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Over the last years insight in the complex interactions between innate and adaptive immu-
nity in the regulation of an inflammatory response has increased enormously. This has
revived the interest in stress proteins; proteins that are expressed during cell stress. As
these proteins can attract and trigger an immunological response they can act as important
mediators in this interaction. In this respect, of special interest are proteins that may act as
modulators of both innate and adaptive immunity. Heat shock proteins (HSPs) are stress
proteins that have these, and more, characteristics. More than two decades of studies on
HSPs has revealed that they are part of intrinsic, “natural” mechanisms that steer inflamma-
tion. This has provoked comprehensive explorations of the role of HSPs in various human
inflammatory diseases. Most studies have focused on classical autoimmune diseases.
This has led to the development of clinical studies with HSPs that have shown promise in
Phase II/III clinical trials. Remarkably, only very little is yet known of the role of HSPs in
atopic diseases. In allergic disease a number of studies have investigated the possibility
that allergen-specific regulatoryT cell (Treg) function is defective in individuals with allergic
diseases. This raises the question whether methods can be identified to improve the Treg
repertoire. Studies from other inflammatory diseases have suggested HSPs may have such
a beneficial effect on the T cell repertoire. Based on the immune mechanisms of atopic
diseases, in this review we will argue that, as in other human inflammatory conditions,
understanding immunity to HSPs is likely also relevant for atopic diseases. Specifically,
we will discuss why certain HSPs such as HSP60 connect the immune response to envi-
ronmental antigens with regulation of the inflammatory response. Thus they provide a
molecular link that may eventually even help to better understand the immune pathological
basis of the hygiene hypothesis.
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INTRODUCTION
Over the last years insight in the complex interactions between
innate and adaptive immunity in the regulation of an inflam-
matory response has increased enormously. This has revived the
interest in stress proteins; proteins that are expressed during cell
stress. As these proteins can attract and trigger an immunological
response they can act as important mediators in this interaction.
In this respect, of special interest are proteins that may act as
modulators of both innate and adaptive immunity. Heat shock
proteins (HSPs) are stress proteins that have these, and more,
characteristics. More than two decades of studies on HSPs has
revealed that they are part of intrinsic, “natural” mechanisms that
steer an inflammatory response (Pockley, 2003; van Eden et al.,
2005). This has provoked comprehensive explorations of the role
of HSPs in various human inflammatory diseases. Most of these
studies have focused on classical autoimmune diseases such as type
I diabetes (IDDM), rheumatoid arthritis (RA), and juvenile idio-
pathic arthritis (JIA; Abulafia-Lapid et al., 1999; de Kleer et al.,
2003, 2004). This has led to the development of clinical studies
with HSPs that have shown promise in Phase II/III clinical trials in

both IDDM and RA (Albani et al., 1995a; Raz et al., 2001; Prakken
et al., 2004).

Remarkably, only very little is yet known of the role of HSPs
in atopic diseases. Based on the immune mechanisms of atopic
diseases, in this review we will argue that, as in other human
inflammatory conditions, understanding immunity to HSPs is
likely also relevant for atopic diseases. Specifically, we will discuss
why certain HSPs such as HSP60 connect the immune response
to environmental antigens with regulation of the inflammatory
response. Thus, they provide a molecular link that may eventually
even help to better understand the immune pathological basis of
the hygiene hypothesis: an important concept relating the increase
in the prevalence of atopic disease with exposure to microbes or
microbial products early in life.

ALLERGY
Atopy is the predisposition to develop allergic diseases like atopic
dermatitis, food allergy, asthma, and allergic rhinitis. It is charac-
terized by a predominant typical T helper 2 (Th2)-like immune
response (Umetsu et al., 2003). Firstly, an environmental allergen,
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like an inhalant or food allergen interacts with the innate immune
system. After uptake by antigen-presenting cells, subsequent T cell
priming leads to the stimulation of type 2 cytokines such as inter-
leukin (IL)-4, IL-5, and IL-13. These cytokines interact with their
receptors to induce a class switch toward IgE production and to
increase the number of eosinophils and mast cells. In immedi-
ate hypersensitivity reactions IgE binds to its receptors and causes
mast cells to degranulate. Apart from IgE, increased levels of IgG4
are often measured in allergic individuals. IgG4 is considered as
an antibody with anti-inflammatory activity (van der Neut et al.,
2007). The levels of IgG4 are usually elevated in serum from people
that are repeatedly exposed to the same antigen, like beekeepers,
or subjects receiving increased doses of antigen during specific
immune therapy (SIT). In addition to this humoral immune
response, allergy is characterized by a cellular response, mostly
mediated by Th2 cells (Del Prete, 1992; Ozdemir et al., 2010), but
also by Th1 cells (like in atopic dermatitis) and regulatory T cells.

