
Voting-Based Cancer Module Identification by
Combining Topological and Data-Driven Properties
A. K. M. Azad, Hyunju Lee*

School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju, South Korea

Abstract

Recently, computational approaches integrating copy number aberrations (CNAs) and gene expression (GE) have been
extensively studied to identify cancer-related genes and pathways. In this work, we integrate these two data sets with
protein-protein interaction (PPI) information to find cancer-related functional modules. To integrate CNA and GE data, we
first built a gene-gene relationship network from a set of seed genes by enumerating all types of pairwise correlations, e.g.
GE-GE, CNA-GE, and CNA-CNA, over multiple patients. Next, we propose a voting-based cancer module identification
algorithm by combining topological and data-driven properties (VToD algorithm) by using the gene-gene relationship
network as a source of data-driven information, and the PPI data as topological information. We applied the VToD algorithm
to 266 glioblastoma multiforme (GBM) and 96 ovarian carcinoma (OVC) samples that have both expression and copy
number measurements, and identified 22 GBM modules and 23 OVC modules. Among 22 GBM modules, 15, 12, and 20
modules were significantly enriched with cancer-related KEGG, BioCarta pathways, and GO terms, respectively. Among 23
OVC modules, 19, 18, and 23 modules were significantly enriched with cancer-related KEGG, BioCarta pathways, and GO
terms, respectively. Similarly, we also observed that 9 and 2 GBM modules and 15 and 18 OVC modules were enriched with
cancer gene census (CGC) and specific cancer driver genes, respectively. Our proposed module-detection algorithm
significantly outperformed other existing methods in terms of both functional and cancer gene set enrichments. Most of the
cancer-related pathways from both cancer data sets found in our algorithm contained more than two types of gene-gene
relationships, showing strong positive correlations between the number of different types of relationship and CGC
enrichment q-values (0.64 for GBM and 0.49 for OVC). This study suggests that identified modules containing both
expression changes and CNAs can explain cancer-related activities with greater insights.
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Introduction

Cancer is a common genetic disease and a worldwide leading

cause of death. Cancer genomics identifies changes of genes that

play important roles in cancer initiation and progression. Decades

of research have revealed that cancer is closely related to abnormal

changes in regulatory and signaling pathways during its growth

and malignance [1,2]; such dysregulations in key pathways occur

due to combinations of genetic alterations and expression changes

of oncogenes or tumor suppressor genes [3–5]. Therefore, many

algorithms have been developed to identify pathways related to

cancer [6–9] using DNA CNAs, GE changes, PPIs, and so on.

Extensive uses of GE for studying molecular pathways have

helped in classifying cancer subtypes, predicting prognosis, and

developing drugs for cancer. However, using only GE data for

identifying cancer-related genes is not enough because some

important genes in cancer-related pathways might not be

differentially expressed and some differentially expressed genes

might not be relevant to cancer. CNAs are structural variations of

DNA sequences that represent abnormal copies of DNA segments

in a form of deletion or amplification in the cell [10]. CNAs are

known to be a hallmark of cancer, and methods including GISTIC

[11], RAE [12], and WIFA [13] have been used to detect cancer-

driver genes in aberrant genomic regions. A recent large-scale

analysis of GBM samples from The Cancer Genome Atlas

(TCGA) [8] showed genetic alterations including mutations,

deletions, and amplifications of DNA in 78%, 87%, and 88% of

206 GBM samples in the core components of RB, TP53, and

RTK/PI3K pathways, respectively.

Several studies have recently reported the importance of

integrating CNAs and GE data sets for the identification of

cancer-related pathways. TCGA research on ovarian cancer

showed that genetic alterations and gene expression changes

simultaneously occur in the retinoblastoma signaling pathway

[14]. Jörnsten et al. [15] developed a model that explains the

effects of CNAs on GE in a large-scale network. Based on the

model, prognostic scores were calculated and cancer-related genes

were identified. Akavia et al. [16] employed an integrative

Bayesian approach to identify biologically and therapeutically

important driver genes in genetically altered regions by associating

candidate driver genes with differentially expressed genes. They

applied the proposed method to a melanoma data set and

identified known driver genes in melanoma, along with novel

cancer driver genes TBC1D16 and RAB27A. An important
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progress in combining CNAs and GE is analyzing genes as a

module rather than as individual genes. Witten et al. [17] applied

canonical correlation analysis for integrating CNAs and GE. This

method links CNA modules with GE modules and optimizes

CNA-GE interactions.

In constructing modules or subnetworks, PPIs have been used as

prior information to incorporate connectivity among genes.

Cerami et al. [9] proposed a method to construct subnetworks

containing a significant number of mutated genes using human

PPIs and to identify pathways that are related to GBM. Chuang

et al. [6] proposed an approach of integrating PPIs and GE data

sets to identify subnetwork markers that classify metastatic and

non-metastatic tumors.

We propose a computational framework to incorporate CNA-

CNA, CNA-GE, and GE-GE relationships to protein interaction

network to identify cancer-related modules in which genetic

changes of genes are explained by these relationships. Although

the GE-GE relationship has been studied for decades [18–20],

CNA-CNA [21–23] and CNA-GE [7,24–27] relationships have

only been recently studied. It is observed that amplifications and

deletions of DNA segments can affect expression levels of genes in

the same location, as well as distantly located genes [25]. This

trans-located association between CNA and GE can be one of the

mechanisms explaining complicated relationships between genes

in the signaling and regulatory pathways. To incorporate these

complex relationships, we construct a gene-gene relationship

network using differentially expressed and significantly copy

number altered genes in paired data sets containing both DNA

and RNA data on the same set of patients. Then, we also

incorporate PPI information to exploit prior functional depen-

dencies between genes. We used a voting approach to find

representative genes that are strongly related to other genes

through associations among CNAs, GE, and PPIs. These

representative genes are used to construct pre-modules by

including strongly related genes. Then, pre-modules are merged

with other pre-modules that have statistically significant associa-

tions through CNAs, GE, and PPI relationships, and final modules

are generated.

The proposed approach was applied to GE and CNAs data of

GBM and OVC samples from TCGA to identify cancer-related

modules. The identified modules were assessed in two aspects:

their functional coherence and relevance to cancer. To test that

the modules are composed of functionally coherent genes, we

applied functional enrichment tests using KEGG [28], BioCarta

pathways [29], and GO biological process [30]. To test that the

generated modules are related to cancer, we first selected cancer-

related pathways from these three categories of pathways. Since

there is still no consensus about which pathways or functional

terms are related to cancer, we consider that a pathway is related

to cancer if it is significantly enriched with cancer-related genes

from a cancer gene census (CGC) [31]. Then, we applied

enrichment tests using these cancer-related pathways. Our results

showed that cancer-related pathways were enriched with our

identified modules in both GBM and OVC data sets, and that a

significant number of genes in the modules were associated with

others through CNA-CNA, CNA-GE, and GE-GE relationships.

Results

A Framework for Combining Topological and Data-
driven Properties

We developed the VToD approach to construct modules that

are composed of a set of functionally coherent and cancer-related

genes. VToD was developed based on four main ideas; (i) genes

with similar gene expression profiles and copy number changes are

more likely to be in the same module, (ii) genes can be assigned

into multiple modules to reflect the biological knowledge that some

genes are involved in multiple pathways, (iii) genes in a short

distance in the PPI network are more likely to belong to the same

module, and (iv) hub genes in the PPI network are more likely to

be included in the modules since many hub genes having a large

number of interacting partners may contribute to cancer

development. The former two ideas consider data-driven proper-

ties and the latter two reflect topological properties of genes within

the PPI network.

