
ARTICLE

Electrophysiological dynamics of antagonistic brain
networks reflect attentional fluctuations
Aaron Kucyi1, Amy Daitch1, Omri Raccah1, Baotian Zhao 2,3, Chao Zhang2,3, Michael Esterman4,5,

Michael Zeineh 6, Casey H. Halpern7, Kai Zhang2,3, Jianguo Zhang2,3* & Josef Parvizi1*

Neuroimaging evidence suggests that the default mode network (DMN) exhibits antagonistic

activity with dorsal attention (DAN) and salience (SN) networks. Here we use human

intracranial electroencephalography to investigate the behavioral relevance of fine-grained

dynamics within and between these networks. The three networks show dissociable profiles

of task-evoked electrophysiological activity, best captured in the high-frequency broadband

(HFB; 70–170 Hz) range. On the order of hundreds of milliseconds, HFB responses peak

fastest in the DAN, at intermediate speed in the SN, and slowest in the DMN. Lapses of

attention (behavioral errors) are marked by distinguishable patterns of both pre- and post-

stimulus HFB activity within each network. Moreover, the magnitude of temporally lagged,

negative HFB coupling between the DAN and DMN (but not SN and DMN) is associated with

greater sustained attention performance and is reduced during wakeful rest. These findings

underscore the behavioral relevance of temporally delayed coordination between antagonistic

brain networks.
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The brain structures important for attention have long been
described as a set of discrete components of networks, each
of which serves a unique role in cognitive interactions with

the sensory environment1. The dorsal attention network (DAN)
is implicated in goal-directed (top–down) attention2, and the
salience network (SN) is implicated in stimulus-driven
(bottom–up) attention and cognitive control3,4. The DAN and
SN are activated during a wide variety of task conditions invol-
ving externally oriented attention2,5. Given functional neuroi-
maging evidence, these described networks exhibit a distinct
activity profile with yet another set of regions that constitute the
default mode network (DMN)6,7, which unlike DAN and SN
structures, tends to show deactivation during conditions invol-
ving externally oriented attention8.

In addition to task-dependent activity, functional magnetic
resonance imaging (fMRI) studies during wakeful rest have
shown spontaneous, negatively correlated (or “anticorrelated”)
DMN-DAN/SN activity in infraslow (<0.1 Hz) fluctuations of
blood-oxygen-level-dependent (BOLD) signals7,9—a finding that
has remained contentious10. Persistence of such continuous (i.e.,
non-task-evoked) anticorrelated activity would potentially suggest
that functionally competing systems, characterized by ongoing
switches between internally- and externally biased modes of
attention, are an intrinsic property of the brain11,12. However,
continuous anticorrelated activity between DMN and DAN or SN
may be partly dependent on cognitive state, given that the degree
of inter-network BOLD anticorrelation dynamically varies over
time13 and can be associated with variations in task conditions14

and fluctuations in behavioral performance15,16. Moreover,
regional BOLD activity within these networks varies with lapses
of attention and self-reported mind-wandering17–20.

Importantly, evidence for both task-evoked and task-free
antagonistic activity among the DMN, DAN, and SN has relied
almost exclusively on fMRI, which offers limited temporal reso-
lution and necessitates data preprocessing that may bias estimates
of negative correlations21,22. Intracranial electroencephalography
(iEEG) in human subjects offers anatomical precision, high
temporal resolution, and sensitivity to activity in the high-
frequency broadband (HFB, also known as high gamma) range (
70–170 Hz)—a well-established correlate of the BOLD signal and
neuronal population spiking23–26. A handful of iEEG studies
involving recordings from putative DMN and DAN nodes have
shown task-evoked HFB responses that resemble the opposing
inter-network (de)activations observed in fMRI27–30. In addition,
slow fluctuations of HFB power amplitude during wakeful rest
were shown to exhibit inter-regional correlated activity (func-
tional connectivity) within networks, including DMN and DAN,
with spatial topographic patterns similar to those found with
BOLD imaging31–35. In particular, strong, and highly focal
within-network iEEG correlations have been consistently found
for slow (<1 Hz) and infraslow (<0.1 Hz) HFB fluctuations31–34.

