
+





x y( , ) ,
(3)

where γ =


D D2 :  and Ω Ω Ω= 2 :  are the magnitudes of the deformation rate and vorticity tensors, 
respectively.
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The flowtype parameter varies between −​1 and 1, with values of −​1 corresponding to purely rotational 
kinematics, values of 0 corresponding to purely shearing kinematics and values of +​1 corresponding to purely 
extensional kinematics. Figure 3b shows the local flowtype parameter computed from the velocity field shown in 
Fig. 2b. It is clear that the flowtype is dominated by purely extensional kinematics along the flow axes and over a 
wide symmetrical region surrounding the central stagnation point.

It is also of value to consider the strain applied to fluid elements as they flow through the OSCER geometry. 
An estimate of the strain can be readily computed by assuming that fluid elements follow hyperbolic streamlines 
within the numerically optimized region of the flow geometry, i.e. over the domain spanning − . ≤ ≤ .w x y w7 5 , 7 5  
about the stagnation point27. Fluid elements enter this domain at initial locations given by 

≤ = .x w y w( /2, 7 5 )0 0  and exit the domain at final locations given by | | = | | | | = | |x y y x( , )f f0 0 . If a fluid ele-
ment enters this domain at a position given by (x0,y0), the Hencky strain that the fluid element has accumulated 
at any subsequent position (x,y) along the streamline is given by ε = =x x y yln( / ) ln( / )H 0 0 . The result of this 
calculation performed over the entire domain is shown in Fig. 3c (cropped to the experimental field of view). The 
Hencky strain is constant along x and varies along y as ε = . |y y( ) ln(1 5/ )H  (with y in mm). The strain is sharply 

Figure 2.  Control experiments to characterize the flow field in the OSCER geometry using the pure Newtonian 
solvent (DOP): (a–c) Normalized velocity magnitude fields obtained over a range of imposed Re show good 
self-similarity. (d) x-component of the velocity vx(x) measured along y =​ 0 shows proportionality at each 
imposed Re, i.e. a uniform velocity gradient. The correspondingly-colored lines passing through each data set 
are linear fits to the data through the origin, from which the velocity gradient at each imposed flow rate is 
obtained. Inset shows the streamwise velocity gradient along y =​ 0 (i.e. ε = ∂ ∂ v x/x ) as a function of the average 
flow velocity U, displaying the expected linearity. (e) Space-time diagram showing the magnitude of vx(x, t) 
along y =​ 0 normalized by U at Re =​ 0.49, demonstrating the steadiness of the flow field over a 30 s time period 
(data captured at 4 Hz).

Figure 3.  Spatially-resolved characterization of the Newtonian flow field in the OSCER device. (a) Strain 
rate field for the flow of DOP at Re =​ 0.49. (b) Flow type parameter for the flow of DOP at Re =​ 0.49. (c) Fluid 
Hencky strain computed assuming ideal hyperbolic streamlines within the hyperbolic region marked by dashed 
red lines.
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peaked about the y =​ 0 axis, where theoretically the strain becomes infinite. For |y| ≤​ 1.5 μm, εH exceeds 6.9 units. 
For |y| ≤​ 1 μm (which corresponds to the spatial resolution of our imaging system), εH ≈​ 7.3 units.

Viscoelastic test fluid characterization.  Solutions of low-polydispersity atactic-polystyrene (a-PS) 
in the room-temperature (22 °C) θ-solvent DOP82 are prepared at molecular weights Mp =​ 6.9 and 16.2 MDa 
(denoted hereonwards as PS7 and PS16, respectively) and over a range of concentration 0.035 ≤​ c ≤​ 0.14 wt.%. 
This polymer-solvent system is extremely well characterized and details of the molecular parameters of the two 
a-PS samples in the DOP solvent are provided in Table 1.

The rheological properties of the polymeric test solutions are measured in steady shear at 22 °C using an Anton 
Paar MCR 502 stress-controlled rotational rheometer equipped with a 50 mm diameter 1° cone-and-plate geom-
etry. The resulting flow curves of viscosity η as a function of the applied shear rate γ


 are shown in Fig. 4 in com-

parison with the viscosity of the pure solvent, ηs =​ 59 mPa s. The a-PS solutions are rather weakly shear-thinning 
over the shear rate range. The flow curves are fitted with a Carreau-Yasuda Generalized Newtonian Fluid (GNF) 
model84 from which the zero-shear viscosities of the fluids (η0) are extracted. The values obtained for η0 are pro-
vided in Table 2. Table 2 also includes the characteristic relaxation time of each fluid, τ, the determination of 
which is made from direct measurements of polymer stretching in the OSCER device itself and will be described 

a-PS sample Mp[MDa] Mw/Mn n LC [μm] N lp[nm] r0
2 1/2

[nm] Rg[nm] L2 c* [wt.%]

PS7 6.9 1.09 66346 16.6 6840 2.43 201 82 6821 0.5

PS16 16.2 1.07 155769 38.9 16059 2.43 308 126 15951 0.32

Table 1.   Molecular parameters of the a-PS samples under θ-solvent conditions. The peak molecular weight 
is Mp and the sample polydispersity is given by Mw/Mn, where Mw and Mn are the weight and number averaged 
molecular weights, respectively. The number of repeat units is n =​ Mp/m, where m =​ 104 Da is the monomer 
molecular weight. The contour length LC =​ nlm, where lm =​ 0.25 nm is the monomer length. The characteristic 
ratio = = = .∞c n N l l/ / 9 7p m , where N is the number of equivalent segments in an ideal chain and lp is the 
persistence length. The ensemble-averaged equilibrium end-to-end distance of the random coil is 

= =r R N l6 g p0
2 1/2 , where Rg is the equilibrium radius of gyration. An extensibility parameter can be 

defined as =L L r/C
2 2

0
2 . The characteristic concentration for overlap of polymer chains is found using the 

formula π=⁎c M N R3 /4p A g
3, where NA is Avogadro’s constant83.

