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Control and analysis of small, inaccessible to human vision changes in medical images make it possible to focus on diagnostically 
important radiological signs important for the correct diagnosis.

The aim of the study was to develop information technology facilitating the early diagnosis of diseases using medical images.
Materials and Methods. To control changes in the image, we used its transformation based on solving a particular case of the 

knapsack problem. The proposed transformation is highly sensitive to any changes in the image and provides the possibility to record 
deviations visually with high accuracy. Medical images were obtained using cone beam computed tomography.

Results. Practical evaluation of the information technology on tomograms showed the following: the transformed images of healthy 
bone tissue fragments from different parts of the jaw have similar shapes and nearly the same range of brightness. The transformed image 
of bone tissue after treatment has a shape close to that of the transformed image of healthy bone tissue. The transformed image of the 
affected bone tissue has a shape and brightness range differing from the shape and color of the transformed images of healthy bone 
tissue and bone tissue after treatment. However, transformation of medical images obtained with the Planmeca ProMax 3D Classic device 
(Finland) allows recording changes that account for less than 0.0001% of the entire image.

Conclusion. The proposed method allows human vision to capture changes as small as nearly one pixel in the transformed image, 
which is impossible with the original medical image. Increasing the color contrast of the transformed medical image makes it possible to 
reveal the structure of the analyzed medical image fragment. The proposed image transformation method can be used for early diagnosis 
of diseases and in other fields of medicine.
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Introduction

Successful treatment of many diseases is 
determined by the stage at which the diagnosis 
is made. Early diagnosis allows timely identifying the 

disease cause and, as a result, administering more 
effective treatment.

Medical digital imaging with the use of radiologic 
technologies allows noninvasive visualization of the 
internal organs of the body for clinical analysis and 
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medical intervention. However, radiologic technologies 
(fluoroscopy, radiography, X-ray computer diagnostics) 
cannot be used for early diagnosis due to the following 
circumstances:

a digital radiation detector does not allow determining 
the structure of changes in the area of interest of the 
medical image (MI);

the human organ of vision is unable to fix small 
changes in a static image [1, 2];

images obtained at different times will have systematic 
interference: it is impossible to ensure the same spatial 
position of the object under study at different times; the 
characteristics of the radiation source and its detector 
change over time.

The authors of studies [3–5] propose numerical 
modeling of biomechanical processes in medical 
practice based on models of continuum mechanics 
and numerical methods for solving the corresponding 
systems of differential equations. However, the proposed 
methods are unsuitable for early diagnosis of the 
disease for the following reasons:

the individual physical and technical parameters of 
the studied tissue of the patient’s body are unknown;

the individual characteristics of the metabolic 
processes in the studied biological tissue of the patient 
are unknown. 

The use of statistical models [6–8] to identify and 
analyze the trends of small changes in the images of 
anatomical objects is unacceptable for the following 
reasons:

insufficient knowledge of processes occurring in 
biological tissues does not allow identifying all factors 
affecting the dynamics and nature of changes in the 
studied anatomical object;

clinical methods for diagnosing a disease call for 
a visual analysis of the image of the examined organ. 
Qualitative parameters (changes in the brightness of 
individual zones, the presence of neoplasms, etc.) useful 
for identifying the stage of the disease are subject to 
statistical processing. More complex MI parameters 
such as structure are inaccessible for perception by 
human vision, but it is these parameters that can be 
most significant for early diagnosis of the disease.

Identifying MI fragments that are most significant 
for diagnosing diseases is called segmentation [9–13]. 
Segmentation rules are formed using clinical methods for 
diagnosing diseases. However, modern clinical practice 
is unable to make an early diagnosis by detecting small 
changes in MI inaccessible for perception by the human 
visual system.

The methods under consideration suggest MI 
processing to be carried out based on a priori experience 
available to humans through the senses [1, 2]. However, 
the limited possibilities of human perception do not allow 
identifying all details of disease development.

We believe that MI should be transformed in such a 
way that small changes in the image are adapted for 
human perception. Transformed MI (TMI) visualization 

will enable medical personnel to make an early diagnosis 
without involving technicians.

