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Abstract

Background: Although endocrine therapy impedes estrogen-ER signaling pathway and thus reduces breast cancer
mortality, patients remain at continued risk of relapse after tamoxifen or other endocrine therapies. Understanding the
mechanisms of endocrine resistance, particularly the role of transcriptional regulation is very important and necessary.

Methods: We propose a two-step workflow based on linear model to investigate the significant differences
between MCF7 and OHT cells stimulated by 17b-estradiol (E2) respect to regulatory transcription factors (TFs) and
their interactions. We additionally compared predicted regulatory TFs based on RNA polymerase II (PolII) binding
quantity data and gene expression data, which were taken from MCF7/MCF7+E2 and OHT/OHT+E2 cell lines
following the same analysis workflow. Enrichment analysis concerning diseases and cell functions and regulatory
pattern analysis of different motifs of the same TF also were performed.

Results: The results showed PolII data could provide more information and predict more recognizably important
regulatory TFs. Large differences in TF regulatory mode were found between two cell lines. Through verified
through GO annotation, enrichment analysis and related literature regarding these TFs, we found some regulatory
TFs such as AP-1, C/EBP, FoxA1, GATA1, Oct-1 and NF-�B, maintained OHT cells through molecular interactions or
signaling pathways that were different from the surviving MCF7 cells. From TF regulatory interaction network, we
identified E2F, E2F-1 and AP-2 as hub-TFs in MCF7 cells; whereas, in addition to E2F and E2F-1, we identified C/EBP
and Oct-1 as hub-TFs in OHT cells. Notably, we found the regulatory patterns of different motifs of the same TF
were very different from one another sometimes.

Conclusions: We inferred some regulatory TFs, such as AP-1 and NF-�B, cooperated with ER through both
genomic action and non-genomic action. The TFs that were involved in both protein-protein interactions and
signaling pathways could be one of the key resistant mechanisms of endocrine therapy and thus also could be
new treatment targets for endocrine resistance. Our flexible workflow could be integrated into an existing
analytical framework and guide biologists to further determine underlying mechanisms in human diseases.

Background
Breast cancer is not only one of the most common can-
cer but also the most fatal cancers in women worldwide
[1]. Previous studies showed that estrogen signal plays a
critical role in pathogenesis and development of breast
cancer [2-5]. For same reason, endocrine therapy

impeding estrogen-ER signal reduces breast cancer mor-
tality and becomes a mainstay of breast cancer treatment.
Endocrine therapy counteracts the effect of estrogen by
either reducing the source of estrogen or blocking the
estrogen signaling pathway in breast cancer cells without
significant effects on normal cells. Since 1973, antiestro-
gen preparations of tamoxifen (TAM) have been widely
used in endocrine therapy for breast cancer, and TAM is
considered the standard treatment for estrogen receptor
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(ER)-positive patients until now. Unfortunately, approxi-
mately 40% of patients relapse after endocrine therapies
[3]. Therefore, an essential understanding of the biologi-
cal mechanism of antiestrogen resistance, especially the
comprehension of TFs (transcription factors) regulation
differences at transcriptional regulation level, will greatly
promote the development of new drug targets discovery
or novel treatment methods for breast cancer.
Many previous studies about the regulatory abilities of

TFs based on gene expression data. Conlon et al. discov-
ered sequence motifs on upstream of genes, especially
expression-mediating motifs of medium to long length
with multiple degenerate positions that undergo expres-
sion changes in a given condition by combining the
advantages of matrix-based motif finding and oligomer
motif-expression regression analysis [6]. A cross-gene
identification scheme was proposed by Lin et al. to infer
how multiple TFs coordinate to regulate gene transcrip-
tion in the yeast cell cycle and to uncover hidden regula-
tory functions of a cis-regulatory circuit based on the
dynamic model of cis-regulatory circuits and microarray
data [7]. Based on the statistical analysis of TF binding
through microarray and TF-DNA interaction data, Ryu et
al. identified regulatory modules that include all combi-
nations of TFs, plus a number of binding constraints in
target genes [8]. He et al. presented a method focused on
‘active’ TFs that regulate the real-time expression of
genes [9]; they used an enhanced Bayesian classifier to
predict pairs of TFs and target genes based on time-
course expression data. Recently, Ahmed et al. consid-
ered the impact of CNV (copy number variation) in gene
expression. They built a linear model to depict the regu-
lation between regulatory TFs, CNVs in each cell line
and genes that were differentially expressed in 305
human cancer cell lines [10]. Geeven et al. proposed an
approach that was also based on linear model to predict
TF-gene expression associations and TF-TF interactions
from experimental data. Their approach was a four-stage
method based on lasso and post hoc re-sampling to iden-
tify and prioritize synergistic interactions between predic-
tors that underlie observed variations in gene expression
[11]. To gene expression, the transcription process is regu-
lated by TFs and the post-transcriptional modification
process is regulated by microRNA. Although these studies
attempted to improve their predictions’ accuracy regarding
transcriptional regulation by a variety of methods based on
gene expression data, they have not yet succeeded in elim-
inating the essential impact of post-transcriptional
modification.
From a macro point of view, ER function can be

divided into two modes of action during breast cancer
initiation and progression. The genomic action mode
mediates genomic transcription regulation through
nuclear-initiated steroid signaling, and the non-genomic

mode activates various protein kinase cascades [4]. Both
the genomic and non-genomic pathways play a role in
the response to estrogen signaling and are regulated by
TFs in breast cancer cells. Furthermore, the genomic and
non-genomic mechanisms of action of the ER are not
mutually exclusive, but many interactions exist between
these two modes [4]. Previous studies about endocrine
resistance in breast cancer have shown that TAM-resis-
tant sublines (OHT) often show changes at the level of
transcriptional regulation compared with wild-type breast
cancer (MCF7) cells [12]. Therefore, we are more con-
cerned about the role of the regulation of transcription
levels of breast cancer cells with antiestrogen resistance,
and we believe that a better understanding of the
mechanisms of acquired resistance to endocrine therapy
could point to novel strategies or new therapeutic targets
that could facilitate further improvements in breast can-
cer treatment.
ER is a key protein implicating in the majority of breast