The schematic diagram of our proposed VToD method is

shown in Figure 1. VToD constructs a gene-gene relationship

network, GGR : ~(S,R) by integrating GE and CNA data sets,

where S is a set of seed genes and R is a set of gene-gene

relationships. Seed genes are selected by combining differentially

expressed (DE) genes and CNA genes, where CNA genes are

obtained from TCGA [8,14] and listed in Table S1. For GBM,

4,821 seed genes were selected by combining 2,976 DE genes and

2,073 CNA genes. For OVC, 6,649 seed genes were constructed

by 710 DE genes and 6,510 CNA genes. Note that some seed

genes are both differentially expressed and copy number altered.

The gene-gene relationships R were constructed, where two genes

have strong correlation in at least one of three types of

relationships: GE-GE, CNA-GE, and CNA-CNA. Then, VToD

integrates a PPI data set with the gene-gene relationship network

GGR by following four major steps.

1. Calculate the association between genes: For every two genes g and m,

an association value from gene m to gene g is calculated by

combining the gene-gene relationship and the PPI data set.

The association value is called a vote-value in this study, since

we assume that gene m votes for gene g to represent the

strength of the association between two genes.

2. Select representative genes of each gene: For gene g, vote-values from

all other genes are sorted in descending order, and genes

located within the top vote th% of the vote-values are selected

as the representative genes of the gene g.

3. Form pre-modules: If a gene m is selected as a representative gene

from multiple genes, other genes selecting the gene m as the

representative gene along with the gene m itself form a pre-

module.

4. Merge pre-modules: Two pre-modules are merged if pairwise

members of the two pre-modules are highly related in the gene-

gene relationship network and are closely connected in the PPI

network.

The VToD algorithm is inspired by a dynamic signal

transduction system (STM) algorithm [32] in which, for each

gene, the most associated genes are selected to form pre-modules

based on the PPI topology only. However, the clear distinction lies

between STM and VToD in the process of (i) calculating the

association between two genes and (ii) merging pre-modules, since

our approach integrates GE, CNAs, and PPI data sets.

The constructed modules were assessed in two aspects; (i) we

measured functional relevance of the identified modules by testing

whether genes in a module were enriched for KEGG, BioCarta

pathways, and biological processes in GO terms (called a

functional enrichment test), and (ii) we assessed the relevance of

the modules to cancer by applying an enrichment test to the

cancer-related pathways or cancer-related biological functions,

which are subsets of the above three categories of pathways/GO

terms enriched with cancer-related genes from CGC [31] (called a

cancer-related pathway enrichment test). Further, we tested
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whether genes in the identified modules were enriched with cancer

genes from CGC, GBM driver genes [33], and OVC-related genes

[34]. In these assessments, the hypergeometric statistics were used

for the enrichment test.

Modules from the VToD Algorithm
The distributions of all enumerated pairwise gene-gene

relationships (GE-GE, CNA-GE, and CNA-CNA) among seed

genes are shown in Figure S1, and the distributions of all vote-

values for GBM and OVC data sets are shown in Figure S2. Since

the number of pre-modules depends on the vote th% values in

Step 2 of the VToD algorithm, we tried three vote th values to

examine how vote th values affect on the constructed pre-

modules. Vote-values of the top 1%, 0.25%, and 0.1% eventually

yielded 100, 68, and 43 pre-modules for GBM, and 138, 53, and

34 pre-modules for OVC. Then, we applied the functional

enrichment tests and cancer-related pathway enrichment tests to

pre-modules generated using the three threshold values above.

Figure 2 shows the fraction of enriched pre-modules; although

many pre-modules have significant overlaps with known pathways

across all three thresholds, pre-modules from vote th = 0.25% and

0.1% have more overlaps with the pathways compared to vote th
= 1%, showing that higher vote-values generate higher fraction of

functionally relevant and cancer-related modules.

We also tested the importance of considering both topological

and data-driven properties for pairwise vote calculation. We

generated pre-modules using only topological and only data-

driven properties. When the single property was used, the same

number of gene pairs was selected with that of gene pairs selected

by combining both properties for each value of vote th. Across all

three values for the vote th threshold, the fraction of functionally

enriched modules was higher when topological and data-driven

properties were combined than when only a single property was

used for both GBM and OVC, as shown in Figure 2.

We chose vote th = 0.1% as a threshold for further analysis.

Using this threshold, for GBM, 43 pre-modules were obtained. By

merging these pre-modules, 22 modules were generated, and the

average number of genes in the modules was 24. For OVC, using

the same threshold, 34 pre-modules were generated, and 23

modules were obtained after merging pre-modules, where the

average of number of genes is 57. All genes in the modules are

listed in Table S2 and Table S3. The statistical significance of the

identified modules is shown in Figure S3.

Since the VToD algorithm allows multiple appearances of genes

in several modules, we calculated the average ratio of common

genes between modules. For GBM, the ratio of common gene was

16.07%, which was similar to those of the KEGG and BioCarta

pathways. Also, the distribution of ratios of common genes was

calculated. Around half of the modules had ƒ 10% of common

genes, which indicates that final modules will be enriched with

distinct functional pathways or terms (Figures S4A and S4B). We

also investigated three different types of direct relationships (GE-

GE, CNA-GE, and CNA-CNA) between the gene pairs within

each of these 22 GBM modules (Figure S5A). Around 64% of the

modules contained at least two types of relationships, showing (i)

that genes with similar gene expression and DNA copy number

changes are more likely to be in the same module, and (ii) that the

activity of the genes in these identified modules can be explained

by different molecular mechanisms (Table S4).

For 23 OVC modules, the average ratio of common genes was

11.68%, which was also lower than those from KEGG and

BioCarta, and more than half of the 23 OVC modules had ƒ

10% of common genes (Figures S4C and S4D). Around 83% of all

23 OVC modules (Figure S5B) contained at least two types of

direct relationships.

Cancer-related modules identified by the VToD

algorithm for GBM. We applied functional and cancer gene

set enrichment tests to 22 GBM modules. We found that 19

(86.36%), 14 (63.63%), and 20 (90.9%) modules were significantly

enriched (FDR q-value v 0.05) with at least one KEGG,

BioCarta, or GO terms, respectively, showing that identified

modules are functionally coherent. Also, 15 (68.18%), 12

(54.55%), and 20 (90.9%) GBM modules were significantly

enriched with cancer-related KEGG, BioCarta pathways, and

GO terms, respectively. In the case of the cancer gene set

enrichment test, 9 and 2 GBM modules had significant overlap

(FDR q-value v 0.05) with CGC [31] and GBM-related genes

[33], respectively. These results show that our modules are related

to cancer development. Table 1 shows the summary of the top five

selected modules ordered by GBM-related gene enrichment q-

values; these modules contain many GBM-related genes. All

enrichment results for the GBM data set are shown in Tables S4,

S5, S6, and S7.

We selected GBM Module 2 to explain in detail how genes are

interacting with other genes and are involved in biological

pathways in modules. We selected this module for further

explanation since it has a low enrichment q-value with cancer

gene sets, and contains gene pairs with strong correlations in three

types of direct relationships. This module contains 1,080 gene

pairs from 48 genes, and among them there were 300 GE-GE, 9

CNA-GE, and 8 CNA-CNA direct relationships. Figure 3A shows

the network view of the GBM Module 2 with direct relationships

only. There were three types of edges in this network: i) red edges

for CNA-CNA, ii) blue edges for CNA-GE, and iii) green edges for

GE-GE relationships between two genes. Genes belonging to

significantly enriched pathways/terms were grouped together.

