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A hallmark of biological systems is that particular functions and
outcomes are realized in specific contexts, such as when particular
signals are received. One mechanism for mediating specificity is
described by Fisher’s “lock and key” metaphor, exemplified by
enzymes that bind selectively to a particular substrate via specific
finely tuned interactions. Another mechanism, more prevalent in mul-
ticellular organisms, relies on multivalent weak cooperative interac-
tions. Its importance has recently been illustrated by the recognition
that liquid-liquid phase transitions underlie the formation of mem-
braneless condensates that perform specific cellular functions. Based
on computer simulations of an evolutionary model, we report that the
latter mechanism likely became evolutionarily prominent when a large
number of tasks had to be performed specifically for organisms to
function properly. We find that the emergence of weak cooperative
interactions for mediating specificity results in organisms that can
evolve to accomplish new tasks with fewer, and likely less lethal, mu-
tations. We argue that this makes the system more capable of under-
going evolutionary changes robustly, and thus this mechanism has
been repeatedly positively selected in increasingly complex organisms.
Specificity mediated by weak cooperative interactions results in some
useful cross-reactivity for related tasks, but at the same time increases
susceptibility to misregulation that might lead to pathologies.

weak cooperative interactions | specificity | evolvability | gene regulation |
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Living organisms have evolved to perform diverse tasks with
functional specificity using different mechanisms (1, 2). Un-

like highly specific enzymes that have structured recognition
domains, many proteins have intrinsically disordered regions
(IDRs) that do not fold into ordered structures (3). These pro-
teins often mediate specific biological outcomes through multi-
valent weak cooperative interactions (WCI). For example, the
highly disordered protein histone H1 binds to its chaperone
prothymosin-α with specificity (4) to enable chaperone function.
This specificity is obtained not through structured “lock and key”
interactions, but through multiple cooperative interactions based
on coarse-grained associations of short tracks of amino acids of
certain lengths and charge patterns, and lack of aromatic side
chains. Many cytoplasmic proteins contain multiple recognizable
domains (such as SH2 and SH3), which contain low-affinity
motifs in disordered backgrounds, which regulate specific bi-
ological outcomes via multivalent WCI (3, 5). Proteins with
IDRs that interact through such interactions are common in
liquid-like condensates (6–8) that form in the cytoplasm and the
nucleus to mediate specific biological functions by compart-
mentalizing particular biochemical pathways.
The most common and rapidly evolving molecular feature of

biological systems is changes in gene regulation. In prokaryotes,
transcription is regulated by proteins that bind to promoters with
high sequence specificity. In mammalian cells, activation of RNA
Pol II at the transcription initiation site frequently depends on
the binding of multiple proteins to distal noncoding DNA ele-

ments called enhancers. It is widely appreciated that the number
of enhancers and their constituents change rapidly during evo-
lution (9) and that this variation is critical for functional and
morphological differences. Many enhancer binding proteins ex-
hibit specificity of binding to a particular enhancer because of
cooperative interactions with other proteins (10). Approximately
52% of DNA and 44% of RNA binding proteins in humans
contain IDRs greater than 50 amino acids in length (nearly
twofold more common than in the entire proteome). Many of
these have been shown to form liquid-like condensates at high
concentrations (7), and at lower concentrations when mixed with
RNA (11, 12). Clusters of enhancer elements in close physical
proximity, known as super-enhancers, regulate the transcription
of genes important for maintaining cell identity (13, 14). Recent
evidence (15, 16) suggests that multivalent WCI among tran-
scription factors, coactivators, and other transcriptional ma-
chinery result in their accumulation at genes regulated by SEs
by forming a phase-separated condensate. Because of the co-
operative nature of phase transitions, this phenomenon occurs
when upstream signals, valency of interactions, or concentration
exceeds a sharp threshold (i.e., with functional specificity).