cancers. Also many previous studies based on ER immu-
noprecipitation data. However, only focusing on the ER
could ignore those alternative regulatory mechanisms in
breast cancer, especially in estrogen-independent breast
cancer. In addition, gene expression is influenced by post-
transcriptional regulation, which will reduce the accuracy
of the predicted transcriptional regulation. In cells PolII
drives the vast majority of the transcription process and is
widely recognized as part of the general transcriptional
machinery. Because there is a wide range of representative
and quantitative PolII binding in an individual gene, the
amount of PolII binding will be more accurate than the
amount of gene expression as a measure of transcriptional
regulation. For these reasons, we attempted to further
reveals the TFs involved in antiestrogen resistance to
breast cancer and their cooperative relationships by ana-
lyzing PolII immunoprecipitation data.
We sought to find a different regulatory mode of TFs by

comparing E2-stimulated samples with control samples as
references and revealing biological characteristics that dif-
fer between the MCF7 and OHT breast cancer cell lines.
For this reason, we proposed a two-step workflow to
investigate the relationships between the TFs involved in
regulation based on the PolII binding quantity in the gene
promoter region. To ensure comparability between the
samples, we first normalized the PolII binding quantity in
both the MCF7 and OHT cell lines before and after E2 sti-
mulation [13,14]. For genes with differential PolII binding
quantity under E2 stimulation, we attempted to identify
possible regulatory TFs in their promoter regions. Finally,
according to the results obtained by the stepwise regres-
sion model, we predicted significant regulatory TFs of
MCF7 and OHT cells by E2 stimulation.
Many previous researches predicted TFs in the regula-

tion of antiestrogen resistance in breast cancer based on
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gene expression data. Here, we compared the prediction
results of gene expression data and PolII binding quan-
tity data following the same workflow. Compared with
previous literature, we showed that PolII data could
predict regulatory TFs with higher sensitivity and speci-
ficity. In addition, we further inspected the interaction
between certain TFs and discuss the role that these key
regulatory TFs play in alternative pathways of estrogen
signaling.
Through comparative analysis of these results, we

showed that PolII data provide richer and more accurate
information compared with expression data for the predic-
tion of regulatory TFs in breast cancer cells. In addition,
the analysis workflow presented here can be very easily
integrated into other existing analytical frameworks or
applied to the processing of other types of data because of
its simplicity and flexibility.

Methods
Because hormonal exposure is regarded as the best charac-
terized risk factor for breast cancer, MCF7 (17b-inducible
breast cancer cell line) and OHT (TAM-resistant subline
of MCF7) were chosen to build model. We hoped
to establish a model of differential regulation by TFs by
comparing the treatment samples (i.e., MCF7+E2 and
OHT+E2) with the corresponding control samples (which
were used as a reference) and uncovering biological char-
acteristics that differed between wild-type and TAM-resis-
tant breast cancer cell lines. PolII plays an essential role in
gene transcription, including roles in recruitment, initia-
tion, elongation and dissociation [13,14]. Thus, we used
PolII ChIP-seq data from four different experiments in
breast cancer cells to detect regulation by TFs at the tran-
scriptional level in both the MCF7 and OHT cell line. In
this section, we provide brief descriptions of the data used;
the normalization method, which was followed by the
LOWESS (locally weighted scatterplot smoothing) techni-
que; the π-value [15] measure, which was used to filter
genes with differential PolII binding quantities in their
promoter regions; and a two-step workflow for the predic-
tion of regulatory TFs.

Breast cancer data
We applied our algorithm to PolII ChIP-seq data gener-
ated by Feng and Liu [16] in MCF7 human breast cancer
cells (American Type Culture Collection, Manassas, VA,
USA) and OHT before and after treatment with E2. Chro-
matin immunoprecipitation (ChIP) for PolII (sc-899 × and
sc-8005 X, Santa Cruz, CA) was performed as previously
described [17]. ChIP libraries for sequencing were pre-
pared following standard protocols from Illumina (San
Diego, CA), as described in [16]. Image analysis and base
calling were performed with the standard Illumina pipe-
line, and the samples were run in duplicate. All of the data

used here can be downloaded from http://compbio.iupui.
edu/group/6/pages/mirpromoter.

Normalization
To compare across multiple samples, we implemented
LOWESS [18] normalization method to correct the mean
of the observed data. Previous studies normalized data by
using the total number of mapping reads (TMRs) in each
sample or the sequencing depth [19-22]. This straightfor-
ward normalization scales the raw data by a constant fac-
tor and is prone to bias caused by unequal variance in
different genomic regions. Compared with the TMR, our
LOWESS normalization method was better equipped to
remove bias and systematic errors.
Our LOWESS normalization bases on the idea of the M

versus A plot, where M is the difference in log PolII bind-
ing quantity and A is the average of log PolII binding
quantity. Let n refer to total number of bins in a chromo-
some, and j = 1, 2 refers to control (reference) and treat-
ment samples, xij is the PolII binding quantity for
bin i(i = 1, . . . , n). To balance the number of data points
and the resolution we choose 1kbp as bin size in our appli-
cation. Thus, xij is the sum of the fragment counts mapped
between location (i − 1) × 1000 + 1 and i × 1000 in
sample j. Then, we can calculate Mi and Ai as follows:

Mi = log2(
xi1

xi2
)

Ai = log2(xi1 × xi2).

A normalization curve is fitted to this M versus A plot
using LOWESS. LOWESS is a regression modeling
method that combines multiple regression models in a
k-nearest-neighbor-based meta-model [18]. The fits
based on the normalization curve are M̂ thus normaliza-
tion adjustment is M′

i = Mi − M̂. The adjusted PolII
binding quantities in each bin are given by the following
formulas:

x′
i1 = 2

Ai+
M′

i

2

And

x′
i2 = 2

Ai−
M′

i

2

After the PolII read quantities in each bin were cor-
rected, we obtained every read normalization weight
r′
i1 = x′