Information for DNA CNAs and/or expression changes for genes

were also labeled with them within each group. Frequencies of

copy number changes were presented as a percentage of 206 GBM

samples with either focal amplification or homozygous deletion in

[8]. To count the fraction of tumor samples with gene expression

changes for genei, we considered that a tumor sample s is over- or

under-expressed if the value of Dri,sD in Equation (1) belongs to the

top 10% of Dri,sD values of all tumor samples, where ts is the

expression value of a tumor sample s and �cci is the mean expression

of all control samples for the genei. Based on the distributions of

Dri,sD for GBM and OVC data sets, 0.4 was selected for GBM and

0.365 for OVC.

ri,s~log2

ts

�cci

� �
ð1Þ

A manual literature survey provided supportive evidence for the

direct relationships in GBM Module 2. Genes in MAPK1-

MAPK3, MAPK3-MAPK9, and MAPK1-MAPK9 pairs are

involved in various cancer- and GBM-related pathways, including

MAPK signaling, ERBB signaling, focal adhesion, and Toll-like

Figure 1. A schematic of our approach. (A) Gene expressions and their paired CNA data are collected. (B) A gene-gene relationship network, GGR,
is constructed using direct and indirect relationships of GE-GE, CNA-GE, and CNA-CNA. (C) A novel algorithm, VToD, finds overlapping modules
combining the GGR network and PPI information. (D) Functional and cancer gene set enrichments are tested for identified modules.
doi:10.1371/journal.pone.0070498.g001
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receptor signaling. In BRCA2-ING1, both genes play critical roles

in cell cycle control [35,36]; ING1 is a tumor suppressor gene and

interacts with TP53, and its under-expression and genetic

rearrangement have been observed in several cancers, including

GBM [37]; and BRCA2, a tumor suppressor gene, has recently

been targeted for sensitizing glioma cells for killing by anti-cancer

drugs [38]. In BTBD2-TEP1, TEP1 is a well-known GBM

suppressor gene, and the deletion/mutation of this gene has been

observed in many cancers, including GBM [39]; polymorphism of

BTBD2 is involved in the double-strand break repair pathway that

can be useful for GBM survival [40]. In ING1-HMGB1, both

genes are located in chromosome 13q, where copy number loss

has been reported [41–43], suggesting co-occurring deletion of

these two genes. In APEX1-HIF1A and HIF1A-TEP1 having the

CNA-CNA relationship, APEX1 and HIF1A directly interact with

each other in vitro [44]; and, in GBM, copy number loss at

14q11.1-q13.1, 14q23.2-q23.3, and 14q32.33, where these genes

are located, has been reported by Donovan et al. [45]. The

relationship between 14q11.1–11.2 and 14q23.1–31.3 are also

shown in our findings of CNA-GE relationships (APEX1-BRCA1,

BRCA1-HIF1A, and BRCA1-TEP1) within this module. In

BTBD2-BARD1, BARD1 was suggested as a mediator of

apoptosis since its over-expression induces cell death [46]; and

high LOH has been detected in human carcinoma metastases to

the brain at chromosome 19p13.3 for BTBD2 [47].

Figure 3B shows enrichment tests using KEGG and BioCarta

pathways for the GBM Module 2. To find GBM-related pathways,

we also calculated the q-values for the enrichment of GBM-related

genes in these pathways, respectively. In Figure 3B, the top 15 of

37 enriched KEGG and the top 15 of 49 enriched BioCarta

pathways are shown for the GBM Module 2, along with their

corresponding overlapping q-values, sorted by those q-values.

GBM Module 2 contains many previously known GBM-related

KEGG pathways including Glioma, P53 signaling, MAPK

signaling, ERBB signaling, mTOR signaling, and VEGF signaling,

and GBM-related BioCarta pathways, including ATM, G2, G1,

RB, P53, PTEN, and MET pathways [48]. GBM Module 2 is also

enriched with cancer-related 40 KEGG, 48 BioCarta pathways,

and 92 GO terms.

We also tested the relevance of GBM Module 2 with cancer

using CGC and GBM-related genes, as shown in Figure 3C. GBM

Module 2 contained 10 CGC genes of TP53, BRCA1, BRCA2,

DAXX, DDX5, MDM2, MDM4, NPM1, TEP1, and WRN,

resulting in a q-value of 1.05|10{09, and 2 GBM-related genes of

TP53 and TEP1, resulting in a q-value of 1.02|10{02.

Cancer-related modules identified by the VToD

algorithm for ovarian cancer. Among 23 OVC modules, 22

(95.65%), 18 (78.26%), 23 (100%), 15 (65.22%), and 18 (78.26%)

modules were significantly enriched (FDR q-value v 0.05) with at

least one KEGG, BioCarta pathways, GO terms, CGC [31], or

OVC-related gene sets [34], respectively. Also, 19 (82.61%), 18

Figure 2. Comparative functional enrichments of pre-modules generated using different vote thresholds. (A) is for GBM and (B) is for
OVC. Bars represent fractions of modules enriched with KEGG, BioCarta, GO biological process, cancer-related KEGG, cancer-related BioCarta, cancer-
related GO biological process, and cancer gene census (CGC) for three different vote thresholds. Additionally, in each case, vote-values were
computed using only topological properties, using only data-driven properties, and by combining them to compare their individual effects on
performance. The numbers of genes (nGS) in each pre-module set are shown correspondingly.
doi:10.1371/journal.pone.0070498.g002
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(78.26%), and 23 (100%) OVC modules were significantly

enriched with cancer-related KEGG, BioCarta, and GO terms,

respectively. Table 2 shows the summary of five selected modules

ordered by OVC-related gene set enrichment q-values. All

enrichment results for the OVC data set are shown in Tables

S8, S9, S10, and S11.

We investigated OVC Module 8 in detail, as shown in Figure 4;

it contains 629 gene pairs of 37 genes, and among them there were

2 GE-GE, 28 CNA-GE, and 49 CNA-CNA direct relationships. In

OVC Module 8, STAT5B-STAT3 gene pair is activated in

ovarian cancer [49], interacts with each other [50], and is involved

in many pathways including Jak-STAT signaling, RAS signaling,

Chemokine signaling, EGF, IL10, PDGF, and TPO pathways. In

STAT5B-PRLR, both genes are involved in Jak-STAT signaling,

a signal transduction pathway with key control over proliferation,

differentiation, and survival of mammary cells [51]. Recently, it

has been shown that PRLR and its downstream STAT5B are

acetylated by CREB-binding protein (CBP) [52]. In EGF-STAT1

and EGF-STAT3, both gene pairs are involved in pancreatic

cancer, EGF pathway, and signal transduction pathway; both

STAT1 and STAT3 are activated by the Jak kinase in response to

EGF [53–55], where JAK2/STAT3 signaling is required for EGF-

driven ovarian cancer [55]. In PIK3R1-IGF1R, these genes

interact with each other [56] and are involved in many functional

pathways, including the IGF1, IGF1R, HDAC, BAD,

IGF1MTOR, and focal adhesion pathways. In ERBB2-STAT,

these genes are involved in pancreatic cancer and signal

transduction pathways; the correlation between the activation of

ERBB2 and STAT3 has been observed in many human tumors

[57,58]. In ERBB2-STAT5B, both genes interact with JAK2

[59,60] and are involved in ERBB signaling and signal transduc-

tion pathways. In EGF-ERBB2, these genes directly interact with

each other [61] and are involved in many cancers, including

pancreatic, endometrial, prostate, bladder and ovarian cancers.

They are also involved in ERBB signaling and focal adhesion

pathways. In HRAS-FYN, these genes interact with each other

in vitro [62] and are involved in many pathways, such as focal

adhesion, axon guidance, T-cell receptor signaling, and FC epsilon

RI signaling, ECM, TCR, and integrin pathways.

The top 15 of 37 enriched KEGG and top 15 of 59 enriched

BioCarta pathways are also shown for OVC Module 8 in

Figure 4B. It includes known OVC-related KEGG pathways,

such as focal adhesion, JAK-STAT signaling, ERBB signaling,

cytokine-cytokine receptor interaction, chemokine signaling and

VEGF signaling, and OVC-related BioCarta pathways, such as

AKT signaling, IL6, RAS, EGF, IGF1, PDGF, VEGF, CXCR4,

and HER2 pathways [34]. We also tested the relevance of the

OVC Module 8 to cancer. OVC Module 8 was enriched with 39

KEGG, 58 BioCarta pathways, and 49 GO terms, which were

cancer-related subsets of the original pathways/terms. Also, as

shown in Figure 4C, the OVC Module 8 contained 7 CGC genes

(PTPN11, AKT1, ERBB2, FOXO1, HRAS, LIFR, and PIK3R1)

Table 1. Summary of functional and cancer gene set enrichments for selected GBM modules (sorted by driver gene set
enrichment).