Significance

Functional specificity in biology is mediated by two classes of
mechanisms, “lock–key” interactions and multivalent weak
cooperative interactions (WCI). Despite growing evidence that
WCI are widely prevalent in higher organisms, little is known
about the selection forces that drove its evolution and re-
peated positive selection for mediating biological specificity in
metazoa. We report that multivalent WCI for mediating bi-
ological specificity evolved as the number of tasks that or-
ganisms had to perform with functional specificity became
large (e.g., multicellular organisms). We find that the evolution
of multivalent WCI confer enhanced and robust evolvability to
organisms, and thus it has been repeatedly positively selected.
Thus, we provide insights on the evolution of WCI and, more
broadly, on the evolution of evolvability.
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Specificity mediated by multivalent WCI is more prevalent in
organisms that have evolved more recently (1). Examples that
highlight this evolutionary trend include the observation that the
fraction of the proteome containing IDRs is higher in more re-
cently evolved organisms (17), gene regulation in mammals
versus prokaryotes noted above, and pathogen recognition me-
diated by multivalent WCI in vertebrate adaptive immunity (18).
Other examples of WCI can be found in signal transduction
pathways, extracellular matrix variation, and various cytoskeletal
processes (1).
Despite these observations, little is known about the selection

forces that drove the predominance of multivalent WCI in me-
diating biological specificity in more recently evolved organisms.
Here, we develop an easily interpretable model that is applicable
to a broad class of biological processes and systems and use it to
simulate evolution on a computer. Our results provide important
insights into why WCI evolved, why it has been repeatedly se-
lected across metazoa, and more generally on the evolution
of evolvability.

Model Development and Methods
We consider a population of organisms that evolve as the
number of tasks that they need to perform to function properly
increases. Each organism has a number of genes, and the cor-
responding gene products can potentially perform the tasks. We
ignore epistatic interactions between genes, but different gene
products can potentially cooperate to perform functions together
as described below.
The tasks that organisms must perform with functional spec-

ificity can be quite complex (e.g., gene regulation, stress re-
sponses, immune responses), but they are considered to be
predicated on protein–protein recognition. Thus, our model is
based on interactions between gene products and the tasks that
they must perform. In performing a task with functional speci-
ficity the protein–protein interaction could have lock–key char-
acteristics or be mediated by multivalent WCI between proteins.
Inspired by models of protein–protein interactions where a

few characteristics determine interaction strengths (19), each
task and gene product is associated with specific values of a set
of characteristics important for their interactions. The value of
each relevant characteristic (e.g., hydrophobicity) of a particular
task is represented by its position on an axis (Fig. 1A). Thus, each
task is specified by its positions on different axes that describe
each characteristic; i.e., by the position of the task in the space
spanned by the axes corresponding to interaction characteristics.
For brevity, hereafter we will refer to this space as “characteristic
space.” The gene products that perform the tasks are also rep-
resented by positions in a characteristic space that describes in-
teraction characteristics that match those that define the tasks.
For example, if one axis in the task characteristic space corre-
sponds to hydrophobicity of the tasks, the corresponding axis in
the characteristic space in which gene products are represented
define the latter’s functional hydrophobicity. Alternatively, if a
particular axis in the characteristic space for tasks represents
positive charge, the corresponding axis in the characteristic space
for gene products represents negative charge. The position of
each gene product in its characteristic space is specified by how
well matched each of its interaction characteristics is with re-
spect to the characteristics that define the tasks. So, given a set
of interaction characteristics defining tasks, there is a known
mapping between the task characteristic space and that in which
the gene products are represented. Using this mapping, every
axis in the gene product characteristic space can be made to
coincide with the corresponding axis in the task characteristic
space. For example, for charges, the two axes would coincide
upon reversing the sign of the axis in the gene product charac-
teristic space. So, in our model, we assume that the mapping has
been applied, and thus, the closer a gene product and a task are