i1
/

nithrough r′
i1 = x′

i1
/

ni and r′
i2 = x′

i2
/

ni, where
ni refers to the PolII read counts in every bin. Based on
the normalized weight of these reads, we were able to
analyse the characteristics of a specific area of MCF7
and OHT genome.
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Identification of differential PolII binding quantity genes
by π-value measures
Genes that showed a systematic difference between two
conditions were considered to be differentially expressed
[23]. Identification of differential genes through p-value
or fold change measures would be some problems.
When genes’ expression is small, a slight expression var-
iance can result in a significant p-value. However, a
small expression change has questionable biological jus-
tification, which frequently leads to a false discovery. In
contrast, some dysregulated genes in a disease condition
with considerable fold change could possess a large var-
iance but accompany a non-significant p-value. Thus
makes it possible to miss these biologically meaningful
changes. To avoid above problems, YF Xiao et al. [15]
proposed a gene significance score called π-value, which
combines the fold change and p-value into one score for
the robust selection of differentially expressed genes.
However, many previous studies use gene expression
levels to estimate the amount of cellular transcription.
In fact, the amount of gene expression also includes the
influence of post-transcriptional regulation, and thus,
the PolII binding quantity in cells is more accurate than
gene expression and more directly reflects the transcrip-
tion process. We used the π-value measure to identify
genes for which the PolII binding quantity of the pro-
moter region underwent tremendous change before and
after E2 treatment.

p(k)i is the PolII binding quantity of the i-th gene’s
promoter in the sample class Sk (k = 1, 2 represents the
control and E2 the treatment); then, the log-ratio and
log-fold change of this PolII binding quantity are
denoted as xi = p(1)i − p(2)i and ϕi = |p(1)i − p(2)i|,
respectively. Given ϕi and Pi, we defined the π-value as:

πi = ϕi · (−log10Pi)

where ϕi is the log-fold change and Pi is the p-value of
PolII binding quantity in the i-th gene’s promoter
region, which results from a Fisher’s exact test. The
π-value is non-negative; greater π-value indicates more
significant changes in PolII binding quantity. We chose
a mean value that adds three times the variance of all π-
values as a threshold to obtain genes for which PolII
binding quantity is visibly changed by E2 treatment.
These chosen genes were used as a typical sample set,
and transcriptional regulation of these genes was investi-
gated under different biological conditions.

Identification of the potential TFBS in promoter region
The binding of TFs in promoter region is one of essen-
tial processes for transcriptional regulation in cells. To
preliminarily determine which TFBSs (transcription fac-
tor binding sites) were present in each gene’s promoter

region, a sequence match scoring was performed on
sequences of these regions in MCF7 and OHT cells.
The position weight matrices (PWMs) for scoring
sequence matching were obtained from the TRANSFAC
and JASPAR databases, including 460 experimental con-
firmations of human TFs. In each gene’s promoter
sequence (-600 bp ~ +500 bp around the transcription
start site or TSS), the PWM scored sequence by a slid-
ing window. After scoring for each TF of the PWMs of
all sites on 34,055 gene promoter regions, we chose the
2,000th-highest score as a threshold value and regarded
the locations with scores above this threshold as the
potential TFBSs for next prediction. With this step, we
obtained a potential binding site matrix R that contains
460 human TFBSs and 34,055 promoter regions. Each
row of the matrix represents a gene, and each column
represents a TF; if the j-th TF binding site is present in
the promoter region of the i-th gene, then the corre-
sponding value Rij is its PWM score. Otherwise, the
score is 0.

Workflow to detect regulatory TFs in MCF7 and OHT cells
We propose a two-step workflow to predict active TFs
in gene regulation before and after E2 stimulation in
MCF7 and OHT cells. First, we constructed a linear
model to describe the relationship between genes with a
significant PolII binding quantity change in promoter
regions before and after E2 stimulation and the TFs
binding these regions, represented by TFBSs, as shown
in the equation below:

P = RiXi + b.

where P is the PolII binding level change rate,

log(
SKTreatment

SKControl
), e.g., the logarithmic ratio of the amount

of gene expression or PolII binding reads for the SK gene
in the treatment and control conditions; Ri is the pre-
viously obtained matrix of potential binding positions in
gene promoter regions; Xi reflects the regulatory ability of
the TF; and b is an error term. Xi could be estimated using
the least squares method. Here, we iterated 1,000,000
times to perform the calculation, as in our previous work
[24]. Each time, we randomly selected 5 of the 460 TFs to
fit with the PolII binding level change rate P. And the
error was estimated using the following formula:

E =
n∑

k=1

{
pk −

∑
i∈R

Rix̂i

}2

.

Here x̂i is the predicted regulatory ability of TFi and E
represents the estimated error. Because a smaller model
error implies a more influential binding site, a TF regu-
latory capacity (RC) was assigned to each selected
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candidate in the set according to the following formula-
tion:

RCi =
∑
c∈C

1
Ea

c
.

Here E is the model error, c is a subset of all of the regu-
latory sequences that contain the i-th TFBS and a is the
power factor that influences the effect of single selections.
A larger a value usually amplifies the additive contribution
of the motif sets with smaller model errors in each itera-
tion, and we set a = 5. We used the top 10% according to
the RC score (in descending order) in the MCF7 and
OHT cells as candidate regulatory TFs in E2 stimulus con-
dition. Because the top 10% is an arbitrary threshold, we
must further filter out the real regulatory TFs.
In the second step, we used stepwise regression method

to filter out the insignificant TFs in gene regulation pro-
cesses. The candidate top 10% TFs at the differentially
bound promoter regions was used by the stepwise regres-
sion procedure to fit a multiple regression model:

P =
M∑

m=1

RmSm + ε.

Here P is log of the PolII binding level change rate of the
gene, Sm is regression coefficient and ε is gene-specific
error term. Initially, stepwise regression considered all of
prospective TFs in fitting and tested the deletion of each
variable using a chosen model comparison criterion at
each step. If deleting any of TFs would significantly
improve the model, then the TF was deleted, and the pro-
cess was repeated. The final model was reached when no
TF with a significant coefficient could be removed.
To improve the sensitivity of prediction, we performed

this workflow after removing the promoter intervals with
fewer than five PolII binding reads. Simultaneously, to
exclude the influence of specific chromatin structure, we
based our predictions on a series of sub-intervals and
eventually merged those sub-predictions to obtain final
result. These gene intervals were from -400 bp ~ +200 bp
to -600 bp ~ +500 bp (5’UTR range) around TSS, expand-
ing both ends by 100 bp. Then, we determined the gene
set on each gene interval by differential PolII binding
quantity and executed the workflow to a two-step predic-
tion; finally, P <0.01 was considered significant for the
finalized regulatory TFs.