Module ID
(Size)

# of enriched
pathways a,b,c

& cancer-related
pathwaysd,e,f

% of gene-
gene direct
relationsx,y,z

# of CGC & GBM
genes (q-values) Enriched cancer genes in modules `

12 31, 40, 51 26.67% 4 (9.15|10{06) EGFR,RB1,SMAD4,

(10) & 6.67% 3 (2.0|10{06) TP53

34, 37, 57 6.67%

2 37, 49, 73 26.59% 10 (1.05|10{09) TP53,BRCA1,BRCA2,

(48) & 0.79% 2 (1.02|10{02) DDX5,MDM2,MDM4,NPM1,

40, 48, 92 0.71% DAXX,TEP1,WRN

17 29, 54, 26 41.82% 3 (4.98|10{04) JAK2,EGFR,RAF1

(11) & 3.64% 1 (5.61|10{02)

37, 52, 38 1.82%

8 30, 39, 42 30.64% 6 (4.95|10{06) EGFR,CBLC,FAS,JAK2,

(33) & 1.33% 1 (1.32|10{01) MET,MYC

34, 37, 52 3.79%

1 30, 49, 21 24.51% 6 (6.91|10{05) APC,BRAF,EGFR,

(55) & 1.62% 1 (1.8|10{01) PPP2R1A,RAF1,WT1

37, 37, 24 0.54%

aKEGG,
bBioCarta,
cGO Term;
d cancer-related subset of KEGG,
ecancer-related subset of BioCarta,
f cancer-related subset of GO Term;
xGE-GE,
yCNA-GE,
zCNA-CNA relationships;
{Gene symbols in bold text are GBM-related genes; the remainings are CGC genes.
doi:10.1371/journal.pone.0070498.t001
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with a q-value of 2.08|10{07 and 6 OVC-related genes (EGF,

EPHA2, ERBB2, PIK3R1, STAT3, and VEGFA) with a q-value

of 5.23|10{10. These results suggest that our identified modules

from the OVC data set represent cancer-related pathways.

Comparing VToD with other Methods
Table 3 shows performance comparisons between our proposed

VToD algorithm and other clustering methods using GBM and

OVC data sets; when compared to these algorithms, a higher

fraction of VToD modules were functionally enriched than

Figure 3. Analysis of GBM Module 2. (A) A network view of GBM Module 2 using only direct relationships, drawn by Cytoscape [70]. Genes were
grouped together based on the overlap with BioCarta pathways, and the percentages of samples with CNAs and GE changes are shown. CGC genes
are colored in olive and GBM genes are in purple. Cytoband and Amp/Del (or Alteration-Expression Changes) information for CNA-CNA (or CNA-GE)
pairs are shown in the inset table. (B) Pathway enrichment tests with KEGG and BioCarta pathways for this module are shown. Blue bars indicate the
enrichment q-values of pathways and red bars indicate the overlap q-values between the pathway and GBM driver genes. Black vertical bars show q-
value threshold, 0.05, and the width of the horizontal bars depends on log10(q-value). (C) Red bars show the overlapping q-value with CGC and GBM
driver genes.
doi:10.1371/journal.pone.0070498.g003

Table 2. Summary of functional and cancer gene set enrichments for selected OVC modules (sorted by driver gene set
enrichment).

Module ID
(Size)

# of enriched
pathwaysa,b,c

& cancer-related
pathwaysd,e,f

% of gene-
gene direct
relationsx,y,z

# of CGC & OVC
genes (q-values) Enriched cancer genes in modules`

4 41, 54, 102 0.67% 16 (2.60|10{10) AKAP9,AKT1,APC,CDH1,

(182) & 3.05% 11 (8.83|10{13) CDKN2A,ERBB2,ERC1,HRAS,

45, 47, 108 1.05% MLLT4,MYC,NF1,PAFAH1B2,

PIM1,RAD1,SRGAP3,ZBTB16,

AURKA} ,CCNE1} ,CDKN1A} ,

DAB2 } ,ICAM1} ,PRKCI } ,SFN }

10 48, 92, 82 0.23% 11 (1.95|10{11) AKT1,CARD11,FOXO1,FOXO3,

(51) & 2.59% 7 (6.48|10{11) JUN,MAP2K4,MYC,PIK3R1,

50, 82, 88 9.96% PTEN,PTPN11,TSC1,VEGFA} ,

CDKN1A} ,EGF } ,ICAM1 }

8 37, 59, 41 0.3% 7 (2.08|10{7) PTPN11,AKT1,ERBB2,FOXO1,

(37) & 4.2% 6 (5.23|10{10) HRAS,LIFR,PIK3R1,EGF } ,

39, 58, 49 7.36% EPHA2 } ,STAT3 } ,VEGFA}

6 41, 23, 128 4.27% 26 (3.78|10{17) AKAP9,APC,ATM,BUB1B,

(253) & 4.27% 9 (5.65|10{9) CBL,CDKN2A,CREBBP,CRTC3,

38, 23, 122 8.07% ERBB2,ERC1,EZH2,FGFR1OP,

FOXO3,HSP90AB1,KLF6,MLLT4,

MYC,NF1,NPM1,PAFAH1B2,

PIM1,PTEN,SRGAP3,THRAP3,

TSC1,ZBTB16,BCL2L1} ,BIRC5 }

DAB2 } ,WWOX }

1 47, 95, 95 0.05% 11 (1.78|10{10) PIK3R1,ABL1,AKT1,CBL,

(63) & 1.74% 6 (8.77|10{9) CCND3,HRAS,JAK1,MAP2K4,

47, 86, 92 1.05% PTEN,PTPN11,RB1,BCL2L1} ,

EGF} ,STAT3} ,VEGFA}

aKEGG,
bBioCarta,
cGO Term;
d cancer-related subset of KEGG,
ecancer-related subset of BioCarta,
f cancer-related subset of GO Term;
xGE-GE,
yCNA-GE,
zCNA-CNA relationships;
{Gene symbols in bold text are OVC-related genes; the remainings are CGC genes.
doi:10.1371/journal.pone.0070498.t002
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modules from other algorithms. Although the functional enrich-

ment of DFM-CIN modules is comparable to those of VToD,

VToD identified a higher fraction of modules encriched with

cancer-related pathways than DFM-CIN. Note that, since

algorithms were designed for different data types, they were

compared using data types in the original paper. For a hierarchical

clustering method, GE, CNAs, and PPI data sets were integrated.

N Hierarchical clustering: To find modules by the hierarchical

clustering algorithm, we converted our gene-gene relationship

network GGR into a distance matrix using the topological

overlap metric [63] of the WCGNA tool in the R

computational suite. This distance matrix was then used for

hierarchical clustering with the average linkage. The dendro-

gram of the cluster was cut by a dynamic tree-cut [64]

algorithm, finally producing 216 modules when the GBM data

set was used. We applied functional and cancer gene set

enrichment tests with these 216 modules. We found 14, 0, and

13 modules having significant overlaps with KEGG, BioCarta

pathways, and GO terms, respectively, and 4, 0, and 4

enriched modules with cancer-related subsets of KEGG,

BioCarta, and GO terms, respectively. Also, 5 and 1 modules

were enriched with CGC- and GBM-related genes (Table

S12). Table 3 shows the comparative performance between

hierarchical clustering and VToD algorithms, showing that

VToD identified more pathway-enriched modules than the

hierarchical clustering algorithm (Table S13). Moreover,

Figure S6A shows the box plot of CGC and GBM driver

gene enrichment q-values, indicating higher cancer gene

enrichments in VToD compared to hierarchical clustering.

Also, the pie charts in Figure S6B show different combinations

of three types of direct relationships (CNA-CNA, GE-CNA,

GE-GE). Here, VToD produced a larger fraction of modules

containing more than one type of direct relationships

compared to hierarchical clustering.