on the same axis, the more matched they are with respect to the
corresponding characteristic, thus contributing to a favorable
interaction. Considering all of the characteristics together, the
closer a task and a gene product are in characteristic space (Fig.
1A), the more favorable their functional interaction.
To construct a general model applicable to diverse examples

where WCI have evolved to mediate specificity, we do not
specify the particular characteristics that define the tasks. They
could be different for each example, and given the way we have
defined the model, our results would still be applicable. The
number of axes corresponds to the number of characteristics
required to describe the protein–protein interactions that pred-
icate tasks being performed. We assume that the number of axes
needed is not large, since the strength of protein–protein inter-
actions is usually determined by a small number of key relevant
quantities (charge, charge distribution, hydrophobicity). Our
qualitative results are insensitive to the particular choice of a
finite number of axes (SI Appendix, Figs. S9–S11).
The fitness of an organism depends on how well its gene

products perform the tasks. If a gene product is within a short
distance, e1, of a task (Fig. 1A), it is considered to perform this
task with functional specificity via strong interactions. If the
distance between a task and a gene product is within a larger
distance, e2, then the task is considered to be done less com-
pletely via weak interactions. If a gene product is located a dis-
tance further away from the task than e2, then the interactions
are too weak for the task to be done by this gene product.
If two or more gene products are within a short distance, e3,

from each other, they can interact with each other and poten-
tially act cooperatively to complete a task with functional spec-
ificity although each gene product interacts weakly with the task
(i.e., via multivalent WCI). The free energy of interaction be-
tween a task and a gene product is considered to be a function of
distance as shown in Fig. 1B. We model the cooperative action of
gene products within a distance e3 from each other by adding up
their interaction free energies corresponding to a task (mathe-
matical details in SI Appendix, Supplementary Information Text).
If the resulting number exceeds the value of the free energy
corresponding to a distance of e1 for a single gene product
interacting with a task, then the gene products are considered to
perform the task with functional specificity. Thus, multiple gene
products can cooperatively perform a task with specificity via
multivalent WCI if their interaction free energies with the task
add up to be at least as favorable as that corresponding to a
single gene product that performs a task in a lock–key fashion
(located within a distance equal to e1 of the task).
Given a set of tasks, we define a function, Fj, for organism, j, as

follows:

Fj = λ1ðM −#  tasks  done  by  jÞ+ λ2ðM   −  #  tasks  done  with 

functional  specificity  by  jÞ+ λ3Gj,

[1]

where Gj is the number of genes in organism, j, and M is the
number of tasks to be performed for proper function. The fitness
of organism, j, is defined as fj = e−Fj. The first term in Eq. 1makes
organisms that perform the tasks, at least poorly, have a higher
fitness than those that do not. The second term makes organisms
that perform more tasks with functional specificity more fit. The
third term makes organisms with bigger genomes less fit than
their peers. The quantities λ1, λ2, and λ3 represent the relative
weights of these three factors, or selection forces, in determining
an organism’s fitness.
We initiate the evolutionary dynamics with a single task that

must be performed, and each organism in the population has a
single gene. The gene product of each organism is assigned to a
randomly chosen point in characteristic space. The organisms
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evolve by mutation, gene duplication, and gene loss (Fig. 1C).
Recombination is unlikely to affect the qualitative behavior of the
model unless the recombination rate is unusually large. We are
concerned here with the evolution of WCI as a mechanism for
functional specificity, and this mechanism is more prevalent in
higher organisms where horizontal gene transfer is less important.
Therefore, we also do not consider horizontal gene transfer.
The organisms evolve according to standard Wright–Fisher