Inference of the TF regulatory interaction network in
MCF7 and OHT cell lines
To further compare the differences in TF regulatory
mode between MCF7 and OHT cell lines and provide
insight into roles of different regulatory factors and their
interactions in TAM resistance of breast cancer, we con-
structed TF regulatory interaction networks based on

the significant interaction score (SIS) between TFs in
MCF7 and OHT. The regulatory interaction between
every pair of previously predicted TFs in each cell line
was considered to build this TF regulatory interaction
network. We proposed the SIS as a measure to compare
the significance of the interaction between two TFs,
shown as follows:

SISij = − log(Pij) × (
Intij
Inti·

+
Intij
Intj·

).

Where Pij represents P-value of interactions between TFi

and TFj coming from Fisher’s Exact Test. Intij is the num-
ber of interactions between TFi and TFj, Inti· and Intj· indi-
cate all of interactions that TFi and TFj participated in,
respectively. Accounting for the possible differences in the
level of TF interactions between different populations, we
regarded the mean + variance of the SIS score as a signifi-
cant threshold to infer the TF regulatory interaction
network.

Results
Demonstration of the LOWESS MA normalization
In this article, data normalized using the LOWESS MA
method, which considered both global and local distri-
bution characteristics, were used to minimize as much
as possible the impact of bias and systematic error that
arises from the data generation process, thus maintain-
ing the characteristics of original data. Here, we demon-
strated the effect of comparing raw data, the TMR
normalization method and the LOWESS MA normaliza-
tion method described above on the normalization pro-
cessing of the PolII binding quantities between MCF7
cells and E2-treated MCF7 cells. We show Chr5 as an
example, but results were similar across all chromo-
somes. Figure 1 shows a comparison between the raw
data, TMR normalized data and our LOWESS MA nor-
malized data as an example. It is apparent from the fig-
ure that the unnormalized raw data are clearly biased
toward the negative direction. After TMR normalization,
the data become clearly biased toward the positive
direction. This result indicates that corrections based on
the global data distribution characteristics, such as
TMR, often cause large deviations in the area of biologi-
cal functions. Considering both global and local distri-
bution characteristics, data are normalized through the
LOWESS MA method with respect to a mean of 0 and
are thus normalized in the best manner.

PolII binding data provide more regulatory information
than gene expression data
Many previous studies about the regulatory mechanism
differences between estrogen-dependent and estrogen-
independent breast cancer based on gene expression

Zhang et al. BMC Bioinformatics 2014, 15(Suppl 2):S10
http://www.biomedcentral.com/1471-2105/15/S2/S10

Page 5 of 18



data [25,26]. PolII has been recognized as a component
of the general transcriptional machinery and drives the
transcription process in cells. Because of its broad repre-
sentation and metrizability, we used the PolII binding
quantity as a measure of the genes’ transcriptional activ-
ity. We compared the prediction results of regulatory
TFs based on PolII binding quantity data and gene
expression data taken from MCF7/MCF7+E2 and OHT/
OHT+E2 cell lines following the same analysis work-
flow. We found some differences between filtered sets of
differentially regulated genes obtained from gene expres-
sion data and PolII binding quantity data. For selection of
differentially regulated genes, we regarded genes with π-
value score greater than mean +3 variances (taken over
all of the genes) as significantly differentially regulated
genes. Notably, we believe the new significance indicator
based on the mean and variance can reduce the impact
of the different distributions of the samples and make
them more comparable. According to the same threshold
criteria but based on gene expression data, 116 and 133
genes that were differentially regulated by E2 stimulation
were filtered in MCF7 and OHT cell lines, respectively.
Based on the corresponding PolII data we found 292 and
386 genes that were differentially regulated by E2 stimu-
lation in MCF7 and OHT cell lines, respectively. And
there were only a few genes overlap between differentially
expressed genes and differentially PolII binding quantity
genes, 6 in MCF7 and 8 in OHT. The difference in the
number of differentially regulated genes implied that
PolII binding quantity data are able to provide more reg-
ulatory details compared with gene expression data

(Table 1). At P < 0.01, the numbers of predicted regula-
tory TFs based on PolII data in MCF7 and OHT cells
were 41 and 48, respectively, which were significantly
more than the corresponding values of 20 and 30
obtained from gene expression data (Table 1). To verify
the accuracy of our predictions, we also determined the
expression levels of genes that encode regulatory TFs in
MCF7 and OHT cells. Among all of 460 TFs investigated,
we found numbers of TFs expressed in MCF7 and OHT
cells were 186 and 184, respectively. Specifically, 22 of 41
predicted regulatory TFs were expressed in MCF7 cells,
and only 25 of 48 were expressed in OHT cells based on
PolII data. In results obtained from gene expression data,
only 9 of 20 predicted regulatory TFs were expressed in
MCF7 cells, and only 8 of 30 were expressed in OHT
cells (Table 1). Overall, predictions of regulatory TFs
based on PolII data provided greater quantity and better
accuracy compared with those based on gene expression
data. Finally, we analyzed differentially regulated genes
based on gene expression and PolII data using IPA (Inge-
nuity® Systems, http://www.ingenuity.com) to compare
the results of enrichment analysis. Overall, not only in
their associated diseases and disorders but also in the
molecular and cellular functions of MCF7 and OHT,
more molecules were found using PolII data than gene
expression data at a significance level of P <0.05. Three
categories of diseases and disorders in MCF7 results were
found using both sets of data. Molecules with greater
enrichment in PolII data than in gene expression data
more frequently belonged to the categories of develop-
mental disorder and cancer and less frequently belonged

Figure 1 Comparison of raw data, TMR and LOWESS MA normalization of PolII data. We applied different normalizations to PolII binding
quantity data from all chromosomes of MCF7 cell line. Chr5 is used here as an example. (A) Raw data with a clear bias toward the negative
direction; (B) data normalized through the TMR method, with a clear bias toward the positive direction; (C) data normalized through the LOWESS
MA method with respect to a mean of 0. Red lines represent the LOWESS smoother line with respect to the mean, and grey (dotted) lines
represent the zero-difference line.
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to the categories of skeletal and muscular disorders
(Figure 2A). In OHT, molecules found to be more highly
enriched in PolII data than in gene expression data
belonged to the categories of cancer and endocrine sys-
tem disorders. These categories were closely associated
with breast cancer (Figure 2B). An analysis of cellular
functions using PolII data also revealed that more mole-
cules were enriched in the categories of cell cycle, cellular
function and maintenance, and cell death and survival
(Figure 3). These entries demonstrated that, regarding
the specific function of regulation in breast cancer cells,
data based on the quantity of PolII binding at promoter
regions could provide better specifics for prediction. We
also manually verified these important regulatory TFs in
breast cancer cells in literature, such as AP-1, AP-2,
C/EBP, E2Fs, ER, FoxA1, Oct-1, NF-�B and others. All of
these findings confirmed that predictions based on PolII
data could provide more recognized important regulatory
TFs compared with gene expression data.