Analysis of the literature in this area shows that the 
topic has been insufficiently explored.

The aim of the study was to develop information 
technology facilitating the early diagnosis of diseases 
using medical images.

Materials and Methods
The transformed medical image should reveal small 

changes in the original MI that are inaccessible to human 
visual perception.

An acceptable method for transforming MI is 
described in [14]. The essence of the technique consists 
in solving a particular case of the problem of a two-
dimensional knapsack [15–18], the size of which is 
bounded (the bounded knapsack problem).

To create TMI, we considered black and white MI. The 
weight of all items of a certain type corresponded to the 
number of pixels with a certain gradation of brightness — 
from white to black.

The number of items that we “placed in the knapsack” 
corresponded to the number of brightness gradations 
in the image, which could be a random natural number, 
including the most relevant numbers for MI: 256, 
1024, and 16,384. We assumed the price of each item 
equaled 1. We carried out MI transformation on the 
basis of the theorem about the possibility of orthogonal 
arrangement of a sequence of non-overlapping 
squares whose total area is 1 in a square with an area 
equaling 2 [16–18]. We considered the number of 
pixels corresponding to a certain brightness gradation 
as the total number of MI1 pixels. Normalization of the 
pixel count for a particular brightness gradation allows 
abstracting from the image size. We interpreted each 
resulting ratio as the area of one square. The number of 
such squares is always finite since digital color palettes 
contain a finite number of colors. The sum of the areas 
of these squares is 12. The side of each square is equal 
to the square root of the ratio of the pixel count with a 
particular brightness to the total number of MI pixels. 
We assigned a particular color of a certain color model 
(CM) to each MI brightness gradation from white to black 
[19]. We assigned the selected CM colors to the squares 
placed in the square with an area equaling 2. That was 
necessary to increase the contrast of human visual 
perception of TMI. Next, we arranged the squares in 

   1This transformation of pixel counts of different brightness 
in the image is called normalization. The normalized number 
of pixels of a particular brightness has no dimensions and 
varies in the range from 0 to 1.

2The sum of pixel counts corresponding to different 
brightness gradations equals the total number of pixels in the 
image. The ratio of the sums of all these groups of pixels to 
the total number of pixels in the image is 1.
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descending order of their areas. We propose to consider 
the arrangement of such a sequence of squares in the 
square with an area equaling 2 as the MI transformation.

For example, let us consider a tomogram of the jaw 
(Figure 1). The image is in .jpg format and consists of 945 
rows and 1327 columns. Thus, this black and white image 
has a resolution of 945×1327=1,254,015 pixels.

A brightness gradation histogram3 representing the 
sequence of pixel count distribution for pixels of a particular 
brightness in the form of a table was created for this image 
in the MATLAB software environment.

Without losing the generality, let us show processing the 
image pixels, whose brightness gradation index from white 
to black equals 125. There are 5963 pixels in the image. Let 
us determine the proportion of these pixels in Figure 1:

                           5963    = 0.004,755.1,254,015  
The resulting value is the normalized fraction of the 

number of pixels with a brightness index of 125 in the image 
(Figure 2 (a)).

Next, the number of pixels with brightness indices from 
0 to 255 was determined in Figure 1. The number of such 
pixels was normalized, i.e. their fraction in the image was 
determined. The operation of normalizing the histogram is 
necessary to abstract from the MI size. 

Then the normalized pixel counts of a certain brightness 
were arranged in descending order. This implies that 
the first element in a sequence of ordered normalized 
pixel counts was the largest normalized number of pixels 
of a particular brightness, while the last element was 
the smallest normalized number of pixels of a particular 
brightness. 

The final operation was finding the square root 

of the normalized number of pixels of a particular 
brightness. For example, for a normalized pixel count 
with a brightness index of 125, this would equal  

0.004 ,755 =0.068,956,5.
In the proposed method, we interpret the value 

0.068,956,5 as the side of the square.
We assigned a certain color of RGB CM (Figure 2 (b)) 

to each brightness gradation from white to black in 

Figure 1. Tomogram of the human jaw

   3Histogram is a bar graph where the ordinate of each bar 
corresponds to the number of pixels of a particular brightness 
gradation on the analyzed image, the abscissa corresponds 
to the index of a particular brightness gradation.