N Cerami et. al.: Cerami et al. [9] developed an algorithm to

integrate DNA copy numbers, somatic mutation, and PPI data

sets, and applied it to 84 TCGA GBM data [8]. In their study,

altered genes were identified using RAE [12], and a network of

genes were constructed based on PPI information using an

edge-betweenness algorithm [65], resulting in 10 overlapping

modules. When functional and cancer gene set enrichment

tests were conducted for these modules, one, one, and three

modules were significantly enriched with at least one KEGG,

BioCarta pathways, and GO terms, respectively, and 2, 1, and

2 modules were significantly enriched with cancer-related

subsets of these three categories of pathways. Also, 2 and 2

modules were significantly enriched with CGC- and GBM-

related gene sets, respectively.

N MATISSE: MATISSE [66] integrates gene expression and

PPI data sets to find modules, where the apprearance of genes

im multiple modules is allowed. We applied MATISSE to both

GBM and OVC data sets. Front nodes were filtered based on

maximum/minimum fold changes with the 1,000 highest-

ranking patterns. Parameters were set as follows: ‘best

neighbor seeds’,‘logistics priors as prior regulation’, beta

= 0.95 (default), minimum seed size = 5 (default), maximum

seed size = 50 (default), and CC = Dot Product (Pearson); and

the maximum/minimum sizes of the final clusters were set to

ensure that similar numbers of genes were found in the final

clusters as those from VToD. Thereupon, we found 34 GBM

and 15 OVC modules using the MATISSE method, where 14,

12, 12, 3, and 0 GBM modules and 9, 8, 4, 7, and 2 OVC

modules were significantly enriched with KEGG, BioCarta

pathways, GO terms, CGC, and cancer type specific gene sets,

respectively. Also, enrichment tests of these 34 GBM and 15

OVC modules showed that 4, 1, and 1 GBM modules, and 3,

1, and 0 OVC modules were significantly enriched with

cancer-related subsets of KEGG, BioCarta pathways, and GO

terms, respectively.

N DFM-CIN: The DFM-CIN [67] method identifies protein

complexes and functional modules by combining gene

expression and PPI data sets. In their paper, DFM-CIN was

compared to and outperformed five other clustering algo-

rithms. Using GBM and OVC data sets, we first applied a

TSN-PCD method (sub-method) to find subnetworks using the

expression threshold = 0.7, l = 1.0 and a minimum complex

size of 3 for both GBM and OVC data sets. Next, we applied a

DFM-CIN method to detect functional modules based on

those subnetworks using similarity threshold = 0.4, a mini-

mum module size of 3 (for GBM) and of 15 (for OVC), and a

maximum module size of 69 (for GBM) and of 252 (for OVC).

These parameters were set to produce modules comparable to

VToD in terms of the number and size of the modules. Finally,

we found 24 GBM and 27 OVC modules. Out of these

modules, 21, 15, and 24 GBM modules, and 24, 17, and 27

OVC modules had significant overlap with KEGG, BioCarta

pathways, and GO terms, respectively. Also, out of these

modules, 5, 4 and 13 GBM modules, and 9, 5 and 10 OVC

modules were significantly enriched with cancer-related

subsets of these three categories of pathways. Also, 7 GBM

modules and 8 OVC modules were enriched with CGC genes,

and no modules were enriched with GBM- or OVC-related

gene sets.

N ClusterONE: ClusterONE [68] detects clusters in PPI

networks with the expansion of overlapping neighborhoods.

We applied ClusterONE over our PPI data set with default

parameter settings and found 210 clusters of genes. The similar

enrichment tests yielded 114, 74, 119, 38, 7, and 17 clusters

with significant overlaps with KEGG, BioCarta pathways, GO

terms, CGC, GBM- and OVC-related genes, respectively.

Also, 100, 72, and 116 clusters were significantly enriched with

cancer-related subsets of KEGG, BioCarta pathways, and GO

terms, respectively.

DFM-CIN [67] was comparable to VToD and outperformed

other competing methods in functional enrichment tests for both

GBM and OVC data sets. However, VToD outperformed all

other methods in terms of cancer gene set enrichment tests and

cancer-related pathway enrichment tests for both GBM and OVC

data sets, indicating that identified modules were more likely to be

related to the cancer. The numbers of distinct pathways or

functional terms enriched for VToD modules were comparable to

DFM-CIN and greater than those of other methods, showing the

convincing performance of our algorithm. All distinct enriched

pathways or terms found by the above methods, including VToD

Figure 4. Analysis of OVC Module 8, with a description similar to that of Figure 3. (A) A network view of OVC Module 8 using only direct
relationships. CGC genes are colored in olive and OVC-related genes are in purple. (B) Pathway enrichment tests tests were similar to those in
Figure 3(B), but here, red bars indicate the overlapping q-values between the pathway and OVC-related genes. (C) Red bars show the q-values that
overlap with those of the CGC- and OVC-related genes.
doi:10.1371/journal.pone.0070498.g004
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for both GBM and OVC data sets, are shown in Tables S13 and

S14, respectively.

Discussion and Conclusions

We proposed the voting-based module construction approach

by integrating three direct relationships (GE-GE, CNA-GE, and

CNA-CNA), along with indirect relationships and PPI informa-

tion. We have shown that our relationship network by integrating

GE-GE, CNA-GE, and CNA-CNA types can be useful for giving

explainable relationships between genes in identified modules

since most of the modules contained different types of relation-

ships; by observing CGC enrichment result, all 9 GBM modules

and 14 of 15 OVC modules constructed by the VToD algorithm

contain at least two types of direct relationships, implying that GE

changes and CNAs occur simultaneously in cancer modules. This

conclusion was further confirmed when we found that the

numbers of different types of direct relationships in modules had

strong a positive correlation with CGC enrichment q-values (0.64

for GBM and 0.49 for OVC) and module sizes (0.67 for GBM and

0.52 for OVC).

In this study, we combined both data-driven and topological

properties throughout the whole algorithm, from constructing pre-

modules to merging pre-modules. However, our approach has

limitations in combining these two properties. When we combined

the data-driven and topological properties to calculate vote-values

among gene pairs, we integrated them using the same weights (see

Equation (4) in the Methods section), although the distribution and

the contribution of each property might be different. For further

investigation, we drew distributions of topological values and data-

driven values of gene pairs contained in the pre-modules of GBM,

as shown in Figures S7A and S7C, respectively. The distributions

of these two values were different; a Kolmogorov-Smirnov (K-S)

test under the null hypothesis that two distributions are identical

gives a p-value of 2.2e-16. Similar results were observed in OVC,

as shown in Figures S7B and S7D. However, when we drew

scatter plots of data-driven property values and topological

property values of gene pairs included in the GBM and OVC

pre-modules (Figures S7E and S7F), one property was not

dominated by the other property. In many gene pairs, one of

two properties had a relatively larger value while the other had

relatively smaller value, showing negative correlations between

them (20.550 for GBM and 20.259 for OVC). This observation

showed that both properties were significantly contributing to

constructing pre-modules.

When we combined the data-driven and topological properties

to merge two pre-modules, we also integrated them using the same

weights (see Equation (5) in the Methods section). Distributions of

topological values and data-driven values of all pairs of pre-

modules are different (Figure S8). One interesting observation is

that most pairs of pre-modules have value one for the topological

property for both GBM and OVC data sets, as shown in Figures

S8A and S8C, respectively. Consequently, most merged pre-

modules have value one for the topological property (Figures S9A

Table 3. Comparing VToD to other methods.