Comparison of predictions based on PolII binding
quantity in MCF7 and OHT cells
The specific biological mechanism of endocrine resis-
tance in breast cancer therapy is very complex. We stu-
died the changes of transcriptional regulation level in
estrogen-dependent MCF7 and estrogen-independent
OHT cell lines under E2 stimulation. We compared the
differential variance in PolII binding quantity of 34,055
genes at approximately TSS -400 bp ~ +200 bp to
-600 bp ~ +500 bp under E2 stimulation in MCF7 and
OHT cells (Figure 4). We defined the variance of PolII
binding quantity in following manner: no more than ±2.5%
of the average of PolII binding quantity before and after E2
stimulation indicated PolII binding mode was constant;
more than +2.5% of the variance in PolII binding quantity
indicated gene was up-regulated; and less than -2.5% of the
variance indicated gene was down-regulated. As demon-
strated in Figure 3, after stimulation with E2, the number
of up-regulated genes was far greater than down-regulated

and constant genes in the MCF7 cells. However, the num-
ber of down-regulated genes was slightly more than
up-regulated and constant genes in OHT cells under E2
stimulation. These significant differences in PolII binding
modes between MCF7 and OHT cells were also mentioned
in literature [16,27,28], indicating a very large difference in
the transcriptional regulation mode, which could be one of
the potential causes of endocrine resistance in breast
cancer cells.
Based on PolII data and following our two-step work-

flow, we predicted 41 and 48 regulatory TFs in MCF7
and OHT cells, respectively (Table 2). There were some
regulatory TFs discovered in both two cells, such as AP-
2, BSAP, E2F, E2F-1, E2F-4: DP-2, ER, HIF-1, MAZR,
TCF11: MafG, YY1 and ZID. AP-2 is involved in cell
proliferation, differentiation, apoptosis and carcinogen-
esis. Although the family of AP-2 promotes the growth
and differentiation of breast cancer [29], but continued
expression of AP-2 has been correlated with a better
prognosis [30]. BSAP is considered a key TF in the
directed differentiation of B cells [31] and is considered
to inhibit immunoglobulin activity [32]. The E2F family
involves in cell cycle regulation and controls the nuclear
proto-oncogene c-Myc [33]. The family member E2F-1
plays a crucial role during the G1 phase/S phase trans-
formation [34]. The binding of estrogen to ER induces
the activation of receptor and enhances ER-driven tran-
scription to regulate proliferation and differentiation of
breast cancer. Hypoxia is a common phenomenon of
solid tumors, and HIF-1 can induce a series of genes
which associate with angiogenesis and anaerobic metabo-
lism and lead to tumor cells adapt to the hypoxic envir-
onment [35]. HIF-1 also plays an important role in the
regulation of tumor cell apoptosis, invasion, spread, and
radiotherapy or chemotherapy resistance [36]. YY1 (TF
Yin Yang 1) not only controls DNA damage, DNA
recombination, DNA repair and differentiation but also
many divergent cellular processes, including cell prolif-
eration and apoptosis, depending on targeted genes,

Table 1 A summary of differentially regulated genes, regulatory TFs and verified TFs identified from MCF7 and OHT
cells.

MCF7 OHT

Based on
gene
expression
data

Based on PolII
binding
quantity data

Results compared between
PolII data and gene
expression data

Based on
gene
expression
data

Based on PolII
binding
quantity data

Results compared between
PolII data and gene
expression data

Differentially
regulated
genes

116 292 + 176 133 386 + 253

Identified
regulatory TFs

20 41 + 21 30 48 + 18

Verified TFs in
prediction

9 22 + 13 8 25 + 17

All verified TFs 186 186 ——— 184 184 ———

Zhang et al. BMC Bioinformatics 2014, 15(Suppl 2):S10
http://www.biomedcentral.com/1471-2105/15/S2/S10

Page 7 of 18



cofactors and cellular environment [37,38]. YY1 is also
considered in association with development of a malig-
nant phenotype in some human cancers, which could
indicate metastasis or survival [39,40]. Through verifying
the GO annotation and related literature manually, we
found the shared regulatory TFs between MCF7 and
OHT cells are mainly involved in proliferation, differen-
tiation and apoptosis. From a functional perspective,
compared with the shared regulatory TFs in both cell
lines, some regulatory TFs that are specific to OHT cells
could play more critical roles in endocrine resistance of
breast cancer. For example, Oct-1 can bind to the ESR1
promoter (the gene that encodes ERalpha) to promote
transcription [41]. This response can be regarded as an
adaptive response to estrogen inhibition by breast cancer
cells by generating a large amount of ER to counteract

the inhibitory effect of TMA. AP-1 (activator protein 1)
is a fundamental factor for ERa-mediated transcription.
By binding to regulatory elements in the E2F1 promoter,
AP-1 and the ER cooperate in regulating E2F1 gene
expression [42]. FoxA1 exhibits the greatest extent of
mitotic chromosome binding [43] and is essential for
AHR-dependent (aryl hydrocarbon receptor) regulation
of cyclin G2 [44]. C/EBPs are a highly conserved family
of leucine zipper-type (bZIP) DNA-binding proteins and
have been implicated in cellular proliferation, terminal
differentiation and apoptosis in a variety of tissues,
including the mammary gland [45]. In human breast can-
cer, GATA1 as a negative transcriptional regulator binds
the Peroxiredoxin 5 (Prx5) gene, and overexpression of
Prx5 in mammary tissue is associated with the inhibition
of apoptosis and poor prognosis [46]. Some studies have

Figure 2 Comparison of enrichment analyses for diseases and disorders. Differentially regulated gene sets analyzed in MCF7 and OHT cells
were obtained from PolII data and gene expression data, respectively. (A) Comparison of molecules enriched in various categories of diseases
and disorders based on PolII and gene expression data in MCF7 cells. (B) Comparison of molecules enriched in various categories of diseases
and disorders based on PolII and gene expression data in OHT cells.