evolutionary dynamics with a fixed number of organisms, N, in

the population (Fig. 1D). At each time step, the genome of every
organism can potentially undergo mutation, gene duplication,
and gene loss. When a gene mutates, the location of its gene
product in characteristic space is changed by translating it in a
randomly chosen direction by a random distance whose average
value is e1. The mutation rate is chosen such that, on average, in
every organism, one gene is likely to mutate every two time steps.
Gene duplication occurs at one-tenth the rate of mutation. A
duplicated gene makes a gene product that occupies exactly the
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Fig. 1. Representation of the evolutionary model. (A) A schematic depiction of the space that represents the gene products of organisms and the tasks that
they need to perform to function properly. Each axis describes a particular characteristic of a task or matching characteristic in a gene product that determines
their interactions (seeModel Development and Methods). Tasks are shown as stars and gene products as red dots. When a task and a gene product are within
a distance equal to e1, the gene product performs the corresponding task with high specificity. When a task and a gene product are within a distance equal to
e2, the gene product performs the corresponding task incompletely. When two gene products have closely matched interaction characteristics, they can act
cooperatively (indicated with a line connecting them above), to perform tasks together (see Model Development and Methods). (B) The free energy of
interaction between a task and a gene product is defined to be a function of the distance between a task and a single gene product as shown in the graph.
The interaction free energy is parabolic when the task-gene distance is less than e2 and becomes 0 when the distance is larger than e2. As defined in Model
Development and Methods, for cooperating gene products, their free energies with a given task are added up. (C) Schematic depiction of the processes of
gene mutation, loss, and duplication included in the evolutionary model. For example, in this schematic the orange gene has mutated to black, the yellow
gene is lost, and the purple gene is duplicated. (D) Depiction of the model for evolutionary dynamics (only one generation of evolution is depicted).
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same location in characteristic space as its copy. With time, the
two genes, and hence their gene products, can diverge from each
other and potentially perform different tasks (or functions).
Gene loss occurs at the same rate as duplication. After mutation,
gene duplication and loss are attempted with the probabilities
specified above, each organism can acquire a potentially new
genome, with new coordinates in characteristic space for its gene
products (Fig. 1D).
The probability that an organism will produce a progeny (or be

positively selected) in this evolutionary time step is then calcu-
lated as follows:

pjs =
fj

PN
j=1fj

, [2]

where pjs is the probability that organism j will be present in the
next time step of evolution. After this selection step, the number
of organisms that produce a progeny is likely to be less than N
because some organisms die without producing progeny as they
are not sufficiently fit. To keep the population size constant as
per Wright–Fisher dynamics, we rescale the total number of
organisms to remain equal to N when the next time step begins
(Fig. 1D). The proportion of organisms with a particular genome
is kept the same as before rescaling (i.e., after selection). This
evolutionary process continues in subsequent time steps. The
stochastic processes described above are simulated using a Monte
Carlo computational procedure.
We characterize the system using the following variables: (i)

the average number of genes in an organism in the population;
(ii) the number of tasks completed with functional specificity by
an organism via WCI involving multiple gene products, averaged
across the population; (iii) the number of tasks completed with
functional specificity by single gene products in an organism via
lock–key interactions, averaged across the population. We carry
out the evolutionary dynamics until a “steady state” is reached
with respect to these variables; i.e., the system ceases to evolve
further because a fitness peak has been reached (SI Appendix,
Fig. S1). We then introduce a new task in characteristic space
(the value of M increases by one in Eq. 1) and carry out the
evolutionary dynamics again until steady state, starting from the
state of the organisms that were evolutionary fit for the previous
tasks. Thus, the evolutionary history of the organisms is explicitly
incorporated. This process is repeated as new tasks are in-
troduced. Thus, we study whether, and why, mechanisms for
regulating specificity evolve as organisms have to perform more
tasks specifically to function properly (e.g., as multicellular or-
ganisms became more complex). An important variable is the
extent to which the newly introduced task is correlated, or sim-
ilar, to the existing tasks. We have studied several cases that are
described in Results.
The parameters in the model are e1, e2, e3, λ1, λ2, λ3, and the