Figure 2. Transformation of histograms of the tomogram 
in Figure 1:
(a) initial black and white histogram; (b) assignment of RGB 
CM colors to the values of the histogram in Figure 2 (a); 
(c) arrangement of the histogram in descending order by 
extracting the square root from the values of the histogram in 
Figure 2 (b); (d) the transformed medical image with RGB CM 
colors given to each square
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Figure 2 (a). Figure 2 (c) shows the values of the histogram 
(Figure 2 (b)) arranged in descending order. In this case, 
we interpreted the values of the histogram in Figure 2 (b) 
as areas of squares. It means that the values of the 
histogram in Figure 2 (c) are equal to the square root of 
the corresponding values of the ordinates of the histogram 
in Figure 2 (b).

According to the works [16–18], we placed the sequence 
of squares with areas corresponding to the values of 
the ordered histogram in a square with an area of 2 
(Figure 2 (d)). Giving the squares the colors of the selected 
CM (the histogram in Figure 2 (b)) increases the color 
contrast of TMI making it possible to reveal the structure 
of the analyzed MI. The selected RGB CM is best suited for 
the perception of colors by human vision.

To achieve our goal, we analyzed the 
biotransformation dynamics of osteoplastic material in 
the recipient bed in the postoperative period when the 
patient was under medical supervision.

Cone beam computed tomography (CBCT) and lateral 
teleradiography of the head were used as methods for 
visualizing the biotransformation dynamics of the graft. 
A Planmeca ProMax 3D Classic device (Planmeca, 
Finland) was used to perform CBCT following the 
standard requirements for the imaging of the subject 
under study. The imaging mode “M” (adult) was selected 
with an X-ray tube voltage of 90 kV and current of 
6.3 mA; volume diameter — 50 mm, volume height — 
80 mm, dose area product (DAP) — 472 mGy·cm2; 
computed tomography dose index (CTDY) — 4.6 mGy. 
The tomogram was a black and white gray-level bitmap 
image with a brightness depth of 8 bits.

To monitor the dynamics of the disease, it is 

necessary to transform not the whole MI, but only those 
fragments (zones of interest) that the doctor considers 
the most significant for diagnosis. The shape of such 
a fragment and its position on the tomogram should 
be determined by the doctor relying on his practical 
expertise. Let us consider applying the proposed method 
to a specific case.

Patient Kh. (the case history was described in [19]) 
was reported to have an odontogenic cyst. To replace the 
affected bone tissue, we used osteoconductive granular 
bone graft material of animal origin. The same doctor 
carried out affected management and treatment. Figure 3 
shows the tomogram performed during the first visit of Kh. 
to the doctor.

Figure 3 (a) shows a tomogram of the jaw joint with 
the affected bone tissue. In Figure 3 (b), (c) there are 
fragments of healthy and affected bone tissue of the same 
joint. The fragments of healthy and diseased bone tissue 
images were marked out by the attending physician. 
Table 1 shows the dimensions of the image and selected 
fragments.

The treatment involved removing the affected bone 
tissue, which was replaced with granular material from bone 
tissue of animal origin (xenograft). Over time, the xenograft 
was integrated into the bone tissue of the lower jaw.

Figure 4 (a) shows a tomogram of bone tissue with the 
implanted xenograft. In Figure 4 (b), (c) there are fragments 
of healthy and regenerated bone tissue of the same joint, 
marked out by the attending physician. Table 2 shows the 
dimensions of the image and selected fragments.