Figure 3 Comparison of enrichment analyses of molecular and cellular functions. Differentially regulated gene sets analysed in MCF7 and
OHT obtained from PolII data and gene expression data respectively. (A) Comparison of molecules enriched in categories of molecular and
cellular functions based on PolII and gene expression data in MCF7. (B) Comparison of molecules enriched in categories of molecular and
cellular functions based on PolII and gene expression data in OHT.
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shown suppression of nuclear factor NF-kappaB (NF-�B)
activation can suppress tumor growth in breast cancer
[47].
From above analysis, we find specific regulation by TFs

maintained OHT cells with molecular interactions and sig-
naling pathways are different from those of surviving
MCF7 cells. These molecular interactions and signaling
pathways are often not mutually exclusive and instead
have complex interactions and cross-talk with one
another. A mutual substitution effect between these mole-
cular interactions and signaling pathways may be the pri-
mary cause of endocrine resistance in breast cancer.

Different interactive modes of TFs between MCF7
and OHT cells
Collaboration through interactions between one another
is the main manner in which TFs play a role in intracel-
lular regulation. To further understand the differences
in the TF regulatory mode between MCF7 and OHT
cells under E2 stimulation, we constructed TF regulatory
interaction networks in two cell lines using SIS scoring
and setting the mean + variance as the threshold of sig-
nificance, as shown in Figures 5 and 6 below.
Difference of regulatory patterns was apparent from

TF regulatory interaction networks. Obvious hub-TFs in

Figure 4 Significant differences were found in PolII binding patterns between MCF7 and OHT cell lines. We defined the variance of PolII
binding quantity as follows: no more than +-2.5% of the average of PolII binding quantity before and after E2 stimulation indicated that PolII
binding mode was constant; more than +2.5% of the variance in PolII binding quantity indicated that the gene was up-regulated, and less than
-2.5% of the variance indicated that it was down-regulated. The percentages of up-regulated, down-regulated and constant genes identified
based on PolII binding quantities in all 12 areas around the 34,055 TSSs of genes in MCF7 and OHT cells when stimulated by E2 appeared to be
significantly different. This finding implies great difference between the transcriptional regulation modes of two cell lines.

Table 2 Summary of regulatory TFs identified from MCF7 and OHT cells with E2 treatment.

Regulatory TFs in MCF7 Regulatory TFs in OHT

AP-2, AP-2gamma, BSAP, CACCC-binding factor, Oct-1, AHRHIF, AP-1, AP-2,

CDP CR1, c-Myb, c-Myc:Max, Crx, AR, ATF4, ATF6, BSAP,

E12, E2F, E2F-1, E2F-1:DP-1, C/EBP, C/EBPdelta, Cdc5, E2F,

E2F-4:DP-2, E47, EGR, Egr-2, E2F-1, E2F-4:DP-2, En-1, ER,

ER, ETS, GATA-2, GATA-3, Evi-1, FoxA1, FOXO1, FOXO4,

HEB, HIF-1, Hmx3, IRF-7, GATA-1, Hand1:E47, HeliosA, HFH-3,

LXR, LXR/PXR/CAR/COUP/RAR, MAZR, MTF-1, HIF-1, Ik-3, IPF1, IRF,

MYB, Ncx, Nrf-1, NRSF, LEF1TCF1, MAZR, MEIS1A:HOXA9, Msx-1,

p53, PAX6, Pax-8, SMAD-4, NF-kappaB, NF-Y, Nrf2, PPARalpha:RXR-alpha,

TCF11:MafG, USF, YY1, ZF5, RORalpha2, RP58, SF-1, SRF,

ZID TATA, TCF11:MafG, TEF, Tel-2,

TFIIA, TGIF, YY1, ZID
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Figure 5 TF regulatory interaction network in MCF7 cells. We proposed the SIS as a measure to compare the significance of the interaction between
two TFs and constructed the TF regulatory interaction network based on the SIS scores between TFs in MCF7 cell line. The nodes represent regulatory
TFs involved in interactions, and the edges represent significant interactions between TFs. The hub-TFs in MCF7 cells were E2F, E2F-1 and AP-2.

Figure 6 TF regulatory interaction network in OHT cells. We proposed the SIS as a measure for comparing the significance of the interaction
between two TFs and constructed the TF regulatory interaction network based on the SIS scores between TFs in OHT cell line. The nodes
represent regulatory TFs involved in interactions, and the edges represent significant interactions between TFs. Hub-TFs in OHT cells included C/
EBP and Oct-1, in addition to E2F and E2F-1.
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MCF7 cells were E2F, E2F-1 and AP-2; but in OHT
were C/EBP and Oct-1, in addition to E2F and E2F-1.
In MCF7 cells, E2F family was involved in cell cycle reg-
ulation and tumor promotion through the regulation of
the proto-oncogene c-Myc. However, E2F in OHT cells
could play another role, such as in CDK4/Rb/E2F tran-
scriptional axis in the hormone-independent growth of
breast cancer cells [25]. This arrangement implies that
E2Fs assist in antiestrogen resistance in estrogen-inde-
pendent breast cancers. In general, BRCA1 (breast-can-
cer-associated gene 1) interacting with Oct-1 tends to
cause breast cancer cells that show higher levels of chro-
mosomal abnormalities [48]. Additionally, Oct-1 can
bind to the promoter of ESR1 (the gene that encodes
ERalpha) to promote ER transcription. In breast cancer
cells, TMA binds to the AF2 domain of the ER to block
its activity; as a result, promoting Oct-1 in OHT can be
regarded as an adaptive response to estrogen inhibition
that estrogen-independent tumor cells undergo by gen-
erating a large number of ERs to counteract the inhibi-
tory effect of TMA. Down-regulating and inhibiting
C/EBP proteins could cause breast cancer cells to evade
apoptosis and grow in an uncontrolled fashion [49].
We investigated the C/EBP gene expression found

before and after E2 stimulation in two cell lines. C/EBP
expression was not significantly changed in MCF7 cells,
but in OHT cells, expression of C/EBP was 1788.25,
which is far less than the 2323.75 in MCF7 cells; this
finding implies that the change in the regulatory pattern
of C/EBP could be associated with estrogen resistance.
The major regulatory TFs and significant interactions
between TFs that were revealed in TF regulatory interac-
tion network further our understanding of the mechan-
ism of TAM resistance in breast cancer.