Methods
Data sets
used

Cancer
types

# of
modules

# of functionally
enriched modulesa,b,c

# of enriched modules
with subset of
pathways or termsd,e,f

# of # distinct
pathways or
functional terms"

# of cancer gene
enriched
modules{,`

Hierarchical
Clustering

GE,CNA,PPI GBM 216 14 (6.48%), 0,
13 (6.02%)

4 (1.85%), 0, 4 (1.85%) 51 5 (2.31%), 1 (0.46%)

VToD GE,CNA,PPI GBM 22 19 (86.36%), 14 (63.63%),
20 (90.90%)

15 (68.18%), 12
(54.55%),
20 (90.90%)

380 9 (40.9%), 2
(9.09%)

OVC 23 22 (95.65%), 18 (78.26%),
23 (100%)

19 (82.61%), 18
(78.26%),
23 (100%)

508 15 (65.22%), 18
(78.26%)

Cerami et. al. Mutation,
CNA,PPI

GBM 10 1 (10%), 1 (10%),
3 (30%)

2 (20%), 1 (10%), 2 (20%) 68 2 (20%), 2 (20%)

MATISSE GE,PPI GBM 34 14 (41.18%), 12 (35.29%),
12 (35.29%)

4 (11.77%), 1 (2.9%),
1 (2.9%)

129 3 (8.82%), 0

OVC 15 9 (60%), 8 (53.33%),
4 (26.67%)

3 (20%), 1 (6.7%), 0 78 7 (46.67%), 2
(13.33%)

DFM-CIN GE,PPI GBM 24 21 (87.5%), 15 (62.5%),
24 (100%)

5 (20.8%), 4 (1.67%),
13 (54.17%)

429 7 (29.17%), 0

OVC 27 24 (88.89%),
17 (62.96%),
27 (100%)

9 (33.33%), 5 (18.52%),
10 (37.04%)

476 8 (29.63%), 0

ClusterONE PPI Only – 210 114 (54.29%), 74 (35.24%),
119 (56.67%)

100 (47.62%), 72 (34.29%),
116 (55.24%)

454 38 (18.09%), 7

(3.33%)a 17 (8.09%)b

aKEGG,
bBioCarta,
cGO Term;
d cancer-related subset of KEGG,
ecancer-related subset of BioCarta,
f cancer-related subset of GO Term;
}Distinct enriched pathways or terms within all modules were found depending on key terminologies; modules enriched significantly (q-value v 0.05) with {CGC genes

and {specific cancer-related genes;
awith GBM-related genes and bwith OVC-related genes.
doi:10.1371/journal.pone.0070498.t003
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and S9B for GBM and OVC, respectively), and values of the data-

driven property in those modules is also high. According to these

observations, different distributions of these two properties might

not significantly reduce the performance of the proposed

algorithm.

Our method of combining two different distributions can be

further improved; for example, (i) a distribution is transformed into

the standard normal distribution, and then (ii) the optimal

contribution weights of two distributions is searched. However, a

new weight parameter adds an additional complexity to the model.

The advantages of the current approach are parameter-less and

intuitively simple, and the comparative assessments showed that

our methods outperformed other methods in detecting cancer-

related modules.

Our primary goal in this study was to establish the relationships

among genes in cancer pathways using an integrated approach.

We hope that our research will help explain complex relationship

between genes in cancer development. Although we validated the

identified modules by using functional and cancer gene set

enrichment tests in the current study, more experiments, such as

survival analysis and the classification of normal/tumor patients,

will be part of our future work.

Materials and Methods

Data Sets
GE and CNA (level 3) data from 266 paired GBM and 96

paired OVC tumor samples were downloaded from the TCGA

data portal (as of 24 July 2011 and 25 June 2012, respectively). GE

data were measured using the Affymetrix Human Genome U133

array platform. For both cancer data sets, expression values for

12,044 genes were organized as GE data matrices, labeling rows

with gene symbols and columns with sample identifiers (Figure 1A).

DNA copy numbers were measured using Agilent’s Human

Genome CGH microarray 244A platform. To obtain gene-level

CNA values, segmented regions in the level 3 data (for both GBM

and OVC data sets) except sex chromosomes (Chr X and Y) were

mapped to gene symbols (Table S1); gene symbols were mapped to

segmented regions using refGene.txt (version hg18), downloaded

from the UCSC genome browser, and ambiguous annotations

(genes with multiple annotations) of 28 genes were manually

resolved by using either NCBI, the Encode Gencode manual, a

BLAT similarity/score (26 genes), or refGene.txt of version hg19

(2 genes). Then, CNA data matrices for both GBM and OVC data

sets were organized with the same tumor samples (columns) as in

corresponding GE data matrices, and 22,082 and 22,086 genes

(rows), respectively. Missing values in CNA matrices were imputed

with the mean across all samples. PPI information was collected

from [9], including i) manually curated interactions in HPRD

[69], ii) signaling pathways from Reactome and NCI/Nature

pathway interactions, and iii) the MSKCC Cancer Cell Map. We

further converted this PPI information into an undirected graph

with 44,959 genes as nodes and 96,347 pairwise interactions as

edges.

Constructing a Gene-gene Relationship Network
We define a gene-gene relationship network as GGR: = (S, R).

Here, S is a set of seed genes and S: = (DE | SA), where DE and

SA are sets of differentially expressed and significantly copy

number altered genes, respectively. R is the set of pairwise gene-

gene relationships among these seed genes (Figure 1B).

Seed genes. To find the DE genes in S, the two-tailed pooled

t-test was used. For the t-test, 10 and 8 unmatched normal samples

downloaded from the GBM and OVC pages of the TCGA data

portal were used as control data sets, respectively. p-values were

corrected by the Bonferroni correction method and genes with

corrected p-values below a threshold were selected. To find SA

genes in GBM, we collected the focal aberrant regions identified

by the GISTIC and RAE algorithms in [8], where a subset of

samples of our study were used (Table S3 and S4 of the original

article, respectively). In these two algorithms, focal aberrant

regions were detected to distinguish relatively short aberrant

regions containing cancer-related genes from random broad

aberrant regions. Similarly, we collected altered regions found

by GISTIC in [14] (Supplementary Table S5.2 of the original

article) for OVC. Some genes in S had only GE data, some had

only CNA data, and others had both GE and CNA data (shown in

open rectangles, open circles, and filled circles in Figure 1B,

respectively).

Relationships among gene pairs. Pairwise relationships

between genes are measured by using an absolute value of Pearson

correlation coefficient (PCC). For any gene pair (genei, genej ),

absolute PCC values from GE-GE, CNA-GE, and CNA-CNA

data are calculated depending on data availability. Since any type

of relationship between two genes might affect cancer develop-

ment, all three absolute PCCs are considered, and the maximum

of them was chosen as a potential relationship value and defined as

a r value (Figure 1B). Note that, since proximal genes on the

chromosome are frequently amplified or deleted together, gene

pairs were not considered the CNA-CNA relationship if they were

in the same focal aberrant regions or within the same cytoband.

A gene pair (genei, genej ) is included in the gene-gene

relationship R with the r value as a weight if the r value is larger

than a threshold, and the relationship is called a direct

relationship. The threshold is empirically chosen based on the

distribution of all PCC values (see the Parameter selection section

below). For each gene pair (genei , genej ) =[ R, indirect relationships

are found by searching a statistically significant simple path

between two genes. Here, the significant path between two genes is

defined as a list of other genes that gives the statistically significant

geometric mean of r values from genei to genej throughout genes

in the list compared to the geometric mean of the path in a

random PPI network. The random PPI network is generated such

that interactions between genes are randomly assigned, while the

topology of the network and expression values of genes are

conserved with those in the observed PPI network. The null

hypothesis for the statistical significance test is that the geometric

mean of r values of a simple path in the randomly generated PPI

network is greater than or equal to that of the observed path.