extent to which newly introduced tasks are correlated with the
existing ones. Based on parameter sensitivity studies (SI Ap-
pendix, Figs. S2–S7), we note that the qualitative results that we
report are robust as long as λ1 and λ2 are greater than λ3. If λ3
becomes too large, the introduction of new genes leads to severe
fitness penalties. So, when the number of tasks that must be
performed for proper function becomes large, the organisms
prefer to have reduced fitness by not functioning properly (i.e.,
not completing the necessary tasks) rather than evolve new
genes. This is tantamount to being unable to evolve more com-
plex multicellular organisms, and so we do not consider this case
further. The values of the parameters used to obtain the results
discussed below are e1 = e3 (which equals the size of a single
mutation step in our model), e2 = 5e1, λ1 = λ2 = 1, and λ3 = 0.1.
The dependence of the results on changing the value of e3 and λ1
will be discussed below. Choosing e1 to be the same as the size of

a single mutation implies that the condition for functional
specificity via lock–key fit is stringent.

Results
We first studied a situation wherein each new task is introduced
at a randomly chosen location in characteristic space that is at a
distance equal to 1.8e2 away from any one of the tasks that had to
be previously performed. So, in terms of its interaction charac-
teristics, the newly introduced task has some similarity with
previous tasks. Our simulation results (Fig. 2) show that WCI
evolve as a mechanism for mediating functional specificity as the
number of tasks that organisms have to perform to function
properly increases (or organisms become more complex). Fur-
thermore, as organisms evolve to perform more tasks, the pro-
portion of the tasks that they carry out via WCI increases (Fig.
2). These results are consistent with the observation that this
mechanism for mediating functional specificity is prevalent in
multicellular organisms. One reason that WCI evolved as a
mechanism for biological specificity is because this allows similar
tasks to be performed with some of the same cooperating com-
ponents, and therefore, the number of genes required for or-
ganisms to function properly becomes less than the number of
tasks to be performed (Fig. 2). This is consistent with the ob-
servation that proteins with similar IDRs (and even the same
proteins) are involved in regulating different genes and in
forming condensates at different super-enhancers. The same is
true for components that form condensates to mediate other
biological functions in the cytoplasm and the nucleus. We
have carried out calculations with different levels of correla-
tion between new and old tasks (i.e., values of task-task dis-
tance other than 1.8e2), and the qualitative behavior of our

Fig. 2. WCI evolve as organisms become more complex. This figure shows
the variation of the average number of genes in organisms and the number
of tasks specifically done via WCI between gene products as the number of
tasks required for an organism to function properly increases (or organisms
become more complex). The number of tasks performed by single gene
products is also shown. When the number of tasks equals 10, 33% of tasks
are done via WCI, and when the number of tasks equals 40, this proportion is
56%. Three characteristics describe the interaction characteristics of tasks
and gene products.
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model is unchanged (SI Appendix, Fig. S4) unless the new tasks
become totally uncorrelated.
One implication of the results described so far is that as a

greater proportion of tasks are performed via WCI (as the
number of tasks increases), the extent to which gene products
are cross-reactive to multiple tasks also increases. The results in
Fig. 3A show that this is indeed the case. However, the cross-
reactivity is limited to similar tasks. This can be seen clearly by
considering a situation where a newly introduced task can either
be closely related to one of the previous tasks or not. If new tasks
that are related to at least one previous task are introduced more
frequently than tasks that are unrelated (75% chance for a new
task to be at a distance 1.8e2 away from a previous task and 25%
chance to be at least at a distance 3.0e2 away from all previous
tasks), the tasks will be distributed in characteristic space as
disjoint groups of related tasks (Fig. 3B). One group may cor-
respond to regulation of gene transcription; another could be
signaling through SH2/SH3 domains in the cytoplasm. Fig. 3B
illustrates that gene products that act via WCI are cross-reactive
to a limited set of tasks that are closely related. Quantitatively,
the number of tasks that are performed by the same gene
products acting cooperatively rapidly declines as the interaction
characteristics of the tasks become less related (Fig. 3C).
Some cross-reactivity for similar tasks is an inherent property