Identified important TFs and regulatory TFs with low
signal intensity
The regulatory capacity of different TFs varies greatly in
cells. The traditional linear prediction method tends to
model regulatory elements in a fixed area based on gene
expression, but it failed to predict those important TFs
with low regulation intensity. We proposed a regression
model based on the sub-regional PolII binding quantity,
which reflects the regulatory intensity of TFs in a specific
range, to find TFs that were important but had low signal
intensity. As shown in Figure 7, for some TFs (such as c-
Myc; GATA-2 in MCF7; and Evi-1 and YY1 in OHT),
their regulatory signal intensity was so large over all of
the regions that the signal fully submerged the smaller
regulatory signal intensities of other TFs. We selected the
top 5 TFs with the maximum and minimum regulatory
intensities from MCF7 and OHT and compared their
average intensity with regulatory intensity in regions TSS
-500 bp ~ +400 bp, as shown in Figure 8. Over all of

regions, regulatory intensities of the top 5 strongest regu-
latory TFs were much larger than those of the weakest
5 TFs. However, in TSS -500 bp ~ +400 bp interval, we
found that the regulatory intensity of AP-2gamma, which
was one of the smaller regulatory intensity groups, was
almost as strong as that of MYB in the maximum regula-
tory intensity group. We also found a similar phenom-
enon in OHT. Over all of regions, the regulatory
intensity of weaker TFs would be significantly enhanced
in the vicinity of its true binding sites, which would
enable our method to distinguish important regulatory
TFs with weaker signal intensities from other TFs that
have strong regulatory signals.

Regulatory role of different motifs of the same TF
To improve prediction accuracy, our model used all of
known motifs of each TF for prediction. We compared
the regulatory intensities of predicted motifs of the
same TF in all of different areas and found some inter-
esting situations.
TF motifs in same cells of same environment usually

play a similar role in regulation. Indeed, we observed
this situation in both MCF7 and OHT. As shown in
Figure 9, although different motifs of E2F-1 in MCF7
and E2F in OHT cell lines varied in terms of the quan-
tity of regulatory ability, their regulatory patterns were
very similar. However, we found motifs of the same TF
sometimes showed different patterns of regulation (see
Figure 10). In OHT, for example, motifs of AR in both
TSS -400 bp ~ +300 bp and TSS -600 bp ~ +200 bp
nearby were different and the ER and IRF motifs even
had a regulation change in the direction that emerged.
In particular, the regulatory patterns of Evi-1 over the
entire range studied were nearly opposite but their
motifs were very similar.
These identified similar or different regulatory pat-

terns of motifs confirmed that the resolution of our
model for predicting TFs was very high. The motifs of
the same TF have different regulatory patterns, which
also indicated that these TFs could have a relatively
complex regulatory manner and could play different
roles in regulation.

Discussion
Estrogen action through its cognate receptor, the ER, is
the most important mechanism in breast cancer. The
principal action modes of the ER include classical geno-
mic, non-classical genomic and non-genomic modes. In
classical genomic action mode, ER directly binds estrogen
response elements (EREs) in promoter regions of regu-
lated genes and recruits co-activators or co-repressors to
modulate gene transcription [5]. In non-classical genomic
action mode, ER does not require EREs but instead med-
iates transcription by the interactions of ERa with other
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Figure 7 Comparisons of TF regulatory ability between each interval in MCF7 and OHT cells. The horizontal axis represents different
intervals, and the vertical axis represents regression coefficient, which reflects the signal intensities of regulatory TFs. The regulatory intensities of
TFs such as c-Myc; GATA-2 in MCF7; and Evi-1 and YY1 in OHT were so large over all of the regions that the signal fully submerged those
smaller regulatory signal intensities of other TFs.
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proteins, including AP-1(Fos/Jun) [50,51], AP-2 [52,53],
C/EBP [49,54], E2Fs [55-57], FoxA1 [58,59], Oct-1
[55,60], NF-�B [51,61] and others [62-64]. In addition,
non-genomic action of estrogen often includes ligand
binding to the ER at the plasma membrane and follows
the activation of signaling pathways. It has been

demonstrated that several signaling kinases interacted
with and were activated by the ER, including IGF-1R
(insulin-like growth factor-1 receptor), Src, PI3K (phos-
phatidylinositol 3-kinase), MAPK (mitogen-activated pro-
tein kinase), protein kinases A and C and calcium
pathways [65], EGFR (epidermal growth factor receptor)

Figure 8 Comparisons of the top five TFs with the maximum and minimum regulatory intensities in MCF7 and OHT cells. The
horizontal axis represents different intervals, and the vertical axis represents regression coefficient, which reflects the signal intensities of the
regulatory TFs. The top five TFs with the maximum and minimum regulatory intensities were selected from MCF7 and OHT cells, and their
average intensities were compared with their regulatory intensity in TSS -500 bp ~ +400 bp region. Over all of the regions compared, regulatory
intensities of the top five strongest regulatory TFs were much greater than those of the weakest five TFs. However, in a specific area, such as TSS
-500 bp ~ +400 bp interval, regulatory intensity of AP-2gamma, which came from the smaller regulatory intensity groups, was almost as strong
as that of MYB in the maximum regulatory intensity group. A similar phenomenon was founded in OHT cells, too.
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Figure 9 Motifs of the same TF in all of different areas showed similar patterns of regulation. The horizontal axis represents different
intervals, and the vertical axis represents regression coefficient, which reflects the signal intensities of the regulatory TFs. The order of logos
corresponds to the respective motif. Although different motifs of E2F-1 in MCF7 cells and E2F in OHT cells varied in terms of their quantities of
regulatory ability, their regulatory patterns were very similar.