Figure 4.  Steady flow curves of viscosity η as a function of the imposed shear rate γ


 for the Newtonian 
solvent (DOP) and for the various polystyrene-based test solutions. Data is fitted using the Carreau-Yasuda 
model (solid lines).

property PS7 PS7 PS16 PS16 PS16

c [wt.%] 0.07 0.14 0.035 0.07 0.14
⁎c c/  0.14 0.28 0.11 0.22 0.44

η0 [mPa s] 71 81 68 82 107

β η η= /s 0 0.84 0.75 0.88 0.72 0.56

τ [ms] 13 16 80 90 120

∆− n106
0 56 112 28 56 112

Table 2.   Properties of the viscoelastic a-PS in DOP test solutions at various polymer concentrations.
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in due course. For future computational studies, the molecular parameters and rheological information provided 
in Tables 1 and 2 also facilitate fitting of the data to a range of viscoelastic constitutive equations such as the 
White-Metzner model or the Finitely-Extensible Non-linear Elastic (FENE) dumbbell model, for example84. The 
value of Δ​n0 in Table 2 refers to the magnitude of flow-induced birefringence that can be expected from a solution 
of polymer molecules fully stretched to their contour length. For a-PS in DOP it has been calculated that 
∆ ≈ − .n c0 080 , with c expressed in terms of the mass of polymer per unit mass of solution25,69.

Viscoelastic flow in the OSCER.  In the flow experiments performed using viscoelastic fluids in the OSCER 
device, the Weissenberg number is defined in the standard way, i.e. τε= Wi , while the Reynolds number is cal-
culated according to:

ρ
η γ

=


Re UD
( )

,
(4)

h

where η γ


( ) is the shear rate dependent viscosity found using the Carreau-Yasuda fit to the steady flow curves 
(Fig. 4) evaluated at a characteristic deformation rate γγ ε= = =


D D2 : 2 . Since the polymer concentra-

tions in the test solutions are quite low, the densities of the fluids do not vary significantly from that of the solvent, 
and we take ρ =​ 0.985 g mL−1 in all cases. In the experiments, the Weissenberg number is varied over a range 

< Wi0 3, while the Reynolds number remains low (Re <​ 1). The elasticity number is given by El =​ Wi/Re. 
Since the polymeric test fluids are mildly shear-thinning (Fig. 4), the Reynolds number increases non-linearly, 
hence El decreases slightly with increasing shear rate.

The viscoelastic a-PS in DOP solutions are examined in flow through the OSCER device over a range of 
imposed ε  using a combination of flow-induced birefringence measurements and time-resolved μ-PIV. Figure 5 
shows the evolution of flow patterns (here time-averaged over 2 s) and the spatial distribution of birefringence  
(Δ​n) measured in the OSCER device for the flow of a 0.07 wt.% solution of PS16 as the imposed strain rate is 
increased. At lower ε  (Fig. 5a) the velocity field appears quite Newtonian-like, with a centrally-located stagnation 
point about which incoming streamlines divide symmetrically between the outlet channels. Here, the birefrin-
gence is at the lower end of the color scale, although there is in fact some degree of polymer chain alignment along 
the outflowing symmetry axis, as evidenced by the corresponding plot of the orientation angle of the slow optical 
axis, θ. In this plot, the blue coloration on the horizontal flow axis indicates orientation of the slow optical axis 
along the y-direction (θ =​ ±​π/2 rad). This is consistent with the principal direction of polymer chain segment 
orientation, which indicates the axis for extraordinary polarizations, being along the outflow direction χ =​ 0 rad. 
This is because, due to the benzene-ring side groups, the refractive index of stretched polystyrene is greatest in the 
direction perpendicular to the direction of backbone orientation (i.e. for ordinary polarizations), resulting in a 
negative birefringence and a negative stress-optical coefficient85. As ε  is increased (Fig. 5b) the velocity field 
begins to deviate from the Newtonian-like form; the stagnation point has been displaced laterally and the incom-
ing streamlines bend left towards the displaced stagnation point. Birefringence is now clearly visible in the form 
of a localized strand aligned along the outflowing stagnation point streamline and the width of the band of ori-
ented polymer has increased significantly. As ε  is increased further (Fig. 5c) the flow becomes more unstable and 
the stagnation point becomes more significantly displaced from the center point of the OSCER device. 
Interestingly, even under this severely distorted flow field, the birefringent strand appears to remain localized, 
uniform and unperturbed. Finally, at higher ε  (Fig. 5d) a large scale symmetry-breaking results in a globally 
asymmetric flow field reminiscent of that previously reported in standard-shaped cross-slot devices34,35,38–43. Here 
the birefringence also exhibits asymmetry along with a significant reduction in apparent intensity.