of the above cooperative model, but the extent of cross-reactivity
is limited as otherwise task specificity would be lost. In cells,
other mechanisms can be coupled to multivalent WCI to limit
cross-reactivity. For example, master transcription factors bind

with lock–key type specificity to particular DNA binding sites.
Only then can interactions between transcription factor IDRs
and that of transcriptional coactivators, chromatin remodelers,
and RNA Polymerase II occur through multivalent WCI if spe-
cific upstream signals have modified the IDRs to have a valency
exceeding a threshold. However, the coactivators, chromatin
remodelers can exhibit some cross-reactivity (as in Fig. 3) to
regulate related functions, such as genes bound by different
master transcription factors. The degree of cross-reactivity could
also be limited by topological barriers such as chromosomal
domains or localization in subcellular compartments. However,
the cross-reactivity that accompanies the evolution of WCI for
biological specificity could, when altered by mutation or modi-
fication, cause serious pathologies. For example, protooncogenes
can be activated when DNA rearrangements create a fusion
protein that targets transcriptional activation domains in their
vicinity (20, 21). Also, cellular states that generate abnormally
large condensates (22) formed by multivalent WCI could se-
quester high levels of client proteins important for the normal
functioning of other genes.
Multivalent WCI as a mechanism underlying biological speci-

ficity are prevalent in many organisms across metazoa. We won-
dered whether the emergence of this mechanism makes organisms
more evolvable, thus explaining why it has been repeatedly posi-
tively selected and its more prominent role in multicellular
organisms. The properties of more evolvable systems (1) in-
clude the following: (i) Reduced constraints in maintaining old
functions when a new function has to be evolved and (ii) fewer

B

A C

Fig. 3. Limited cross-reactivity accompanies the evolution of WCI. (A) Variation of the extent of cross-reactivity with the evolution of WCI. The x axis shows
the number of tasks done by the same cluster of gene products, and the y axis is the percentage of such clusters that are preforming two, three, four, and five
tasks in this cross-reactive fashion. (B) Snapshot of simulation results when new tasks are introduced such that they are either closely related to tasks from an
earlier era or not. Two modules of such related tasks are depicted in characteristics space. Large spheres with radius e2 are drawn around each task. Brown
spheres show tasks being performed by single-gene products, blue spheres show closely related tasks being performed by clusters of cooperating gene
products. Small spheres correspond to gene products. (C) The percentage of two tasks completed by the same gene products is high only for related tasks.
Three characteristics describe the interaction characteristics of tasks and gene products.
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mutations required to produce novel phenotypic traits. Thus, to
explore this question, we calculated the time required for organ-
isms to evolve to perform the tasks required for proper function
after a new task is introduced. We compared the results of sim-
ulations of our model to one where WCI are not allowed; i.e.,
regardless of the similarity between the interaction characteristics
of gene products, they are not allowed to act in concert to per-
form tasks with functional specificity. As Fig. 4 shows, the model
allowing the evolution of WCI exhibits shorter response times and
requires fewer mutations to respond to new tasks. Increasing
values of e3 also make mutations increasingly less likely to be le-
thal when WCI are allowed (SI Appendix, Fig. S8). This is because
a deleterious mutation in any one gene product involved in me-
diating functional specificity via multivalent WCI is less likely to
result in loss of function (task not performed) compared with the
effect of a similar mutation for lock–key interactions. We conclude
that the evolution of WCI for functional specificity confers in-
creased and robust evolvability to organisms, as they can evolve
to perform new tasks while maintaining old functions with fewer
mutations and increased tolerance to deleterious mutations. This
result is reinforced by a recent report demonstrating rapid evo-
lution of human IDR proteins (23). Notice that evolvability emerges
in our model without violating causality, i.e., this mechanism evolves
based on past selection forces and not a pathological knowledge
of the future.
The qualitative results that we have described hold if there is