The combination of these humoral and cellular responses, both
innate and adaptive, leads to an allergic inflammatory reaction
(Yazdanbakhsh et al., 2002). Here we will discuss various aspects
of the allergic immune responses in the context of the possible role
of environmental antigens such as HSPs in steering this immune
response.

ALLERGY AND THE HYGIENE HYPOTHESIS
The prevalence of atopic disease has increased tremendously in the
second half of the twentieth century (Peat et al., 1994). Although
the cause of this increase is not known though, a genetic cause
is unlikely due to the time span in which the increase took place.
Therefore environmental changes are more likely causes of this
observed increase. Strachan (1989) first proposed the concept of
the hygiene hypothesis. This hypothesis states that the increase in
the prevalence of atopic disease is due to a decreased exposure to
microbes or microbial products early in life, especially in west-
ern societies. The concept was supported by the observation of an
inverse association between both atopic dermatitis and hay fever
and the number of children in a household. Although the hygiene
hypothesis and its proposed immune mechanism are still under
debate, in the 1990s numerous of studies have been published
supporting this hypothesis. For example, these observations relate
the number of siblings, the number of infections and exposure
to endotoxins on the farm, with the incidence of atopic diseases
(Jarvis et al., 1997; Bodner et al., 1998; von Mutius et al., 1999;
Wickens et al., 1999; Braun-Fahrlander et al., 2002).

IMMUNE MECHANISMS OF THE HYGIENE HYPOTHESIS
What could be the immunological cause of this inverse relation
between exposure to environmental antigens and the incidence
of allergic disease? The explanation takes us back to the origi-
nal observations in the eighties of Mosmann and Coffman who
defined two main subtypes of helper T lymphocytes: Th1 and Th2
cells. Th2 cells are characterized by their production of cytokines
like IL-4, IL-5, IL-9, and IL-13 and chemokines like TARC and
MDC. They are involved in mediating allergic responses and host
defense against parasitic infection (Mosmann and Coffman,1989).

During fetal life and shortly after birth a predominant Th2
response is present (Wegmann et al., 1993). During life, a shift to a

predominant Th1 response occurs in non-allergic subjects, but this
shift may be incomplete in allergic individuals. As a consequence,
an allergic individual will develop a Th2 response to an allergen
leading to IgE production and typical type 2 cytokine production
(IL-4, IL-5, and IL-13) and ultimately to a clinical allergic reaction,
whereas non-allergic subjects develop a Th1 response leading to a
protective IgG response and production of IFN-γ (Larche, 2007).
This is the basis for the immunological explanation of the hygiene
hypothesis, as exposure to microbes and microbial products would
stimulate a Th1 response. Those individuals that were not enough
exposed to these stress factors would be more prone to develop
predominant Th2 responses, and thus an allergic response. Obvi-
ously this is still a simplification of the immune pathogenesis that
does not explain all observations. For example, a Th1 response in
allergic individuals would implicate the development of late hyper-
sensitivity responses, whereas healthy individuals do not respond
to allergens with a clinically noticeable response (Chen et al., 2004).

The hygiene hypothesis also does not explain why not only the
incidence of allergic diseases is increasing but also that of auto
immune diseases like RA and IDDM (Sheikh et al., 2003). These
diseases are obviously known as typical Th1-like diseases.

TRIGGERING AN ALLERGIC IMMUNE RESPONSE
In order to fully assess and better appreciate the value of the
hygiene hypothesis it is important to understand which cells are
responsible for the initial trigger leading to the characteristic aller-
gic immune response. First, naive T cells have to be activated, in a
way that promotes the classical Th2 like response. There is recent
evidence that basophils may play a crucial role in antigen recog-
nition and processing. When recruited to lymph nodes they are
able to induce Th2 cell differentiation through the release of IL-
4 (Sokol et al., 2009; Falcone et al., 2011). Other cells also have
the capacity to process and present allergens, including mast cells,
macrophages, eosinophils, and natural helper cells. Natural helper
cells are innate cell populations that include innate Th2 cells and
are activated by IL-25 and IL-33 to secrete Th2 cytokines (Saenz
et al., 2010).