The results displayed in Fig. 5 are quite representative of the evolution in flow behavior observed with all of the 
five different polymeric test solutions, except that the onset of different behavior occurs for fluid-dependent val-
ues of ε . It is important to note that the lateral displacement of the stagnation point (as exemplified in Fig. 5b,c) 
can be either to the left or to the right of the centre point. We identify this distortion of the flow field with the 
onset of a first viscoelastic flow instability at Wi =​ Wic1. Equally, the global asymmetry (exemplified in Fig. 5d) can 
be either clockwise or counterclockwise with respect to either one of the flow axes; we identify this as the onset of 
a second viscoelastic flow instability at Wi =​ Wic2. It should also be remembered that the velocimetry fields shown 
in Fig. 5 are time-averaged over 2 seconds of flow. In fact once instability develops (i.e. Fig. 5b–d) the flow field 
exhibits increasing spatio-temporal fluctuations as ε  is increased. Discussion and analysis of these fluctuations 
will follow below, but it is important to note here that this fluctuation can have some effect on the birefringence 
measurements. The flow-induced birefringence images shown in Fig. 5 are formed from a combination of seven 
individual images, each captured with a 1 s exposure time under different modulation states of the light source 
(see Methods Section). Thus, for steady flows they can be considered as “time-averaged” over a total of approxi-
mately 7 s of flow. However, if the position of the birefringent strand fluctuates between the acquisition of the 
seven individual frames (as it certainly does in Fig. 5d) the final result should only be interpreted qualitatively.

We note that the lateral asymmetry and unsteady oscillatory motion of the stagnation point observed here for 
Wic1 ≤​ Wi ≤​ Wic2 is clearly distinct from the oscillatory instability reported by Varshney et al.50 for viscoelastic 
flow in a T-shaped junction with a recirculating cavity, and is also distinct from the inertio-elastic instabilities 
previously reported for the flow of weakly elastic fluids in the OSCER device37. In both of those previous cases the 
fluctuations were measured in the direction orthogonal to the direction of flow, whereas in the present case the 
periodic displacement of the stagnation point is along the outflow direction.

In Fig. 6a–d we use the time-averaged flow fields shown in Fig. 5a–d to evaluate the flowtype parameter 
(Equation 3) for the 0.07 wt.% solution of PS16 under the various flow regimes that were described previously. 
Under Newtonian-like flow conditions (Fig. 6a) the central region of the flow field is dominated by purely 
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extensional kinematics and is quite comparable to the result for the Newtonian solvent at low Re (Fig. 3b). As the 
Weissenberg number is increased beyond Wic1 and the stagnation point becomes increasingly displaced laterally 
(Fig. 6b,c) this central region becomes increasingly dominated by shear, although extensional flow persists along 
the horizontal flow axis passing through the stagnation point. For Wi >​ Wic2 the global symmetry breaking causes 
complete loss of the stagnation point and the central strand of extensional flow is replaced by a region of purely 
shearing kinematics.

For flow rates below this second transition (i.e. for Wi <​ Wic2), we measure the value of Δ​n at the location 
x =​ y =​ 0 as a function of the imposed strain rate, see Fig. 7a. The birefringence begins to increase as ε  is increased 
beyond an onset value ε onset. This onset can be shifted to τε= = .Wi 0 5onset onset  (Fig. 7b) in order to obtain the 
characteristic relaxation times of the polymer solutions, τ, provided in Table 2. In Fig. 7b we have normalized the 
measured birefringence by that expected from solutions of fully-stretched polymer molecules, Δ​n0 =​ −​0.08c, 
Table 2 25. This normalized birefringence can be related to the ensemble-averaged end-to-end length of polymer 
chains r2 1/2 through the model provided by Treloar25,86, which relates the optical properties of strained poly-
meric networks to the mean segmental orientation. Based on this model, we estimate the polymer stretches to 
reach an ensemble-average end-to-end separation of . < < .r L0 3 0 4 C

2 1/2  before the onset of the global flow 
asymmetry at Wic2.

Figure 5.  Example results from flow experiments conducted with one of the polymeric test fluids showing the 
evolution of velocity fields and flow-induced birefringence in the OSCER geometry for a 0.07 wt.% solution of 
PS16 in DOP as the flow rate (or Wi) is increased: (a) = . −U 4 9 mms 1, ε = . −

 5 2 s 1, = .Wi 0 47, = .Re 0 023.  
(b) = . −U 12 2 mms 1, ε = . −

 13 0 s 1, = .Wi 1 17, = .Re 0 058. (c) = . −U 20 3 mms 1, ε = . −
 21 7 s 1, = .Wi 1 96, 

= .Re 0 10. (d) = . −U 28 5 mms 1, ε = . −
 30 4 s 1, = .Wi 2 74, = .Re 0 14. Left column: normalized velocity fields 

(time-averaged over two seconds) with superimposed streamlines; middle column: flow-induced birefringence; 
right column: angle of slow optical axis (θ =​ 0 radians corresponds to the x-direction). For polystyrene the slow 
axis is perpendicular to the direction of backbone chain orientation.
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Analysis of time-dependent viscoelastic flow in the OSCER.  In the viscoelastic polystyrene solu-
tions, as the imposed strain rate is increased, and flow instability develops, the flow becomes time-dependent and 
exhibits an increasing degree of spatio-temporal fluctuation.