no fitness advantage associated with an organism performing a
task poorly (λ1 equals zero in Eq. 1). The only difference is that
the response times for organisms to evolve to perform new tasks
increase (SI Appendix, Fig. S3). That is, the system becomes less
evolvable if there is no fitness advantage for performing tasks
poorly. This is because the lack of ability to be positively selected
while performing tasks poorly constrains the mutational trajec-
tories that have to be followed to perform new tasks while not
abrogating old functions. A similar observation has been made in
laboratory experiments following the mutational pathway of a
kinase as it evolves to catalyze a new substrate (24). Mutations
are first observed in the kinase’s allosteric pocket resulting in
conformational flexibility that enables it to act on the old and
new substrates suboptimally. Then, a mutation in the catalytic
site is acquired to change specificity. A similar effect has also
been described during the evolution of cross-reactive antibodies
during germinal center reactions (25).

Discussion
Biological systems carry out tasks with functional specificity. We
have considered a model where the ability of an organism to
carry out tasks is predicated on protein–protein recognition
mediated by either lock–key or multivalent WCI. The ability of
an organism to function properly, or its fitness, depends upon
whether it can carry out a set of tasks with functional specificity
(described by the first two terms in Eq. 1). We simulated the
evolution of a population of such organisms as the number of
tasks that need to be carried out for organisms to function
properly progressively increases (larger values of M). The fitness
landscape, or the genotype–phenotype relationship, changes as
M increases. Thus, the organisms mutate to try to achieve a
phenotype that is more fit—viz., a phenotype that can carry out
the larger number of required tasks with functional specificity.
Our results show that WCI emerge as a prominent mechanism
for mediating specificity as organisms have to carry out larger
number of tasks with specificity. We argue that this is the reason
that WCI are more prominent in multicellular organisms. The
evolution of WCI as a mechanism for mediating specific bio-
logical functions allows higher organisms to carry out diverse
tasks with a relatively small genome (in our model genome size is
constrained by the third term in Eq. 1).
Our model also shows that the emergence of WCI makes or-

ganisms more evolvable in that, as new tasks are introduced, the
population of organisms can evolve to higher fitness phenotypes
faster and with fewer mutations. Furthermore, as organisms
mutate to try and acquire higher fitness, mutations are less likely
to be lethal after WCI emerge as a mechanism that mediates
functional specificity. In other words, the fitness landscape de-
scribing the genotype–phenotype relationship becomes less rug-
ged when WCI evolve. It has been noted (1, 2) that the more
exact or precise the requirements for function, the less evolvable
the system is. Performing tasks with functional specificity medi-
ated by WCI does not require the level of biochemical pre-
cision characteristic of lock–key interactions, and thus the system
becomes more evolvable. We argue that WCI have been repeat-
edly positively selected in higher organisms because of the en-
hanced evolvability conferred by this mechanism for functional
specificity. Indeed, the evolution of WCI may have given meta-
zoans the great capacity for change whose consequences we ob-
serve today.

A B

Fig. 4. The evolution of WCI for biological specificity makes organisms more evolvable. (A) The response time for the organisms to evolve to function
properly after a new task is introduced is shown as a function of the number of tasks (or complexity). Results are shown for both the full model and one
wherein cooperative interactions between gene products is not allowed. (B) The number of mutations (which includes gene mutation, duplication, and loss)
that the average organism needs to acquire to function properly after a new task is introduced is shown as a function of the number of tasks (or complexity).
Results are shown for both the full model and one wherein cooperative interactions between gene products is not allowed.
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Our model is consistent with the observation that weak in-
teractions have evolved to be highly relevant for gene regulation
in metazoa. The IDRs of transcription factors and coactivators
leverage WCI to drive condensate formation at regulatory ele-
ments to mediate transcription in higher organisms. This is in
contrast to prokaryotes, where gene regulation is largely dictated
by lock–key interactions that promote localization of TFs to
specific promoter sequences. The biochemical rules for the WCI
that determine interactions between IDRs is not as precise as
specific enzyme–substrate interactions. Thus, the same IDRs can
be employed to perform related functions, and IDRs can evolve
readily with few mutations to regulate new functions. Thus, these
motifs have been conserved in higher organisms. In the future it
will be interesting to see the molecular grammar that determines
WCI in these contexts.
A much higher fraction of proteins (17) in multicellular or-