There is an increasing realization that Th2 cells are not the only
cells involved in the pathophysiology of allergic disease, as particu-
larly in severe disease other cells than Th2 play a role in aggravating
and perpetuating the immune response (Table 1; Lloyd and Hessel,
2010).

First of all, whereas Th2 cytokines have a clear role in initiating
an allergic response, especially Th1 cells have been implicated in
more chronic severe allergic disease, both in atopic dermatitis and
allergic asthma (Krug et al., 1996; Ong and Leung, 2006; Yamanaka
and Mizutani, 2011).

Secondly, in addition to the Th2 cytokines IL-4, IL-5, and IL-
13, recently also IL-9 was shown to play an important role in
asthma. At first IL-9 was discussed as a new Th2 cytokine. It was
shown that Th9 cells are dependent on both IL-4 and transforming
growth factor-beta (TGF-β) for their development. Interestingly,
like Th2 cells, also Th9 cells are regulated by IL-25, predominantly
seen in lung inflammation (Devos et al., 2006; Hauber et al., 2007;
Soroosh and Doherty, 2009; Angkasekwinai et al., 2010). IL-25
(like IL-33 and thymic stromal lymphopoietin) is a type II initi-
ating cytokine (Oliphant et al., 2011). In addition to the role of
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Table 1 | Different subtypes described to play a role in the pathogenesis of allergic diseases.

Cell Main transcription factor Activating cytokines Effector cytokines Role in allergic diseases

Th1 T-Bet IL-12 IFNy Possible role in chronic asthma or atopic dermatitis

Th2 GATA-3 IL-4, IL-25, IL-33, TSLP IL-4, IL-5, IL-13, IL-25 Eosinophil production; IgE induction

Th9 PU-1 IL-4, TGFβ, IL-10, IL-25 IL-9, IL-10 Mucus production, lung inflammation, dermatitis

Th17 Batf TGFβ, IL-1β IL-6, IL-21 IL-6, IL-8, IL-17, IL-22 Possibly related to steroid resistant asthma; related to neutrophil

production

Th22 RORyT(?) ? IL-22 Limiting airway inflammation in mice. Negative association with

Th2 cytokines

Tr1 FOXP3 TGFβ IL-5, IL-10, IL-13, TGFβ Regulatory function on B cells by suppression of allergen-specific

IgE and induction of IgG4 and IgA

Tregs FOXP3 TGFβ IL-10 Diminished function and number in allergic individuals

IL-25 in lung inflammation, it is also of importance in atopic der-
matitis and food allergy (Aalberse et al. unpublished data; Hvid
et al., 2011). Although IL-25 (also known as IL-17E) is a cytokine
from the IL-17 family it has opposite effects of IL17A (IL-17).

Thirdly, Th17 cells (named after their main effector cytokine;
IL-17) like Th1 cells may be associated with more severe asthma
and mediate a more neutrophilic pattern of inflammation.

Fourthly, it was recently shown that IL-22 (also produced by
Th17 cells), is produced by a distinct set of CD4+ cells, named
Th22-cells. These cells have been implicated as being protective in
a mouse model of allergic lung inflammation (Souwer et al., 2010)
and may play a role in the severity of atopic dermatitis in humans
(Nograles et al., 2009).

Finally, a lot of attention has recently focused on a subset of
T cells with the capacity to suppress other T cells, namely reg-
ulatory T cells (Treg). Two types of regulatory T cells will be
discussed below, namely IL-10 producing regulatory cells and
FOXP3 expressing regulatory cells.

REGULATORY T CELLS
Here we will discuss two types of regulatory T cells; FOXP3
expressing Tregs and IL-10 producing regulatory T cells. How-
ever, it has to be emphasized that the distinction between these
two types is not absolute, as for example FOXP3 expressing Tregs
are also capable of producing IL-10. Moreover, many different
regulatory T cells, may even act in concert in a single immune
response.