In Fig. 8 we represent this time-dependence in the form of space-time diagrams constructed from profiles of 

=
v x( )x y 0

 measured at a sampling rate of 4 Hz over a 30 s time period. The images show representative data 
obtained for the flow of the 0.07 wt.% solution of PS16 over a range of flow rates spanning the regimes of 
Newtonian-like flow (Fig. 8a), laterally-displaced unsteady stagnation point (Fig. 8b,c), and globally asymmetric 
unsteady flow (Fig. 8d). Movies showing full 2D, spatio-temporally-resolved velocity fields corresponding to 
Fig. 8a–d, are provided in the Electronic Supplementary Information as Movies M1–M4, respectively.

We analyse the power spectral density (PSD) of the velocity fluctuations for each test fluid over time at a loca-
tion x =​ 1 mm, y =​ 0 mm, using a normalized velocity magnitude, −v t v t v t( ( ) ( ) )/ ( )x x x , where <> represents 

Figure 6.  Spatially-resolved evaluation of the flowtype parameter ξ for flow of the 0.07 wt.% solution of 
PS16 in DOP at conditions equivelent to those in Fig. 5a–d, respectively. i.e. (a) = .Wi 0 47, = .Re 0 023.  
(b) = .Wi 1 17, = .Re 0 058. (c) = .Wi 1 96, = .Re 0 10. (d) = .Wi 2 74, = .Re 0 14. Analysis is performed on 
time-averaged velocity fields.

Figure 7.  Measurement of flow-induced birefringence made at the location = =x y 0 over a range of imposed 
flow rates enables the characteristic relaxation times τ of the polymer solutions to be determined:  
(a) birefringence Δ​n as a function of ε  shows an increase for ε ε>  onset. (b) Shifting the data to an onset of 

τε= . = Wi 0 5onset onset provides the relaxation time. Here, Δ​n is normalized by the birefringence expected for a 
solution of fully-stretched molecules Δ​n0, which can be used to estimate the degree of macromolecular 
deformation in each case. For each data series, the final data point shown at high ε  (or high Wi) represents the 
final measurement made before the onset of the global flow asymmetry, as exemplified in Fig. 5d.
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a time-average. For this analysis, data was captured at a rate of 10 Hz for 30 s. Representative results from the 
0.07 wt.% solution of PS16 under flow conditions corresponding to the cases shown in Fig. 8a–d are provided in 
Fig. 8e–h, respectively. For comparison, in Fig. 8e–h we also show PSD’s corresponding to velocity magnitude 
fluctuations occurring for the flow of the Newtonian solvent at equivalent flow rates. In the Newtonian-like flow 
regime, Fig. 8e, the PSD measured with the polymer solution is virtually indistinguishable from that of the 
Newtonian solvent and fluctuations are extremely low. For the solvent, the fluctuations remain small as the flow 
rate is increased. However for the polymer solution, as the Weissenberg number increases above Wic1 and the 
stagnation point begins to exhibit lateral displacements and unsteadiness, some significant peaks in the PSD rise 
above the base level noise (Fig. 8f,g). For Wi >​ Wic2 (Fig. 8h), broadband velocity fluctuations are clearly evident 
in the PSD. The sequence of behaviors demonstrated by Fig. 8 is typical of all the five polymer solutions we exam-
ined. Although velocity fluctuations become easily detectable as the flow becomes increasingly unstable, the 
power spectra are complex and no distinct characteristic frequencies are manifested.

Identification of Wic1.  Further analysis of temporal velocity fluctuations in the flowing fluids is performed 
by evaluating the turbulence intensity along the x-axis, | =T y 0

. The turbulence intensity is defined by:

=
−

T
v v

v
( )

,
(5)

2 1/2

where v  is the velocity magnitude at a particular x y( , ) location and  represents an average over all frames in a 
particular time series of velocity vector fields.

Figure 9a,b shows how T varies with position along the x-axis for flow of the Newtonian solvent and the 
0.07 wt.% PS16 solution, respectively, over a range of imposed ε . For the DOP solvent Fig. 9a, T is basically inde-
pendent of the flow rate. Note the large peak in T for the Newtonian fluid at x =​ y =​ 0 (Fig. 9a) arises because here 
at the stagnation point velocity fluctuations, though small, remain finite but the time-average value of v  is close 
to zero. In the polymer solution (Fig. 9b) as ε  increases such that Wi >​ Wicrit1, lateral displacement of the stagna-
tion point means this peak in T may move off-center and increasing fluctuations in  v  mean that the peak broad-
ens significantly. (Note that for the polymer solutions, the magnitude of the peak in T generally increases with 
increasing ε , however this measure has poor reproducibility due to the sharpness of the peak and to the spacing 
between velocity vectors obtained from the μ-PIV). Avoiding values of T >​ 0.1 (above the horizontal dashed lines 
in Fig. 9a,b), we obtain average values of | =T y 0

 for both the polymer solutions (T sol) and the pure DOP (T DOP) 
which we compare as a function of ε  in Fig. 9c. At low imposed strain rates, velocity fluctuations in the polymer 

Figure 8.  Time-resolved flow velocimetry illustrates the progressive increase in fluctuations as the Wi is 
increased. Space-time diagrams show |vx| along y =​ 0 (normalized by U) for flow of a 0.07 wt.% solution of PS16 
in DOP under the following conditions: (a) = . −U 4 1 mms 1, ε = . −