Tomograms in Figures 3 and 4 were performed with 
a timing difference of 3 months. We assumed that in the 
operating conditions of the dental clinic, there is practically 

T a b l e  1
The sizes of images and selected fragments in Figure 3

Images Figure 3 (a) — tissue at the time  
of the first visit to the doctor

Figure 3 (b) —  
healthy bone tissue

Figure 3 (c) —  
affected bone tissue

Image size (pixels) 709×1174=832,366 591×936=553,176 591×941=556,131

The number of pixels  
in the selected fragment

 
—

 
30,129

 
75,454

а b c

Figure 3. Tomogram of the patient’s jaw joint performed during the first visit:
(a) original image; (b) the zone of healthy bone tissue marked out by the doctor; (c) the area of the affected bone tissue marked 
out by the doctor

Technology for High-Sensitivity Analysis of Medical Diagnostic Images
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no burnout of the X-ray apparatus filament during this time 
in accordance with the data [20, 21]. For this reason, we 
performed no brightness correction for the tomograms in 
Figures 3 and 4.

Image coordinate axes in Figures 3 and 4 differ as 
a result of a change in the spatial orientation of the 
patient’s lower jaw relative to the X-ray source. This 
circumstance leads to brightness changes on tomograms 
made at different times. To diagnose the early stage of 
the disease by MI, it is necessary to superimpose such 
images. Therefore, we displaced the image in Figure 4, 
rotated it by certain angles, and scaled it. The values 
of displacement, angles, and scaling coefficient were 
determined using reference points [22–26]. The reference 
points on the image (see Figure 3 (b), (c)) coincided with 
the vertices of the polygons of interest: (b) a fragment of 

healthy bone tissue selected by the doctor; (c) a fragment 
of the affected bone tissue. There were at least 14 stereo 
pair points (see Figure 4 (b)). The coordinates of the points 
in Figure 5 (b), (c) corresponding to the reference points in 
Figure 4 (b), (c) were determined using the bundle method 
of phototriangulation [27, 28].

We investigated the dynamics of graft 
biotransformation using the proposed method. For that 
purpose, we carried out a comparative analysis of the 
tomograms of the jaws before and after filling the bone 
defect in two groups of patients: group 1 (n=10) was the 
test group, group 2 (n=20) — the control. Bone defects 
were filled with two types of biodegradable granular 
osteoplastic material. In the test group, we used a 
multicomponent augmentate, in the control group — 

а b с

Figure 4. The patient’s tomogram recorded after treatment:
(a) the image at the time of the last call; (b) the zone of healthy bone tissue marked out by the doctor; (c) the area of regenerated 
bone tissue marked out by the doctor

T a b l e  2
The sizes of images and selected fragments in Figure 4

Images Figure 4 (a) — tissue at the time 
of the last visit to the doctor

Figure 4 (b) —  
healthy bone tissue

Figure 4 (c) —  
regenerated bone tissue

Image size (pixels) 1709×1875=3,204,375 1063×1053=1,119,339 1563×1753=2,739,939

The number of pixels 
in the selected fragment

 
—

 
36,147

 
109,255

Figure 5. The tomogram in Figure 1 with data loss:
(a) tomogram without the 1st column; (b) tomogram without the last row; (c) tomogram without the 47th row and without an oblique 
segment

а b c
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osteoconductive xenogenic material. The 
study complies with the Declaration of Helsinki 
(2013) and was performed following approval 
by the Ethics Committee of the Samara State 
Medical University. Written informed consent 
was obtained from every patient.

The quality of bone tissue restoration was 
studied 6 months after filling the bone defect: 
in patient S., 29 years old, the test group 
(Figure 6); in patient A., 33 years old, the 
control group (Figure 7).

Figure 6 (b) shows the result of selecting 
a fragment of healthy bone tissue adjacent 
to the defect to obtain an individual control 
indicator of the norm. Figure 6 (c) shows 
a fragment of remolded multicomponent 
material in a bone defect.

Results
Sensitivity of the proposed method of MI 

transformation to changes in the image has been 
studied. To do this, we removed one column, one row, 
and at the same time one row and an oblique segment 
(highlighted in different colors) in the bitmap image of the 
lower jaw in Figure 5. In all three cases, in Figure 6 there 
was a loss of image data shown in Figure 1 (945×1327 
pixels):

loss of one column in Figure 6 (a) — 945/
(945×1327) · 100% =0.075%;

loss of one row in Figure 6 (b) — 1327/
(945×1327) · 100%=0.11%;

loss of a row and oblique line in Figure 6 (c) — 
2 · 1327/(945×1327) · 100% =0.22%.