The extant iEEG evidence provides promising initial electro-
physiological validation of antagonistic network interactions
during task performance as well as the persistence of within-
network correlated activity during wakeful rest. However, critical
open questions remain about the behavioral relevance of elec-
trophysiological dynamics of antagonistic networks: do nodes of
the DMN, DAN, and SN exhibit distinguishable, systematic
profiles of task-evoked responses on the order of hundreds of
milliseconds and in specific components of electrophysiological
signals? Does dynamic coordination of activity within and
between these networks relate to fluctuations in attentional task
performance? Does continuous anticorrelated activity of HFB
activity between task-responsive DMN, DAN, and SN neuronal
populations vary between externally oriented task performance
and wakeful rest? To address these questions, here we report a

comprehensive iEEG investigation of activity within and inter-
actions among the DMN, DAN, and SN in a large cohort of
subjects with electrodes implanted directly within key cortical
nodes of these networks. We show that the three networks show
distinct profiles and timing of task-evoked electrophysiological
activity and that antagonistic inter-network dynamics relate to
attentional performance fluctuations.

Results
Unique iEEG cohort. We obtained iEEG recordings from a total
of 3704 unique recording sites in 31 human subjects (S1–31),
included in our main analyses, who were undergoing treatment
for focal epilepsy (29 with depth and 2 with subdural electrode
recordings) at Stanford Medical Center (n= 10) or Beijing Tian
Tan Hospital (n= 21). Data reported here are from regions void
of pathological activity. Given that different patients had distinct
epileptic foci (Supplementary Table 1), our group-level analyses
ensured that results could not likely be attributed to pathological
activity.

Subjects performed between four to eight runs (total duration
range: 24–48 min per subject, see Supplementary Table 2) of the
Gradual-onset Continuous Performance Task (GradCPT), a test
of sustained attention that has reliably been associated with
opposing patterns of task-evoked DMN versus DAN/SN activity
in fMRI studies18,19,36. Gradually changing images of scenes were
presented every 800 ms, and subjects were instructed to respond
with a button press to city (frequent) but not to mountain
(infrequent) scenes (Fig. 1a). After excluding subjects with poor
behavioral performance (see Methods), analysis of our cohort of
31 subjects revealed rates of omission and commission errors
(M ± SD: 2.9 ± 2.3% and 25.1 ± 12.0%, respectively) that were
comparable to those previously reported in healthy and clinical
populations (Fig. 1b)18,36. We performed subsequent analyses
within the entire cohort as well as within subcohorts where
simultaneous coverage of electrodes was available across the
antagonistic networks of interest (see Supplementary Fig. 1 for
analysis workflow).

Functional localization of electrophysiological networks. Each
subject had electrode coverage within cortical regions of the
DMN, DAN, and SN, as defined based on an fMRI-based
population-level atlas of intrinsic networks (Fig. 1c)37. To func-
tionally localize electrode sites within the networks, we first
analyzed task-evoked electrophysiological activity during trials of
infrequent targets (mountains) relative to frequent non-targets
(cities) in the GradCPT. Using cluster-based permutation test-
ing38, we screened all electrodes for the expected task-evoked
decreased HFB power in the DMN and task-evoked increased
HFB power in the DAN and SN during the time window of
0–1500 ms post-target onset.

In 29 out of 31 subjects, we successfully identified electrodes
with significant HFB responses within at least one of the three
networks (Monte Carlo p < 0.05, cluster-based permutation test,
corrected for the number of electrodes within each network
within subjects). The grand averages of significant electrodes
indicated that transient, increased HFB in the DAN and the SN as
well as decreased HFB in the DMN began several hundred
milliseconds after target onset and returned to baseline after
~ 1–2 s (Fig. 1d; see Supplementary Fig. 2a for Stanford and
Beijing cohorts separately and Supplementary Fig. 3 for
individual subject plots). Across all electrodes, the relative
proportions within each network showing significant increased
target-evoked HFB power (i.e., activation) were 37.3% (DAN),
36.8% (SN), and 9.5% (DMN) (Fig. 1e, top; see also Supplemen-
tary Fig. 2b). In contrast, the relative proportions showing
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Fig. 1 Task paradigm and functional localization of electrode sites in three networks of interest. a The Gradual-Onset Continuous Performance Task.
City and mountain scene images (from the SUN database99) faded continuously from one image to the next every 800msec. Trial onset (orange arrow)
was the time at which stimulus fade-in was initiated. b Omission and commission error rates, averaged across runs, in 31 subjects. c Anatomical locations
of cortical electrode contacts in 31 subjects, projected to fsaverage standard space and overlaying the Yeo atlas’ DMN (blue), DAN (green), and SN (red).
d High-frequency broadband (HFB; 70–170 Hz) responses during the presentation of mountain (target) stimuli. Time courses show the grand average of
the trial-wise means within all responsive electrodes (p < 0.05, cluster-based permutation test, corrected for multiple comparisons within networks within
subjects) across the entire patient cohort. e Relative proportions of electrodes within each network showing significant target-evoked HFB increase (top)
and decrease (bottom). f Locations of responsive electrodes within each network (fsaverage space). g Subdural electrodes plotted on the cortical surface
with an overlay of the Yeo atlas’ DMN (blue) and DAN (green) in an example subject. Time series plots illustrate diverging HFB response profiles among
neighboring electrodes (peak-responsive electrodes in the dPPC and PMC, respectively, are outlined in green and blue). Where relevant, error bars indicate
standard error of the mean.
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significant decreased target-evoked HFB power (i.e., deactivation)
were 2.4% (DAN), 3.0% (SN), and 10.0% (DMN) ((Fig. 1e,
bottom; see also Supplementary Table 2 for relative contributions
of individual subjects). Non-unanimous responses are often seen
among electrodes in a region of the brain across subjects but also
within the same individual subject, as previously reported39.
Overall, however, our findings confirm that electrodes with
the expected response characteristics based on network identity
were more frequently identified than those with the opposite
characteristics.