However, since it takes an exponential time to consider every

possible pathes between two genes, a heuristic search is developed;

paths between genei and genej are searched if two genes are

connected in the PPI graph. A breadth first search algorithm is

used to search all simple paths between two genes (genei, genej ) =[
R. Also, only the paths in which all genes have either GE, CNA, or

both types of data are considered. Since searching might yield

multiple paths, we chose the path P� with the maximum average

PPI connectivity, since genes having larger interactions with other

genes are more likely to be related to cancer (see File S1). P� is

measured by Equation (2),

P�~ max
P

1

n

Xn

i~1

deg(genei)

( )
, ð2Þ

where deg(genei) is the degree of connectivity in the PPI graph for

genei and n is the number of genes along the path P�. Before

calculating the average connectivity for the genes along the path,
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the connectivity of each gene genei is normalized with the global

maximum PPI connectivity (Equation (3)) to make the value in the

range of [0, 1].

norm deg(genei)~
deg (genei )

global max
ð3Þ

Then, the statistical significance of the path P* between genei and

genej is assessed based on the randomly generated PPI network. In

the null hypothesis mentioned above, the observed value is the

geometric mean of all pairwise r values along the path P*. If p-

value of the path P* obtained by comparing to Nrand random PPI

networks is below a threshold, the gene pair (genei, genej ) is

included in the gene-gene relationship network R as the indirect

relationship.

Module Detection: VToD
The proposed algorithm is described in Table 4, and source

codes of the VToD algorithm is provided in http://www.gcancer.

org/VToD/VToD.html.

Step 1: Calculate the association between genes. In

VToD, pairwise votes are first calculated for every pair of genes

fg,mg [ S, as shown in Equation (4), where norm deg(m) is the

normalized PPI connectivity of m using Equation (3), SPL(g,m) is

the shortest path length between two genes in the PPI graph, and

r value(g,m) is the relationship value used from our constructed

network GGR.

vote(g,m)~ norm deg(m)
SPL(g,m)

zr value(g,m) ð4Þ

Equation (4) calculates the score when a gene g chooses a gene

m as a representative gene; the score increases if (i) a gene pair

fg,mg has a high relationship r value, denoting data-driven

property, or (ii) the gene m with a high topological value is closely

interacting with the gene g in the PPI network. Hub genes in the

PPI network have more chances to be selected as representative

genes due to norm deg(m), but are controlled by the length of the

shortest path between g and m to produce functional modules

related to the gene g. We apply constraints to the shortest path

length value ƒ path th to increase the compactness of a pre-

module, and to reduce the time-complexity for searching the

shortest path. If the shortest path length between the gene g and

the gene m is larger than path th, the topological information is

not considered and the vote-value is defined using only the data-

driven value between them. Note that vote(g,m) has values

between 0 and 2 since both terms have values between 0 and 1.

Step 2: Select representative genes of each gene. After

the vote calculation, a gene m is selected as a representative gene

of a given gene g based on a local rank and a global rank. In

calculating the local rank of the gene m for the gene g, all genes in

S are ranked by descending order of vote-values to the gene g.

Then, the cumulated vote-value from the largest vote-value to the

vote-value of the gene m is calculated. If the cumulated vote-value

is within the top k% of all cumulative vote-values, the gene m is

considered a candidate representative gene of the gene g. For the

global rank, if the vote(g,m) value is located within the top

vote th% of vote-values between all gene pairs in S, the gene m is

selected as the representative gene of the given gene g. This

approach allows multiple representative genes for the gene g, and

one gene can be selected as a representative gene for multiple

genes.

Step 3: Forming pre-modules. Each representative gene m

(from Step 2) starts forming a pre-module including only itself.

Then, each module is enlarged by aggregating all genes that

selected the gene m as the representative gene. A redundant pre-

module is removed when it is a subset of other pre-modules.

Smaller pre-modules are also removed if they contain either only

two genes (including the representative gene) or all the genes

except the representative gene in the pre-module are located in the

same focal region of chromosomes.

Step 4: Merging pre-modules. In this step, two pre-modules

are merged if pairwise members of the two pre-modules are highly

related in the gene-gene relationship network and are closely

connected in the PPI network. A pairwise merging value MV(Cl ,

Cm) between any two pre-modules Cl and Cm is calculated by

Equation (5). Let the sizes of Cl and Cm be nl and nm, respectively,

and let nl ƒ nm. In the equation, the topological property between

two pre-modules (or modules) is given as the ratio of genes in Cl

having at least one protein interaction partner in Cm (inter-

connectivity: IC(Cl , Cm)). Data-driven properties are calculated as

the average of gene-gene relationship values between two pre-

modules (or modules).

MV (Cl ,Cm)~
IC(Cl ,Cm)

nl
z 1

nl|nm

P
gi[Cl

P
gj[Cm

r value(gi,gj) ð5Þ

At every merging step, two modules having the maximum

pairwise merging value, denoted as MaxPair:Value in Step 4 of

Table 4, are merged and replaced by the newly merged module in

the module set. Such merging processes continue until the

MaxPair:Value is below the threshold merging th that is decided

by comparing the merging values generated by randomized

modules (see the next section for generating a randomized

module).

Statistical Significance of the Identified Modules
The statistical significance of the identified modules is validated

by comparing them to randomized modules. To generate

randomized modules, r values of gene pairs in the gene-gene

relationship network GGR are shuffled, while the PPI network

remains unchanged, so that the topological property is discon-

nected from the data-driven property; then, using this shuffled

relationship network GGR, the whole VToD algorithm from Step

1 to Step 4 runs until a single pre-module is left. This generation of

randomized modules were repeated 100 times. Concurrently, the

observed pre-modules were merged until a single pre-module is

left. At each merging step, a pre-module pair that yields the

maximum merging value is selected, and these values for both

observed and random cases are plotted in Figures S3A and S3C,

for GBM and OVC, respectively. At each merging step, the

observed value was significantly greater than the average of the

maximum merging values in random cases, confirming that the

modules identified by the VToD algorithm are statistically

significant.

Next, to find the merging threshold merging th, the stopping

criteria of merging pre-modules, for each merging step, we

compared the maximum merging value of the observed case with

the maximum merging values of the first merging step in all 100

random cases and measured the empirical p-value (Figures S3B

and 3D for GBM and OVC data sets, respectively).
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Functional and Cancer Gene Set Enrichment
We tested whether constructed modules from both GBM and

OVC data sets were enriched with known signaling pathways or

biological functions. We used 186 KEGG pathways, 217 BioCarta

pathways, and 751 biological processes in GO downloaded from

the Molecular Signature Database (MsigDB) at the Broad Institute

(http://www.broad.mit.edu/gsea/msigdb/msigdb_index.html).

We excluded GO terms with sizes ƒ 5 and § 250 to omit too-

specific or too-general terms. Next, we selected cancer-related

subsets of pathways/terms from all pathways/terms. To find such

pathways/terms, we measured statistically significant enrichment

of cancer genes from CGC [31] in pathways/terms by applying a

hypergeometric test and by correcting the p-values using the FDR

multiple comparison correction, giving q-values. By applying q-

Table 4. The VToD algorithm.

VToD (GGR,PPI)

= ? Step1 ? =

1 for each gene g [ S

2 for each gene m [ S \ {g}

3 SPL / the shortest path length between gene g and m

4 if(SPLƒpath th) then

5 vote(g,m)~ norm deg(m)
SPL(g,m)

zr value(g,m)

6 else

7 vote(g,m)~r value(g,m)

8 end if

9 end for

10 end for

= ? Step2 ? =

11 for each gene g [ S

12 for each gene m [ S

13 Calculate a local rank and a global rank for vote(g,m)

14 rep gene listg /Select gene m whose local rank and global rank of vote(g,m) are within k% and vote th%, respectively.