IL-10 PRODUCING REGULATORY T CELLS
As discussed above, exposure to an allergen leads to the devel-
opment of sensitization in a susceptible individual. Upon a next
encounter, a typical Th2 reaction will follow, including a humoral
(IgE and IgG4) response. In contrast, when healthy (non-allergic)
individuals are exposed to an allergen it was long thought that (in
line with the Th1/Th2 dichotomy) instead of a Th2 response a Th1
response would develop. However it has become clear that, in fact,
this is not the only difference between a normal and an allergic
response to an allergen. Though indeed some IFN-γ responses to
allergens are present in healthy individuals, a study by Akdis et al.
(2004) showed that this is a simplification of the reality. They iso-
lated CD4 T cells specific to several food- and aeroallergens from

healthy and allergic individuals according to their IL-4, IFN-γ, and
IL-10 secretion profile. Interestingly, allergen-specific T cells that
belong to all three secretion profiles were detectable in both healthy
and allergic individuals, with allergen-specific IL-10-secreting T
cells being the predominant subset in healthy individuals. They
regarded these IL-10 producing CD4+ T cells as T regulatory cell
type 1 (Tr1 cells). Seemingly, low Tr1 numbers and high Th2 cell
numbers resulted in an allergic response, whereas in healthy indi-
viduals a mixed Th1/Th2 response is associated with a strong IL-10
response (Larche, 2007). The crucial role for IL-10 in allergy is
also suggested by other studies on food and inhalant allergies. In
cow’s milk allergy, T-cell clones derived from children that are per-
sistently allergic produced Th2 cytokines (IL-4, IL-13), whereas
allergic control subjects that are cow milk tolerant produced a
mixed Th1/Th2 response associated with markedly elevated IL-10
levels (Tiemessen et al., 2004).

Similar observations of elevated IL-10 levels associated with
less allergy symptoms were made in inhalation allergies. Children
raised in a house with a cat are less likely to become allergic to
cat allergen than those who only get indirect exposure. Many of
these highly exposed children had an IgG and IgG4 response to
the major cat allergen Fel d 1 without production of specific IgE.
This induction of high levels of allergen-specific IgG4 in the rela-
tive absence of IgE has been referred to as a modified Th2 response
(Platts-Mills et al., 2004). Interestingly also in the peripheral blood
of these non-allergic children, T cell response to the allergens are
characterized by an elevated level of IL-10. Comparable indica-
tions for a role for IL-10-producing Tr1 cells in the maintenance
of tolerance to allergens can be found in individuals exposed to rel-
atively high doses of allergen like bee keepers and allergic patients
undergoing immunotherapy. Bee keepers with a repeated expo-
sure to bee venom during the bee-keeping season demonstrate a
marked increase in allergen-specific IL-10 secretion from periph-
eral blood T cells as the season progresses, while allergen-specific
IgE is seen especially in the beginning of the season. Interestingly,
reactions to stings disappear during the season, simultaneously
with the increased IL-10 production by T-cells (Akdis and Blaser,
1999). Apart from IL-10, also TGF-β, another cytokine that can
be produced by Tr1 cells, is reported to be induced by SIT, while
both IL-10 and TGF-β are associated respectively with the blocking
antibodies IgG4 and IgA (Larche et al., 2006; Taylor et al., 2006).
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FOXP3 REGULATORY T CELLS
Not only IL-10 producing T cells but also FOXP3+ Tregare asso-
ciated with an allergic response. The important role of the tran-
scription factor FOXP3 for maintaining immune tolerance stems
for multiple basic studies, mainly in experimental models. This
importance of FOXP3+ Treg in human disease was underscored by
the IPEX syndrome (immunodysregulation, polyendocrinopathy,
and enteropathy, X-linked). In IPEX patients a genetic mutation
causes the FOXP3 transcription factor to be defective. Patients
with IPEX have symptoms that fit both generalized autoimmunity
and allergy (Bennett et al., 2001; Patel, 2001). The relevance of
FOX P3 Treg has been extensively demonstrated in mice models,
showing an inverse correlation to Treg and diseases like RA, inflam-
matory bowel disease, MS, and IDDM (Shevach, 2000; Fontenot
et al., 2003; Sakaguchi, 2005). Not only in autoimmune diseases
but also in allergic disease various studies have suggested a possi-
ble defective suppressive function of Tregs (Viglietta et al., 2004;
Sakaguchi et al., 2006). In addition to the bee keeper model also
the season-dependent antigen exposure during the pollen season
offers a model to study responses in the same individuals with
and without exposure. Whereas in several studies it was shown
that both non-allergic as allergic individuals have CD4+CD25+
Treg, in the allergic subjects, these cells still produced IL-5 and IL-
13 cytokines (Grindebacke et al., 2004; Ling et al., 2004). Further
related experiments demonstrated that both dose and type of aller-
gen appear to have effects on the ability of CD4+CD25+ T cells
to suppress responses. At the time of these studies CD25b expres-
sion on CD4 T cells was used as a surrogate marker of FOXP3+
Treg. Later studies using FOXP3 as a direct marker seemed to
confirm these data. During venom immunotherapy the increased
allergen-specific IgG4 and reduced IgE correlated with circulating
FOXP3 positive Treg (Pereira-Santos et al., 2008). A recent study
even suggested that Treg function may be impaired in patients with
allergic diseases and that this function can be enhanced by specific
immunotherapy (Palomares et al., 2010).