 4 3 s 1, = .Wi 0 39, = .Re 0 019.  
(b) = . −U 12 2 mms 1, ε = . −

 13 0 s 1, = .Wi 1 17, = .Re 0 058. (c) = . −U 20 3 mms 1, ε = . −
 21 7 s 1, = .Wi 1 96, 

= .Re 0 10. (d) = . −U 28 5 mms 1, ε = . −
 30 4 s 1, = .Wi 2 74, = .Re 0 14. Movies M1–M4 in the Electronic 

Supplementary Information show full 2D, spatio-temporally-resolved velocity fields corresponding to Fig. 8a–d, 
respectively. (e–h) Power spectral density (PSD) of normalized velocity signals −v t v t v t( ( ) ( ) )/ ( )x x x  made 
at 10 Hz over a 30 s time period at location x =​ 1 mm, y =​ 0 mm under flow conditions corresponding to parts 
a–d, respectively. The PSD obtained for velocity signals from the DOP solvent at equivalent flow rates is also 
shown for comparison.
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solutions are similar to the solvent so that − ≈T T/ 1 0sol DOP . Above a fluid-dependent critical strain rate ε c1, 
velocity fluctuations in the polymer solutions begin to grow relative to fluctuations in the DOP and non-zero 
values of −T T/ 1sol DOP  are obtained. For ε ε>  c1 linear growth of ( −T T/ 1sol DOP ) with strain rate is observed. 
The dashed curves in Fig. 9c are linear fits to the data of the form ε ε− = − T T A( / 1) ( )sol DOP c1 , from which the 
value of ε c1 for each fluid is obtained. This allows an unambiguous value of the first critical Weissenberg number 
to be obtained by τε= Wic c1 1. Of course, the second critical Weissenberg number (Wic2) is quite easy to identify 
since the transition to the globally asymmetric flow state is very obvious. Values of Wic1 and Wic2 are provided in 
Table 3 along with corresponding values of Rec1 and Rec2 determined from Eq. 4.

Summary of results in dimensionless parameter space.  In Fig. 10, we summarize the onset of differ-
ent flow regimes in the OSCER device using a dimensionless Wi–Re parameter space. Here, the colored lines with 
arrows represent the trajectories of different polymer solutions with different elasticity numbers (El =​ Wi/Re) 

Figure 9.  Determination of critical onset conditions for the first elastic flow instability using measurements of 
the turbulence intensity along the x-axis, | =T y 0

. (a) For the Newtonian solvent, the turbulence intensity along 
y =​ 0 is independent of the applied strain rate. (b) For polymer solutions, the onset of instability results in a large 
increase in T due to lateral motion of the stagnation point. Average values, | =T y 0

, are obtained for both the 
solvent and the polymer solutions and are compared in (c). The large peak for | > .=T 0 1y 0

, above the dashed 
lines in (a,b), is omitted from the average since variability in its size can skew the result. (c) The onset of 
instability at ε c1 is determined by linear extrapolation of the growing region of the curve to − =T T/ 1 0sol DOP . 
Dashed lines in (c) are linear fits to each data set of the form ε ε− = − T T A( / 1) ( )sol DOP c1 .

property PS7 PS7 PS16 PS16 PS16

 c [wt.%] 0.07 0.14 0.035 0.07 0.14

 El 2.7 3.7 16.0 22.1 37.7

Wic1 0.87 0.77 0.82 0.65 0.65

 Rec1 0.32 0.21 0.05 0.03 0.02

Wic2 1.85 1.93 2.28 2.19 2.14

Rec2 0.69 0.53 0.14 0.11 0.07

Mcrit 4.6 ±​ 0.2 4.7 ±​ 0.2 4.2 ±​ 0.2 5.1 ±​ 0.3 5.9 ±​ 0.4

Table 3.  Critical onset conditions for elastic instabilities in the OSCER device.
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through this dimensionless state space. Since the fluids are only mildly shear-thinning, the approximate values of 
El shown in Fig. 10 and listed in Table 3 are simply obtained using Reynolds numbers based on the measured zero 
shear viscosities of the fluids. For flow at Wi <​ Wionset =​ 0.5, Fig. 10 shows the regime of Newtonian-like steady 
viscous flow. For < < ≈ .Wi Wi Wi 0 75onset c1 , the polymer begins to stretch significantly in the flowfield, but the 
flow remains steady and here we define a regime of “steady viscoelastic flow”. As the Weissenberg number is 
increased such that Wi >​ Wic1 ≈​ 0.75, the flow transitions to the state of the laterally displaced, unsteady stagna-
tion point. Finally, for Wi >​ Wic2 ≈​ 2 the flow transitions to the globally asymmetric unsteady flow state.