15 end for

16 end for

= ? Step3 ? =

17 All PreModules / 1

18 for each gene g [ S

19 rep gene listg / List of representative genes for ‘g’

20 for each gene rep [ rep gene listg

21 if(modulerep~1) then

22 modulerep / Make a new pre-module

23 modulerep / modulerep | fgg

24 All PreModules / All PreModules | fmodulerepg

25 else

26 modulerep / modulerep | fgg

27 end if

28 end for

29 end for

30 All PreModules� / Remove Redundancy

= ? Step4 ? =

31 MaxPair / FindMaxPair(All PreModules�)

32 while(MaxPair:Value § merging th)

33 new Module / Merge two modules in MaxPair:modules

34 All PreModules� / All PreModules� \ fMaxPair:modulesg
35 All PreModules� / All PreModules� | fnew Moduleg
36 MaxPair / FindMaxPair(All PreModules�)

37 end while

doi:10.1371/journal.pone.0070498.t004
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values ƒ 0.05, 83, 139, and 338 cancer-related pathways/terms

were selected from KEGG, BioCarta pathways, and GO

biological process terms, respectively; they are listed in Table

S15. Also, cancer genes from CGC [31], GBM-related genes [33],

and OVC-related genes [34] were used to measure the cancer

gene enrichment of the identified modules.

For the enrichment analysis, a hypergeometric test was applied

to each module using the above all pathways/terms, cancer-

related pathways/terms, and cancer gene sets, giving p-values, and

q-values were obtained by the FDR multiple comparison

correction. The q-values v 0.05 was used for an enrichment

threshold. Note that q-values depend on the number of

comparisons and p-values of comparisons in the enrichment test.

Therefore, it may happen that although a module is enriched for a

pathway when the multiple comparison correction was performed

using the cancer-related subset of pathways, the module is not

enriched for the same pathway when the correction was done

using all pathways, and vice versa.

Parameter Selection
Our algorithm has following parameters: thresholds for selecting

differentially expressed genes, thresholds for r value, path th for

searching indirect relationships, k% and vote th% for selecting

representative genes, and merging th for merging pre-modules.

We used q-value v 0.05 for selecting differentially expressed genes

(Bonferroni corrected) and merging th. vote th were tested for

three different values, as shown in the Results section. However,

path th, thresholds for r value, and k% were empirically chosen

since these parameters affect the intermediate steps and are not

critical for final modules. Here, we explain these parameters in

detail.

From the distribution of three different direct relationships (GE-

GE, CNA-GE, and CNA-CNA), the top 10% of all corresponding

PCC values were selected as thresholds: 0.38, 0.165, and 0.435 for

GE-GE, CNA-GE, and CNA-CNA relationships, respectively, for

GBM (Figure S1A). By applying corresponding thresholds to the

r values between any pair of genes, 2,617,259 direct relationships

were included in the gene-gene relationship R, which was 22.53%

of 11,618,610 total gene pairs consisting of 4,821 seed genes in S.

To search indirect relationships for any pair (genei, genej ) =[ R,

the most relevant path P� was chosen after exploring all simple

paths in the PPI graph with path th = 2. The geometric mean of

pairwise r values along P� was calculated and the statistical

significance was measured over Nrand ( = 50) randomly generated

PPI networks. A gene pair (genei, genej ) having a p-value ƒ 0.05

was considered an indirect relationship and added to the gene-

gene relationship R. The 42,532 total pairs updated by indirect

relationships were 0.47% of all 9,001,351 ( = 11,618,610–

2,617,259) gene pairs.

Using an experimental setup similar to the one above, we

selected 0.295, 0.19, and 0.19 as thresholds for GE-GE, CNA-GE,

and CNA-CNA direct relationships, respectively, for OVC (Figure

S1B). Applying these thresholds to r values, we defined 5,681,333

(25.71% of all pairs) direct relationships in R, followed by updating

52,969 pairs (0.32% of all remaining pairs in R) as indirect

relationships.

To select representative genes for each gene, we needed to

decide two thresholds, k% and vote th%; the vote(g,m) value is

located (i) within the top k% of local vote-values and (ii) within the

top vote th% of global vote-values. We used k = 1 and tested three

values for vote th of the top 1%, 0.25%, and 0.1%, as mentioned

in the Results section. The distributions of all votes for the GBM

and OVC data sets are shown in Figure S2.

Supporting Information

Figure S1 Distributions of all enumerated pairwise
direct relationships among the genes in S. (A) is for

GBM data set and (B) is for OVC data set. X-axis indicates the

absolute Pearson correlation coefficient (PCC) for GE-GE, CNA-

GE and CNA-CNA relationships. For each distributions, y-axis

indicates the proportion of gene-pairs among the total number of

pair-wise relationships (GE-GE, CNA-GE, and CNA-CNA)

having corresponding PCC values. Here, we show the selection

of individual thresholds in the distribution using the arrows. For

both data sets, several peaks were observed, but we did not find

any particular reason for these peaks. Since we used a binning

approach to draw distributions, the observed peaks depend on the

bin size. For our convenience, we used the bin size of 0.01.

(EPS)

Figure S2 Distribution of pairwise voting values among
genes. (A) is for the GBM data set and (B) for OVC data set. X-

axis and y-axis show the vote-values and their corresponding

frequencies among all gene pairs.

(EPS)

Figure S3 Statistical validation of the identified mod-
ules and selection of merging th. (A) and (C) show comparison

between merging values between the observed case and 100

random cases, for GBM and OVC data sets, respectively. (B) and

(D) show p-values for merging values at each merging step, for

GBM and OVC data sets, respectively.

(EPS)

Figure S4 Module overlaps in terms of common genes.
In (A) and (C), the ratios of the number of common (overlapping)

genes among the number of genes in the module are shown in x-

axis, for GBM and OVC data sets, respectively. Frequencies of

modules with the corresponding overlapping ratio in x-axis is

shown in y-axis. In (B) and (D), the average ratios of overlapping

genes in KEGG, BioCarta, and VToD are shown for GBM and

OVC data sets, respectively.

(EPS)

Figure S5 Representation of fractions of gene pairs
having direct relationships in modules. The x-axis shows

the module ID and the y-axis shows the fractions of gene pairs

having each type of direct relationships out of all possible gene

pairs for 22 GBM modules (A) and 23 OVC modules (B). For a

particular module, there are three vertical bars; a blue vertical bar

shows the fraction for the GE-GE relationship, a red bar for the

CNA-GE relationship, and a green bar for the CNA-CNA

relationship. For a gene pair, all three types of direct relationships

can be above their corresponding thresholds. Therefore, the

fraction of each individual vertical bar in a module is at most 1.

For example, GBM module 2 has 48 genes, indicating 1,128 gene

pairs. Among 1,128 gene pairs, there are 300 (300/

1,128 = 0.2659) gene-pairs with the GE-GE relationship, 9 (9/

1,128 = 0.0079) gene pairs with the CNA-GE relationship, and 8

(8/1,128 = 0.007092) gene pairs with the CNA-CNA relationship.

(EPS)

Figure S6 Comparison between hierarchical clustering
and the VToD algorithm. (A) Box charts of CGC and GBM

driver gene set enrichments for both the hierarchical clustering

and the VToD algorithm. (B) Percentages of modules in the

hierarchical clustering and the VToD algorithm that contain

different combinations of all three types of direct relationships.

(EPS)
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Figure S7 Topological and data-driven properties used
in the vote calculation. (A) and (B) show the distributions of

topological property values of gene-pairs included in pre-modules,

for GBM and OVC, respectively. (C) and (D) show the distributions

of data-driven property values of gene-pairs included in pre-

modules, for GBM and OVC, respectively. In the inset panel, the

distribution of each property (both topological and data-driven)

values of all gene-pairs is shown. (E) and (F) are scatter plots of data-

driven property values versus topological property values of gene-

pairs included in the pre-modules, for GBM and OVC, respectively.

(EPS)

Figure S8 Distributions of topological and data-driven
properties in merging pre-modules. (A) and (C) are

distributions of topological property values of all pairs of pre-

modules, and (B) and (D) are distributions of data-driven property

values of all pairs of pre-modules, for GBM and OVC, respectively.

(EPS)

Figure S9 Topological and data-driven property values
while merging pre-modules. (A) and (B) show contributions of

both properties to calculate merging-values while merging pre-

modules for GBM and OVC data sets, respectively. Topological

properties are colored in black and data-driven properties are in

blue.

(EPS)
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