Thus, altogether, there are ample suggestions that the presence
of allergen-specific T cells with a regulatory phenotype (either
expressing FOXP3, and/or capable of producing IL-10 and TGF-
β) may have a beneficial effect on allergic diseases. However in
some atopic diseases, like atopic dermatitis and asthma, the spe-
cific trigger is often not known. This raises the question whether
methods can be identified to improve the Treg repertoire, when the
triggering allergen is unknown. Studies from other inflammatory
diseases, like JIA and RA, have suggested that a certain group of
antigens, called HSPs, are present at the site of inflammation and
may have such a beneficial effect on the T cell repertoire.

HEAT SHOCK PROTEINS
The Treg repertoire is both formed in the thymus (so-called nat-
ural Treg ) and generated in the periphery upon encounter with an
antigen (induced or adaptive Treg ). Both self and non-self anti-
gens can induce Treg in the periphery, although the repertoire of
Treg might be biased toward self antigens (Romagnoli et al., 2002).

In 1991, Cohen and Young (1991) proposed that a select group
of self antigens is especially important for the maintenance of
peripheral tolerance). He described the presence of auto reactive
immune responses in a healthy individual to a limited set of self

molecules, formed by auto reactive T cells and antibodies, which
he called the immunological homunculus. The self antigens of
this “homunculus” are all evolutionary highly conserved between
the self and the non-self homolog of these proteins. According
to Cohen, the immune system utilizes these self antigens to form
an immunological picture of self which is crucial for the balance
of the immune system. One of these homunculus’ self proteins is
human HSP60 (van Eden et al., 2005). HSPs are indeed evolution-
arily highly conserved proteins and either present constitutively,
functioning as chaperones, or induced upon cell stress caused by,
for instance, heat, oxidative stress, and hypoxia (Craig et al., 1993).
Several HSPs have been identified and,according to their size,orga-
nized into six families: HSP100, HSP90, HSP70, HSP60, HSP40,
and HSP10. In this review we focus on the immune responses of
HSP60 in atopic disease. It has to be stressed that as only very little
data are available right now on HSPs and allergic disease, and thus
we need to deduce the role of HSP in atopic disorders mostly on
what is known about HSP reactivity on other diseases.

IMMUNITY TO HSPs AND INFLAMMATION
Humoral and cellular immune responses to HSP60 have been
detected both in patients with an inflammatory disease, such as
autoimmune and allergic diseases, as well as in healthy subjects.
After these initial discoveries the perception was that HSP’s may
be involved in the development of autoimmunity through antige-
nis mimicry: an immune response toward a microbial HSP could
lead to a cross-reactive response to a self-HSP and thus cause
autoimmunity. However, after further studies it quickly became
clear that the immune responses toward self HSP60 were more
involved in the regulation and not in the induction of autoim-
munity. Indeed, a wealth of data obtained in the last decade both
in experimental models and from observations in human diseases
point to a regulatory role of immunity to self HSP60 (van Eden
et al., 2005).