Evaluation of the elastic instability criterion M.  We evaluate the elastic instability criterion M or M2 
(Equation 1) at conditions as close as possible to the onset of the first instability at Wic1. Since a combination of 
both streamline curvature and streamwise stress is required to obtain non-zero values of M, we perform the anal-
ysis over a small quadrant near the stagnation point, corresponding to ≤ ≤x y0 ( , ) 50 μm. For ≤Wi Wic1, since 
the flow field only deviates weakly from the Newtonian case (see e.g. Figs 2b, 3b, 5a and 6a), we assume the flow 
field is well represented by the ideal streamfunction ψ ε= xy. This assumption should also be most valid away 
from the confining walls of the OSCER device and close to the stagnation point, where we perform this evaluation 
(see Fig. 3). Velocity components are given by ψ ε= ∂ ∂ = v y x/x , ψ ε= −∂ ∂ = − v x y/y  and the local velocity 
magnitude is | | = +v x y v v( , ) ( )x y

2 2 . The velocity magnitude is shown in dimensionless form in Fig. 11a with 
superimposed streamlines determined from the streamfunction. The curvature of streamlines at any point in 
space is given by the following general expression:
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which, for ideal planar extensional flow, can be simplified to:
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The streamline curvature is shown in dimensionless form over the 50 ×​ 50 μ​m quadrant in Fig. 11b.
The elastic tensile stress along streamlines σ11 is estimated using the following procedure. Firstly, the com-

ponents of the stress tensor σ are estimated by applying the stress-optical rule (SOR)24 to the spatially-resolved 
measured birefringence, Δ​n, see Fig. 5. The stress-optical rule states that Δ​n and the components of σ obey the 
following relations:

σ χ=
∆n
C

sin(2 ), (8)xy

and

σ σ χ− =
∆n
C

cos(2 ), (9)xx yy

where C is the stress-optical coefficient24. For moderate polymer deformations and stresses, the value of C is often 
found to be constant for a given polymeric system. In our experiments, at ≈ .Wi 0 75c1  we estimate the 

Figure 10.  Stability diagram in dimensionless Wi-Re state space for the onset of viscoelastic instabilities 
during ideal planar elongational flow in the OSCER device. Closed squares represent Wic1 and open circles 
represent Wic2. Error bars on data points represent the typical ranges of Wi and Re for the onset of instabilities in 
each polymer solution over at least five experimental test runs in each case.
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ensemble-average end-to-end separation of polymer chains in the elastic strand to be ≈ .r L0 15 c
2 1/2 25,86. 

Previous experiments with similar fluids in stagnation point flows have shown a linear dependence between stress 
and birefringence up to much higher polymer extension than this26,87, so here we assume linearity of the SOR. In 
the case of polystyrene, several previous studies have measured values of C in a close range between 
− × < < − ×− − −C Pa4 10 6 109 9 126,88–90, here we take a representative value of = − × − −C 5 10 Pa9 191. We 
make a further approximation by assuming that σ σyy xx. This seems reasonable given that the deformation 
occurs predominantly along the xx direction, as clearly shown by Figs 3 and 5, as well as in previous works27.

Since the polymer orientation angle in the birefringent strand is along χ = 0 rad (Fig. 5), we find σ ≡ 0xy  and 
the stress tensor only contains a single non-zero component given by σ ≈ ∆n C/xx . The streamwise tensile stress 
can then be found as follows:

σ σ φ σσ≈ . . = =
+

c cT x
x y

cos
( )

,
(10)xx xx11

2
2

2 2

where c is the direction-cosine transformation matrix and φ = = +v v x x ycos / /( )x
2 2 1/2. A spatial map of 

dimensionless σ11 values (scaled by an elastic modulus η τ≈G /0 ) thus determined from birefringence measure-
ments made with the 0.035 wt.% solution of PS16 at = .Wi 0 7 is provided in Fig. 11c. Finally the data shown in 
Fig. 11a–c can be combined on a pixelwise basis according to Eq. 1 in order to obtain a spatially-resolved map of 
the instability criterion M2 in the region of the stagnation point at conditions close to the onset of instability at 
Wic1, as shown in Fig. 11d. We observe contours of M2 of similar form to those shown numerically by Öztekin  
et al.72 for planar stagnation point flow of viscoelastic fluids modelled by the Oldroyd-B constitutive equation. In 
our experiment with the 0.035 wt.% PS16 solution, we find a maximum value for the instability criterion 

≈M 18max
2  is reached at a location close to the stagnation point. More precisely, we report a mean and standard 

deviation value of = . ± .M 4 2 0 2max  over a 3 ×​ 3 pixel area centered on the location = . = .x w y w/ 0 0225, / 0 0125.
Rather similar results are obtained from the remaining four polystyrene-based test solutions, see Fig. 12. We 

equate the resulting values of Mmax in the spatial maps of the instability criterion with the value of Mcrit for the 
onset of elastic instability. For our test solutions, Mcrit varies in a narrow range . ≤ ≤ .M4 2 5 9crit , indicating that 
the geometric and rheological scaling of M provided by Eq. 1 holds well for this planar elongational flow. The 
values of M and their standard deviations obtained for individual fluids are shown in Table 3. These values of M 

Figure 11.  Determination of the elastic instability criterion M2 at the onset of the first elastic instability 
at (Wic1,Rec1) for the 0.035 wt.% solution of PS16 in the OSCER device. (a) dimensionless velocity field 
and hyperbolic streamlines determined using the ideal stream function for planar elongational flow. (b) 
dimensionless streamline curvature. (c) dimensionless streamwise stress determined from birefringence 
measurements made at Wi =​ 0.7, Re =​ 0.04. (d) Spatial distribution of M2 values obtained by combining data in 
parts (a) to (c) according to Eq. 1.



www.nature.com/scientificreports/

1 4Scientific Reports | 6:33029 | DOI: 10.1038/srep33029

are of similar magnitude to those predicted numerically by Öztekin et al.72 in planar elongational flow as well as 
to previously reported values determined from experiments performed in viscometric torsional shearing flows5.