The responsive electrodes were distributed throughout multiple
cortical locations within each network (Fig. 1f; see Supplementary
Fig. 2c for Stanford and Beijing cohorts separately). Responsive
sites were identified within well-described core regions of the
networks: these included the dorsal posterior parietal cortex
(dPPC), frontal eye fields and area MT+ within the DAN, the
dorsal anterior insular cortex (dAIC), mid-cingulate cortex, and
dorsolateral prefrontal cortex within the SN, and the poster-
omedial cortex (PMC), medial prefrontal cortex and angular
gyrus within the DMN. The correspondence between HFB
response profile and intrinsic network identity could be illustrated
in cases where subdural electrodes densely covered areas near
network boundaries (Fig. 1g). Taken together, the correspondence
between standard intrinsic network boundaries and iEEG
response profiles suggested that the general functions of the
DAN, SN, and DMN were preserved within subjects.

Frequency band specificity of electrophysiological responses.
Although we have focused so far on neural activity within the
HFB range, spectrograms of individual electrodes indicated that

task-evoked responses included lower frequency components
(Fig. 2a). Thus, to assess the degree to which task-evoked
responses were specific to the HFB range, we adopted a multi-
variate approach (multiple kernel learning; MKL) to decompose
the relative contributions of the power amplitudes of distinct
frequency bands40. Specifically, for target (mountain) and base-
line (city) trials with correct behavioral responses, in the time
window of 0–1500 ms post-trial onset, we defined kernels, or
pair-wise similarity among all trials (target and baseline) of
frequency-specific power amplitudes. These kernels were defined
for each electrode that was within at least one of the networks
(DAN, SN, DMN) and for the power amplitudes of seven
frequency bands [δ (1–3 Hz), θ (4–7 Hz), α (8–12 Hz), β1
(13–29 Hz), β2 (30–39 Hz), γ (40–70 Hz), HFB (70–170 Hz)].
Feature selection was performed on the kernels (i.e., of size seven
frequencies x number of electrodes within each subject) such that
variability in the relative contribution of each frequency band
could be quantified (see Multiple Kernel Learning Analyses of
Distinct Frequency Bands in Methods). As we considered all
electrodes that were anatomically within the DAN, SN, and DMN
within the MKL models, this data-driven analysis was indepen-
dent of and complementary to our aforementioned screening
procedure for responsiveness within the HFB range.

Using 10-fold cross-validation to classify trials as correct omission
versus correct commission, we found classification accuracies with
levels above chance (balanced accuracy: M±SD= 74.5 ± 8.7%;
correct omission accuracy: 73.8 ± 9.5%; correct commission accu-
racy: 75.2% ± 8.3) (Fig. 2b). A repeated-measures ANOVA revealed
a significant effect of frequency band on contribution to classifica-
tion accuracy (F6,180= 15.2, p= 5.1 × 10−14). Across frequencies,
HFB features had the highest mean contributions to classification
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accuracy, and these HFB contributions were significantly higher
than those of all other frequency bands (pFDR, paired t tests: HFB
vs. δ: 0.002; HFB vs. θ: 0.0001; HFB vs. α: 0.0001; HFB vs β1:
0.0001; HFB vs β2: 0.0004; HFB vs. γ: 0.0001) (Fig. 2c). Thus,
across subjects, the HFB signal most consistently provided
information about functional activity underlying cognitive
processing within the DAN, SN, and DMN. Given these findings,
as well as extensive prior evidence showing that HFB activity is a
well-established correlate of the BOLD signal and neuronal
population spiking23,24,41, we focus our central further iEEG
analyses on HFB signals but also consider other frequency ranges.