Figure 10 Motifs of the same TF in all of different areas showed different patterns of regulation. The horizontal axis represents different
intervals, and the vertical axis represents regression coefficient, which reflects the signal intensities of the regulatory TFs. The order of logos
corresponds to the respective motif. In OHT cells, motifs of AR in both TSS -400 bp ~ +300 bp and TSS -600 bp ~ +200 bp were different. The
ER and IRF motifs even exhibited a regulation change in direction. In particular, the regulatory patterns of Evi-1 over the entire range were
nearly opposite while their motifs were very similar.
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and ErbB-2, with non-genomic effects of the ER [66,67].
Furthermore, genomic and non-genomic mechanisms of
action of ER are not mutually exclusive, but many inter-
actions exist between these two modes [4].
For estrogen resistance, TAM primarily inhibits ER

action through direct competitive binding to the AF-2
domain of ER; TAM can also disrupt protein-protein
interactions between ER and its binding partners and
thus inhibit the activity of ER in supporting breast can-
cer sustainable survival [68,69]. Therefore, the expres-
sion level of ER was significantly decreased in OHT
compared with MCF7 cells, which primarily causes an
inherent resistance to endocrine therapies [70]; this phe-
nomenon was also found in our experiments. Despite
the supersensitivity and hypersensitivity to estrogen
could compensate for reduction of estrogen in estrogen-
deficient cellular environment, similar to OHT and as
shown in [71,72], it is more likely that there are different
mechanisms from the ER involved alternative growth
regulatory pathways in antiestrogen resistance to support
tumour cells’ sustainable survival. According to our pre-
dictions, both NF-�B and AP-1, which are ER-associated
TFs and co-activators and usually promote the ER effect
through protein-protein interactions, could be found in
specific regulatory TFs of OHT cells. Previous studies
showed phosphorylation and over-expression of these co-
regulators can cause an increase in ER-mediated tran-
scription associated with endocrine resistance [73]. On
the other hand, under TAM treatment, p38g/MAPK was
selectively activated, c-Jun transcription was stimulated,
and ER signaling was switched from the classical ERE
binding to an interaction with AP-1. Both of these led to
increased hormone sensitivity and promoted breast can-
cer growth [74]. TFs participate in both molecular inter-
actions and signaling pathways may be primarily
responsible for antiestrogen resistance in breast cancer.
In redox environment, ROS (reactive oxygen species)

can lead to breast cancer cells proliferation either through
AP-1 and NF-�B binding sites or through the MAPK/AP-
1 and ROS/NF-�B pathways [75]. Oxidative stress is impli-
cated in increased AP-1 DNA binding with c-JUN NH2
terminal kinase activity in TAM-resistant breast cancer
[63]. Furthermore, some experimental studies reported the
crosstalk between ER, especially mitogen-activated protein
kinase MAPK/ERK and phosphatidylinositol 3-kinase
PI3K/AKT signaling pathways along with signaling cas-
cade up-regulation, which leads to the activation of AP-1,
NF-�B and HIF-1, could be common in production of
resistance to all forms of endocrine therapy [76]. Active
NF-�B induced neoplastic transformation of mammary
cells [77], and inhibition of NF-�B in breast cancer cells
can induce spontaneous apoptosis [78]. Regulation of TFs
through both protein-protein interactions and signaling

pathways to adapt to different cellular environments could
be one of resistant mechanism in endocrine therapy [79].

Conclusions
Breast cancer that is resistant to antiestrogen therapy
and relapse has been one of the most difficult problems
in clinical treatment. Although resistance to antiestrogen
in breast cancer has been extensively studied, its
mechanism has not yet been completely elucidated. In
this paper, we studied TF regulatory roles in resistance
to antiestrogen therapy in breast cancer through our
two-step workflow. Large differences in regulatory TF
groups were found between estrogen-dependent MCF7
and estrogen-independent OHT cells. The mutual regu-
latory TFs found in both MCF7 and OHT cells were
primarily involved in proliferation, differentiation and
apoptosis. We found some regulatory TFs, such as
AP-1, C/EBP, FoxA1, GATA1, Oct-1 and NF-�B, main-
tained OHT cells through molecular interactions or sig-
naling pathways that were different from the surviving
MCF7 cells. Regulation of TFs such as AP-1 and NF-�B
through both protein-protein interactions and signaling
pathways to adapt to different cellular environments
could be one of resistant mechanism in endocrine
therapy.
Different action modes in the two types of cells were

compared, and the TF regulatory interaction networks
of MCF7 and OHT were further constructed. Obvious
hub-TFs in MCF7 cells were E2F, E2F-1 and AP-2; how-
ever, additional visible hub-TFs in OHT cells included
C/EBP, Oct-1 outside E2F and E2F-1. Major regulatory
TFs and the significant interactions between TFs that
were revealed in TF regulatory interaction networks
further our understanding of the mechanism of TAM-
resistance in breast cancer, and these regulatory TFs
and their interactions could also provide new proposed
targets for treatment.
We also compared predictions obtained from gene

expression data and PolII binding quantity data; based
on the same analysis workflow, the results showed that
PolII binding quantity data were able to provide better
sensitivity and specificity for TF regulation prediction.
The traditional linear prediction method model gene

expression and regulatory elements in a fixed area, but
this approach failed to predict TFs that were important
but had low regulation intensities because their regula-
tory signal intensities was overwhelmed by signal inten-
sities of strong regulatory TFs. We proposed a workflow
building regression model based on PolII binding quan-
tity which reflects regulatory intensities of TFs in a spe-
cific range in a manner. Our workflow could detect
those important regulatory TFs with weaker signal
intensities.
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TF motifs in same cells and same environment are
usually expected to play similar roles in regulation. We
compared the regulatory intensities of these motifs of
the same TFs in all of the different areas and found that
some played similar regulatory roles in both MCF7 and
OHT. But motifs of the same TFs sometimes showed
different regulatory patterns. These identified regulatory
patterns not only demonstrated the high resolution of
our model in prediction of TFs but also implied these
TFs have a complex regulatory manner and play differ-
ent roles in regulation depending on cellular environ-
ment or co-factors.
Focusing on the level of transcription regulation allows

good predictive accuracy in our analysis workflow. We
also believe that our flexible workflow can be further
integrated into an existing analytical framework of epige-
netic modification or post-transcriptional regulation,
which can be used to obtain more meaningful results.
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