Discussion and Conclusions
In this work we have employed a series of very well characterized viscoelastic polymer solutions to examine the 
onset of elastically-induced flow instabilities in an almost ideal planar stagnation flow in an optimized-shape 
cross-slot extensional rheometer (OSCER). We have measured the growth of flow-induced birefringence and 
performed time-resolved flow velocimetry measurements on the fluids as the dimensionless Weissenberg num-
ber is increased by control of the total volume flow rate through the microfluidic OSCER device. As Wi increases 
above Wionset =​ 0.5 the flow field remains steady and Newtonian-like as a narrow, localized birefringent strand 
develops along the outflowing symmetry axis of the flow. As the Weissenberg number increases above Wic1 ≈​ 0.75, 
we observe a new type of elastic instability characterized by a lateral displacement and local unsteadiness of the 
stagnation point. In this instability, the stagnation point moves erratically, and apparently quasiperiodically, from 
side to side along the ouflowing symmetry axis of the flow device. This is in contrast to other recently-reported 
oscillatory viscoelastic flow instabilities, in which the periodic fluctuations were observed in the direction per-
pendicular to the outflow axis37,50. At a higher critical Weissenberg number Wic2 ≈​ 2, a second instability results 
in the flow breaking symmetry globally in a manner that resembles previously reported elastic flow asymmetries 
in standard-shaped cross-slot devices34,35,38–43. A similar sequence corresponding to a local time-dependent flow 
instability preceeding a global elastic instability has also been documented along strongly curved streamlines near 
the re-entrant corner of an abrupt contraction geometry53.

At conditions close to Wic1, we have used the birefringence measurements from our extensional flow exper-
iments to evaluate a well-known criterion for the onset of elastic instabilites5,66,72. We have found maximum 
values of the criterion, Mmax, occur close to the stagnation point where there is a critical combination of high 
tensile viscoelastic stress, strongly curved streamlines and non-zero flow velocity. Values of M at this location are 
essentially fluid independent and have a magnitude similar to critical values of M reported at the onset of elastic 
instabilities in well-defined torsional shearing flows. Our experimental results thus support the arguments of  
Öztekin et al.72 that the mechanism for the onset of elastic instability in planar stagnation point flow is similar 

Figure 12.  Spatially-resolved evaluation of M at conditions as close as possible to the onset of the first 
instability at (Wic1, Rec1) provides reasonable agreement between values for the various test fluids.  
(a) 0.07 wt.% PS7 at Wi =​ 0.90, Re =​ 0.33; (b) 0.14 wt.% PS7 at Wi =​ 0.74, Re =​ 0.20; (c) 0.07 wt.% PS16 at 
Wi =​ 0.69, Re =​ 0.03; (d) 0.14 wt.% PS16 at Wi =​ 0.63, Re =​ 0.02. In each case the maximum value, Mmax, is 
located at position = . .x w y w( / , / ) (0 0225,0 0125), marked “×​”, and the value anotated in each plot is an average 
over values of M obtained over a 3 ×​ 3 pixel area (≈​ 9 μm2) centered on that point.
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to that for elastic instabilities in simple shearing flows. That is to say, coupling between streamline curvature 
and streamwise elastic tensile stresses results in the amplification of small disturbances to the base flow. This 
mechanism appears to be independent of whether the curvature and stresses arise due to shearing or extensional 
kinematics and should thus be applicable to complex mixed flows with arbitrary kinematics. These observations, 
taken in conjunction with recent arguments by James92 regarding the magnitude of elastic normal stresses in a 
wide range of complex flows with mixed kinematics, and measurements of oscillatory instabilities in other flow 
geometries37,50 suggest that the onset of spatially-localized viscoelastic instabilities may indeed be ubiquitous at 
moderate values of the Weissenberg number.

In this work we have focused on relatively simple viscoelastic fluids with almost constant viscosity. In the 
future it will be interesting to examine the influence of shear thinning on the critical onset conditions for the 
observed flow transitions. Sousa et al.42 have recently studied the onset conditions for the forward bifurca-
tion leading to the global flow asymmetry in standard-shaped microfluidic cross-slots using fluids with a wide 
range of rheological properties. They found a general trend for a reduction in the critical Weissenberg number 
as the degree of fluid shear thinning increased. Strongly shear thinning fluids tended to transition to a steady 
asymmetric flow state, while less shear thinning fluids displayed a tendency to transition to a time-dependent 
asymmetric state42 (which is consistent with the observations reported here for flows above Wic2). By contrast, 
recent experiments and numerical simulations of viscoelastic flows in serpentine microchannels indicate that 
in this shear-dominated geometry, shear thinning may have a stabilizing effect on the onset of purely elastic 
instabilities93. Unraveling the connections between the local flow kinematics, the fluid rheology and the mode of 
instability should become possible in the near future by combining these detailed microfluidic observations (all 
performed using well-characterized polymer solutions) with recent developments in computational abilities for 
studying time-dependent and three-dimensional viscoelastic flows42,43,75,93,94.