ganisms, compared with prokaryotes, possess IDRs, and these
IDRs are strongly enriched in factors controlling regulatory
processes. These IDR regions, frequently in combination with
RNA and/or DNA binding, provide some of the valency neces-
sary to form condensates and concentrate factors in regulatory
pathways (11, 12). Recent analysis (23) of the rate of evolu-
tionary change in the IDR regions suggests that they are more
tolerant of mutational variation than regions with structured
domains but are nevertheless under genetic constraint. Since
regulatory variation is thought to be the most rapidly changing
aspect of evolutionary change in multicellular organisms, it is
perhaps not surprising that WCI are concentrated in these net-
works (26).
The same type of reasoning probably explains the common

observation that many regulatory RNA binding proteins in multi-
cellular organisms possess limited sequence specificity (three to
four nucleotides), while the total sequence complexity of expressed
coding and noncoding RNAs in cells is enormous. Similar exam-
ples can be found in signal transduction pathways, extracellular
matrix variation, and various cytoskeletal elements (1). In their
discussions about evolvability and facilitated variation (1, 2),
Kirschner and Gerhart anticipated WCI as an important aspect
of multicellular biology, proposing that “weak linkage,” com-
partmentalization, and redundancy contribute to constraint reduc-
tion, thus resulting in the robustness and observed regulatory
variability in these organisms. Our model predicts the evolution
of these characteristics (i.e., WCI) in organisms when they are chal-
lenged with new tasks, under constraints that limit the unbounded
growth of the number of genes. Simply stated, these features—
and evolvability—emerge organically from the known physical struc-
tures and interactions of proteins, RNA, and DNA on which the
model is based.

This model describes many types of specific biological func-
tions beyond gene regulation. For example, unlike more ancient
organisms, vertebrates have an adaptive immune system that can
mount pathogen-specific responses against a diverse and evolv-
ing world of microbes (18). The immune system is routinely
faced with performing new tasks (recognize foreign pathogens
not encountered previously) with functional specificity. One way
it achieves this goal is to generate diverse receptors of B and T
lymphocytes that interact with pathogenic markers. Importantly,
functional specificity for particular pathogenic markers is achieved
by the receptors via multivalent WCI (19, 27–29). The receptor on
a particular lymphocyte commonly exhibits cross-reactivity to a
few pathogen-derived ligands (30). Some degree of cross-reactivity
helps with recognizing a vast space of antigens, but pathogen
specificity requires that responses are not too broadly cross-reactive.
This limited cross-reactivity naturally emerges from our model
as cross-reactivity is limited to similar tasks.
Many studies have considered the evolution of modularity

when there is a frequently changing environment (31–34). Mod-
ules are units with highly interconnected moieties that interact
with other modules via very few interactions. Modularity make
biological systems more evolvable (35) because the modules can be
combined with each other differently to carry out new functions,
much like subroutines in computer programs can be reused for
different computations. Our focus has been on multivalent WCI
where the participating components interact with each other via
numerous weak interactions to mediate functional specificity while
making organisms more evolvable.
The need to efficiently perform new tasks while retaining the

ability to functionally execute previously learned tasks is com-
mon in many biological systems. For example, this is character-
istic of learning by the nervous system. It may also be a characteristic
of how computational machine learning algorithms trained on
large datasets to predict specific outcomes could be adapted to
predict new outcomes. We suspect that the fundamental aspects of
the model we have described may be relevant to these situations
as well.

Materials and Methods
The computer code used to generate the results will be made available upon
request.
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