Changes in Figure 5 (a)–(c) are well visible in 
Figure 6.

In the image (see Figure 1), we deleted 10 dots 
randomly and sequentially (see Figure 7). The loss 

of each dot (pixel) of the image resulted in data loss of 
less than 0.0001% — 1/(945×1327)·100%=0.000,07%. 
Analysis of the image with the lost dot showed that 
it was impossible to fix the loss of one pixel visually. 
We subtracted the transformed image in Figure   1 
without one pixel from the transformed original image 
in Figure 2. Additionally, we increased the contrast in 
the image resulting from subtraction by 10 times. 
Figure 8 shows the images with the smallest and largest 
differences between the original image and those with a 
lost pixel.

It can be seen in Figure 8 that the loss of one pixel 
changes the structure of the entire transformed image. 
This circumstance meets the requirement that should be 
observed when transforming the diagnostic image: small 
changes in the original image inaccessible for human 
visual perception should determine the picture in the 
transformed image.

а b c

Figure 6. Transformed medical images:
(a) Figure 5 (a); (b) Figure 5 (b); (c) Figure 5 (c). Image dimensions — 450×450

Figure 7. Randomly selected dots on the tomogram image

Dot 1 Dot 2 Dot 3

Dot 4 Dot 5 Dot 6

Dot 8

Dot 10

Dot 7

Dot 9
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We changed the MI and did not remove a pixel, but 
changed its brightness (Figures 9, 10). Figure 9 shows 

а b

c d

Figure 9. Changing the pixel brightness in the tomogram zones of interest:
(a) an image of the zone of interest with indication of a pixel with brightness of 86;  
(b) a transformed image of the zone of interest in Figure 10 (a); (c) an image of the zone 
of interest with indication of a pixel with brightness of 131; (d) a transformed image of the 
zone of interest in Figure 10 (b)

а b

Figure 8. Images obtained by subtracting the transformed tomogram image 
without one dot (pixel) from the original transformed image in Figure 1:
(a) dot 6; (b) dot 3. Image dimensions — 450×450
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   4Similar shapes mean squares shaped similarly to those 
placed in the square of area 2.
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a tomogram with the zone of 
interest highlighted by the doctor. 
In this zone, we have selected a 
pixel with brightness of 86. In the 
same image, we assigned (gave) 
the selected pixel brightness 
value of 131. Both images were 
transformed (Figure 9 (b), (d)). 
The obtained figures show that a 
change in the brightness of one 
pixel leads to a change in the 
transformed image of the zone of 
interest.

Figure 10 shows the sequence 
of transforming the zone of 
interest in Figure 3 (b) (healthy 
bone tissue). We used it to 
transform the zones of interest 
in Figure 3 (c) and Figure 4 
(b), (c) (Figure 11). Figure 11 
clearly shows the differences 
between healthy, affected, and 
regenerated bone tissue, while 
the figures in the transformed 
images in Figure 10 (c) and 
Figure 11 (a) have almost similar4 
shapes and approximately the 
same range of brightness. This 
circumstance is explained by the 
fact that both images correspond 
to healthy bone tissue. The 
difference between Figure 10 (c) 
and Figure 11 (a) is explained by 
the observation time: the interval 
between images was 3 months. 
During this time, the patient’s 
condition could have changed 
for various reasons. Therefore, 
it becomes necessary to create 
a structural criterion for the 
physiological norm of the tissue 
under study.

The patterns in the transformed 
images (Figure 11 (a), (c)) have 
similar shapes but differ in the 
range of brightness. This is 
determined by the fact that the 
bone formed after treatment 
is close to the healthy tissue 
in structure, but it also has 
differences.