Materials and Methods
Polymer solution preparation.  Polymer solutions are prepared using an intermediate solvent method. The 
polystyrene powder is weighed and dissolved in a small quantity (≈​ 20 mL) of dichloromethane. After complete 
dissolution, the polystyrene plus dichloromethane mixture is added to an appropriate volume of the final solvent 
dioctyl phthalate (DOP). The fluids are mixed by gentle hand swirling until no refractive index variations can be 
seen throughout the mixture. Finally the dichloromethane is removed by evaporation in a fume hood maintained 
at room temperature. The removal of the dichloromethane is monitored by periodic weighing and is considered 
complete when there is no further weight loss.

Microdevice fabrication.  The microfluidic OSCER device is fabricated by cutting channels through 2 mm 
thick stainless steel by the technique of wire-electrical discharge machining with a 30 μm diameter copper wire. 
Subsequently, annealed soda-glass windows are bonded (using silicone aquarium adhesive) to the upper and 
lower flat surfaces of the stainless steel in order to form enclosed channels with optical access to the inside. One 
of the glass windows has four holes drilled through it ultrasonically, through which fluid can be injected or 
withdrawn appropriately in order to drive the flow through the device. This technique allows the fabrication of 
high-aspect ratio microfluidic devices in materials amenable to use with organic solvents, able to resist defor-
mation under high pressures, and with high quality optical access so as to reduce background noise in sensitive 
flow-induced birefringence measurements. Additional details of this fabrication technique are provided in several 
previous works26,49.

Flow-induced birefringence measurement.  Flow-induced birefringence measurements are performed 
using an Exicor MicroImagerTM (Hinds Instruments, Inc., OR). For these measurements, a light emitting diode 
sends collimated monochromatic light (wavelength λ =​ 535 nm) along an optical line consisting of (a) a linear 
polarizer at 0°, (b) a photoelastic modulator (PEM) at 45°, (c) a PEM at 0° and (d) a linear polarizer at 45°. The 
sample (in this case the OSCER device containing polymer solution) is positioned on the imaging stage of the 
instrument between the two PEMs. A 5×​ objective lens is used to focus light from the midplane of the OSCER 
device onto a 2048 ×​ 2048 pixel, 12-bit CCD array (which provides a field of view ≈​ 2 ×​ 2 mm and hence a spatial 
resolution of ≈​ 1 μm/pixel). A stroboscopic illumination technique95,96 is used to determine the elements of the 
4 ×​ 4 Mueller matrix P necessary to compute the pixelwise sample retardance δ and angle of the high refractive 
index (i.e. slow) optical axis θ over the full field of view:

δ = +P P P Parc tan (( / ) ( / ) ) , (11)13 33
2

23 33
2

and

θ = . .P P0 5 arc tan( / ) (12)13 23

To compute the required elements of the Mueller matrix, the CCD camera records a total of seven frames, 
each accumulated over ≈​1 s, and each with the light source modulated in order to sample specific polarization 
states achieved within the PEM cycle96. The spatially-resolved birefringence of the sample is obtained as follows:

λδ
π

∆ =
∆

n
z2

1 ,
(13)

where Δ​z is the optical pathlength through the sample. In the case of fluid flow in the OSCER geometry, due to 
the high aspect ratio (α =​ 10) we assume two-dimensional flow and equate Δ​z with the depth of the geometry, d.
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Flow velocimetry.  Micro-particle image velocimetry (μ-PIV) is performed by seeding the test fluids with 
2 μm diameter fluorescent melamine resin tracer particles (MF-FluoOrange-1240, microParticles GmbH, 
Germany) with excitation/emission wavelengths of 560/584 nm. The particle concentration in the test fluid is 
cp ≈​ 0.02 wt.%. The imaging system consists of a 1280 ×​ 800 pixel, CMOS camera (Phantom Miro M310, Vision 
Research Inc., NJ), capable of acquiring image pairs for PIV analysis at up to 1600 Hz, and an inverted microscope 
(Nikon Eclipse TE 2000). A 4×​, NA  =​  0.13 numerical aperture objective is used to focus on the midplane of the 
flow geometry. The resulting measurement depth over which microparticles contribute to the determination of 
the velocity field is δ µ≈z 160 mm

97, or ≈​ 0.08d. The fluid is illuminated by a dual-pulsed λ =​ 527 nm Nd:YLF 
laser (Terra PIV, Continuum Inc., CA) with pulse width δ <t 250 ns. The fluorescent seed particles are excited by 
the laser light and emit at a longer wavelength. The reflected laser light is filtered out with a G-2A epifluorescent 
filter, so that only the light emitted by fluorescing particles is imaged on the light sensor array. Images are captured 
in pairs with a time separation Δ​t that is adjusted for each applied flow rate in order to always achieve an average 
particle displacement of approximately four pixels, optimal for subsequent PIV analysis. At each imposed flow 
rate, image pairs are captured at rates of both 4 and 10 Hz over a period of 30 s. The standard cross-correlation PIV 
algorithm (TSI Insight 4G software), with interrogation areas of 32 ×​ 32 pixels and Nyquist criterion, is used to 
analyze each individual image pair to obtain sets of time-resolved flow fields. Tecplot Focus software (Tecplot Inc., 
WA) is used for further analysis of the velocity vector fields, i.e. to extract velocity profiles, perform averaging of 
flow fields, and to generate contour plots and streamline traces.
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