The presence of self-HSP-reactive cells was first shown in ani-
mal studies by immunization of rats with mammalian HSP60
(Lopez-Guerrero et al., 1993). Though immunization could
induce self-HSP-specific antibodies and T cells, a self-HSP-reactive
immune repertoire was also shown to be present in the absence
of immunization. The cause for this could be previous contact
with homologous bacterial HSPs, for example in the mucosa of
the gastro intestinal tract. The first report that immune responses
to self HSP60 may have a regulatory role in inflammatory diseases
was in mycobacteria-induced adjuvant arthritis. In this model
the induction of a self HSP60, cross-reactive T cells response
was responsible for the observed protection of HSP60 peptide
immune therapy. After these initial findings, protective effects
of various (conserved) microbial HSPs were seen in many other
experimental disease models, including arthritis, atherosclerosis,
allergic encephalomyelitis, and allergic asthma (Anderton et al.,
1995; Birnbaum et al., 1998; Harats et al., 2002; Rha et al., 2002).

In vitro experiments show that immune responses modulated
by HSPs can result in the induction of various cytokines like IFNγ

and TNFα, as well as IL-10. HSPs are strong immune modulators
and are able to influence the impact and direction of immune
responses (Kaufmann et al., 1987). Moreover, HSP60 has the
capacity to steer both innate and humoral immunity.
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In human diseases, antibody responses to HSP60 were pre-
viously described in skin lesions of patients with Behçets disease,
whereas HSP60 has been described as a target for T-cells in autoim-
mune diseases such as IDDM and JIA (Albani et al., 1995b; Ergun
et al., 2001; Raz et al., 2001). Data in the experimental models have
pointed out that the protective effect of HSP60 was independent
of an antigenic relationship (antigen mimicry) between HSP60
and the disease-inducing antigen. Instead it seemed that HSP60
could confer protection through so-called bystander suppression
(Horner et al., 2001; Larche et al., 2006). Inflammation causes local
damage and cell stress leading to upregulation of stress proteins
such as HSP60. Next, these bystander (self) antigens can become
the target of subsequent, possibly suppressive immune responses.
So, it is possible that immune responses to HSPs could be involved
in the control of human chronic inflammatory diseases that have
distinct, although as-yet-unknown, initiating auto-antigens, or
even allergens.

HSP RESPONSES IN EARLY LIFE
Apparently, responses to HSP60 are important for maintaining
peripheral tolerance in the adult immune system. It is unknown
when during live these specific T cells arise. It would seem reason-
able to expect that they are primed after birth upon encounter with
homologous microbial HSP in the gut. However, there are indica-
tions that self HSP60 reactivity is present at birth. In a study by
Ramage et al. (1999) it was shown that cord blood cells proliferate
in response to an in vitro challenge with the self HSP60. This sup-
ported the hypothesis that this reactivity is part of the normal naive
immune repertoire. A more recent study by Merbl et al. (2007)
put these findings also in a different perspective. They found
that normal cord blood contains IgM and IgA auto-antibodies
directed against a relatively uniform set of auto-antigens, such as
auto-antigens related to immune regulation such as HSP60. This
obviously benign autoimmune self reactivity, present at birth, may
have a dual function. On the one hand it may provide the basis for
autoimmunity in later life, while on the other hand the “inborn”
autoimmunity to regulatory self antigens such as HSP60 may
actually serve to protect against autoimmune disease. Intrigued
by these studies, we questioned whether CD4+ T cells specific
for HSP60 are already detectable at birth before exposure to the
microbial flora, and if so, to what type of immune response these
“inborn” autoreactive CD4+ T cells have upon exposure to the self
antigen HSP60. We found that HSP60 specific T cells are indeed
present at birth. Moreover, stimulation of CBMC with HSP60 leads
to CD4+ T cell proliferation and cytokine production, and induces
T cells with an in vitro regulatory phenotype that are functionally
suppressive (Aalberse et al., 2011).

HSP60 AND ALLERGY
Thus, HSP60 is a self-protein, recognized already at birth in
healthy subjects, but also in individuals with chronic inflamma-
tory diseases. Thereby a correlation between self-HSP reactivity
and diminished disease activity is seen both in experimental as
in human autoimmunity. This has already led to the successful
exploration of HSP60 immune therapy in human disease, firstly in
IDDM. It is not known yet if the levels and responses to HSP60 are
different in individuals developing chronic inflammatory disease
later in life.

For once, priming of HSP60 T cell responsiveness takes places
primarily in the gut through contact with microbial HSP60 (van
Eden et al., 2005). Thus, priming of HSP60 immunity early in life
through contact with microbiota leads to more self HSP60 medi-
ated immune regulation. This could be one of possibly multiple
mechanisms that explain why individuals exposed to more micro-
bial triggers early in life, could be less prone to develop immune
mediated diseases. Thus it may very well fit the concept of the
hygiene hypothesis.