The results of using the 
proposed method for visualizing 
the dynamics of changes in 
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tomograms of the jaw with a bone defect showed the 
following possibilities for disease diagnosis:

making an early diagnosis;
identifying visually with high accuracy the patterns 

characteristic of different stages of the disease;
providing a high degree of diagnosis objectivity.
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Figure 10. The sequence of transforming the zone of 
interest in Figure 4 (c):
(a) a histogram of a black and white image; (b) assignment 
of RGB CM colors to the histogram of the zone of interest; 
(c) histogram of the zone of interest arranged in descending 
order; (d) a transformed image of the zone of interest in 
Figure 3 (b) (healthy bone tissue)

а

b

c

Figure 11. Transformed images of various bone tissue 
fragments:
(a) healthy bone tissue (Figure 4 (b)); (b) affected bone tissue 
(Figure 3 (c)); (c) bone tissue after treatment (Figure 4 (c))

Visually, the difference between two images can 
be detected with an accuracy of 1 pixel, although we 
consider this accuracy to be excessive.

It should be noted that the use of the proposed 
method requires a bitmap MI. It is no matter what 
physical methods are used to obtain the image. 
It can be X-ray, computed tomography, MRI, and 
other methods where bitmap images are used for 
visualization.

Technology for High-Sensitivity Analysis of Medical Diagnostic Images
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Discussion

The proposed MI transformation method allows 
visualizing changes in the image up to one pixel, which 
can be less than 0.0001% of the image. We do not know 
other visualization methods providing the possibility 
to record changes in the controlled image with such 
accuracy. Visualization of small changes is achieved by 
transforming the image. The result of the transformation 
is the adaptation of small changes to human visual 
perception that has natural limitations in resolution.

Transformation uses information from the entire 
diagnostic image, and not only the part of it that has 
undergone changes resulting from the disease. For this 
reason, early diagnosis based on the transformed image 
will provide the most reliable diagnosis of the disease.

Application of CMs focused on the perception of 
colors by human vision makes it possible to reveal the 
structure of the analyzed zone of interest in the MI while 
forming a transformed image.

The proposed method is applicable for transforming 
MI regardless of the physical processes through which 
they were obtained. The only condition is the following 
requirement: the image must be bitmap and grayscale, 
for example, black and white. In case it is observed, 
the proposed MI transformation method can become 
universal for the early diagnosis of various diseases.

The sensitivity of the method can lead to recording 
the changes in the characteristics of technical means 
(sensors and radiation sources) in MI, which will hinder 
early diagnosis. Besides, we believe that the change 
in the brightness of small groups of pixels in the image 
can occur within the physiological range. For these 
reasons, the problem of possible changes in MI within 
the physiological range remains unsolved.

Analysis of the diagnostic method of image 
transformation makes it possible to formulate the 
following directions for future research.

1. Performing a numerical parameterization of the 
transformed image to study the dynamics of the disease 
course.

2. Developing a technique for objectively identifying 
the zone of interest based on particular criteria, since the 
zone of interest is determined on MI by the attending 
physician based on their clinical experience and therefore 
the subjective factor influences image transformation 
results, reducing reliability of the disease diagnosis.

3. Creating a special filter to compensate for changes 
in the characteristics of technical means and MI changes 
within the physiological range.

In addition, a special case of solving the knapsack 
problem was used when forming the transformed image. 
In doing this, we assumed that the price of each item 
placed in the knapsack was equal to 1. This reduces the 
versatility of the MI transformation method. Therefore, 
the price of each item can be interpreted as individual 
characteristics of the patient (for example, intolerance to 
certain drugs).

Solving these problems will allow making an early 
diagnosis and improving its objectivity.

Conclusion
There has been developed a high-sensitivity 

technology for analyzing diagnostic images that 
provides the possibility to record changes on tomograms 
inaccessible to human vision with a high degree of 
objectivity, accuracy, and reliability.

The proposed method for visualizing small changes in 
the transformed medical images is suitable for use 
in telemedicine. Transformation of medical images 
provides additional opportunities for their processing 
by other methods, for example, using convolutional 
neural networks [29–33]. Moreover, the structure of the 
transformed medical image expands the functionality 
of various sensors and probes in the analyzed image 
coordinate system [34–38].
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