For that reason we set out to study the role of HSP60 immu-
nity in human atopic diseases. Obviously the first pre-requisite
for a potential role of self HSP60 in dermatitis is the (preferably
increased) expression of HSP60 at the site of inflammation. Indeed
we were able to show that self HSP60 is increased expressed in the
skin of patients with atopic dermatitis (Kapitein and Aalberse sub-
mitted for publication). Moreover, in vitro stimulation with self
HSP60 induced FOXP3 positive T cells, as well as T cells producing
IL-10 and IFN-γ.

It has to be emphasized that this increased expression by no
means is very specific for atopic diseases (Seung et al., 2007). Still
it could be highly relevant for atopic disease as the characterization
of an antigen present at the site of inflammation, without being
the disease-causing antigen has therapeutic possibilities through,
as previously mentioned, “antigen driven bystander suppression.”
Bystander suppression as a mechanism is especially important
in human autoimmune diseases, because often the immunizing
trigger is unknown.

Theoretically, in allergic diseases this could also be an inter-
esting option for intervention. Although often at least one of the
allergens triggering the disease is known, mono-sensitization is
rare which would imply multi-antigen immune therapy. Immune
therapy with a single bystander antigen might undermine this
issue.

NOVEL IMMUNE THERAPEUTIC POSSIBILITIES IN ALLERGIC
DISEASE
Various novel immune therapeutic approaches to diminish allergic
symptoms have been or are being studied. Of these new interven-
tions, blocking of effector cytokines (such as IL-4 and IL-5) and
IgEis the most important. As IL-5 is important for the priming
and survival of eosinophils and these cells play an important role
in the pathophysiology of allergic disease, blocking IL-5 seemed
logical. However only a highly selected patient group with severe
asthma, shown as sputum eosinophilia, had profit from this ther-
apy (Busse et al., 2010). Also blocking IL-4 and IL-13 has not
yet been shown to be of clinical benefit in asthma (Oh et al.,
2010). Thus, so far, the experiences with blocking antibodies to
effector cytokines suggest that either the cytokines cannot be fully
blocked or that not one of these cytokines is solely responsible
for the allergic response. As mentioned above in recent years Th2
induction cytokines have been described among which IL-25. IL-
25 is strongly elevated in a subgroup of peanut allergic subjects
(Aalberse et al., submitted for publication). Moreover, in mouse
models blocking IL-25 has a positive effect on bronchial hyper-
reactivity (Ballantyne et al., 2007). Apart from blocking cytokines
that are important in the pathophysiology of allergic disease, in
the last decade various studies in asthmatic patients have been
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performed in which an IgE-blocker was used (Rodrigo et al., 2011).
Although the first results look promising, the effect is not present
in all patients, underlining again the complexity of chronic allergic
diseases.

Antigen SIT, in which an allergic individual is exposed to
increasing doses of the allergen triggering disease, has been used
for over a century. It is one of the earliest and most effective forms
of human immune therapy. Although for long the mechanisms
behind this clearly effective immune intervention was not fully
understood, we now know that IgG4, IL-10, and Treg probably
play an important role. A disadvantage of this approach in which
the eliciting protein is used, is the chance of a severe anaphylac-
tic reaction, as has been described following immune therapy in
peanut allergic subjects (Reid et al., 1993).

To tackle this issue, recent work has focused on allergy pep-
tide therapy, showing good results. Mice studies showed that after

immunization with Der p 2, the house dust mite allergen, down-
regulation of T cell and antibody responses was seen to Der p 2.
Similar results were seen using Fel d 1 (cat allergen) and Bet v 1
(birch allergen) peptide therapy. As most patients are not sensi-
tized to just one allergen, it is now studied if combination immune
therapy is also effective. Another approach is the use of a peptide of
an antigen present at the site of inflammation, without being the
triggering antigen. This is the concept of the previous mentioned
antigen bystander suppression model (Horner et al., 2001; Larche
et al., 2006).

Based on the development of immune therapies usingHSP60
for other human inflammatory diseases and encouraged by recent
data showing that HSP60 expression is increased in the skin in
patients with atopic dermatitis, it is tempting to suggest that HSP60
may also be a potential candidate for bystander therapy in allergic
diseases.
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