Distinct HFB response timing among networks. We next
sought to determine whether there was evidence for distinct
timing of task-evoked HFB responses among the DAN, SN, and
DMN. We computed the time-to-peak (TTP) of HFB response
for each significant, task-responsive electrode (positive peak for
DAN and SN, negative peak for DMN) during target trials with
correct behavioral performance (withheld button press). We
found that there was a significant interaction between TTP and
electrode network assignment (F1,357= 18.1, p= 2.6 × 10−5, F test
on linear mixed effects model). The TTP was earliest in the DAN,
intermediate in the SN, and latest in the DMN (Fig. 3a, b). Direct
comparisons between network pairs revealed that DAN was sig-
nificantly earlier than SN (F1,265= 10.9, p= 0.001, F test on linear
mixed effects model), DAN was significantly earlier than DMN
(F1,163= 50.9, p= 3.0 × 10−11, F test on linear mixed effects
model), and SN was significantly earlier than DMN (F1,264= 31.5,
p= 5.0 × 10−8, F test on linear mixed effects model). Similar
temporal profiles were seen during independent trials where
subjects incorrectly responded to target stimuli (commission
error trials) (Supplementary Fig. 4).

Network-specific HFB profiles and behavioral errors. Beyond
differences among networks in response timing, we next aimed to
uncover how the dynamics of electrophysiological activity within
the DAN, SN, and DMN might covary with lapses of attention
(defined as commission errors), as has been suggested in previous
fMRI studies18,20,42. Grand averages across all task-responsive
electrodes indicated that, for target trials with both correct and

incorrect behavioral responses, functionally localized DAN and
SN regions showed increased HFB, whereas DMN regions
showed decreased HFB (Fig. 4a). We tested whether HFB activity
prior to, as well as during, trials differed as a function of beha-
vioral response within and between networks.

In the −400 to 0 ms window prior to target trial onset, HFB
power was significantly different between correct and incorrect
trials within the SN (F1,317= 15.6, p= 9.7×10−5, F test on
linear mixed effects model) and DMN (F1,184= 8.56, p= 0.004, F
test on linear mixed effects model) but not within the DAN
(F1,167= 2.4, p= 0.12, F test on linear mixed effects model). In
both the SN and DMN, these effects were driven by greater pre-
target HFB power prior to incorrect relative to correct trials
(Fig. 4b). The interaction between network and behavioral
response for pre-target HFB power amplitudes was significant
for DAN versus DMN (F1,179= 4.4, p= 0.038, F test on linear
mixed effects model) but not for DAN versus SN (F1,265= 0.24,
p= 0.62, F test on linear mixed effects model) or SN versus DMN
(F1,263= 0, p= 1.0, F test on linear mixed effects model). These
findings suggest that increased HFB power in the DMN and SN
signify precursors to lapses of attention (and that DAN activity
shows a similar trend).

In the +400 to +1200 ms window following target trial onset,
HFB power was significantly different between correct and
incorrect trials within the DAN (F1,167= 31.9, p= 6.9 × 10−8,
F test on linear mixed effects model), SN (F1,325= 58.3,
p= 2.52 × 10−13, F test on linear mixed effects model), and
DMN (F1,164= 16.6, p= 7.0 × 10−5, F test on linear mixed effects
model). In the DAN and SN, these effects were driven by greater
post-target HFB power during incorrect relative to correct trials,
whereas within the DMN, these effects were driven by lower post-
target HFB power (i.e., a greater decrease) during correct relative
to incorrect trials (Fig. 4c). The interaction between network and
behavioral response for post-target HFB power amplitudes was
significant for SN versus DAN (F1,251= 13.38, p= 0.0003, F test
on linear mixed effects model) and SN versus DMN (F1,260=
8.03, p= 0.005, F test on linear mixed effects model) but not for
DAN versus DMN (F1,184.61= 2.54, p= 0.11, F test on linear
mixed effects model). Thus, the SN had the strongest increase in
HFB power during incorrect relative to correct trials relative to
DAN and DMN.

Behavioral significance of lagged inter-network antagonism. As
our time-resolved iEEG analyses had revealed shifted (i.e., non-
zero-lag) task-evoked HFB increases and decreases among net-
works, we next aimed to determine whether coordinated
inter-network activity lags were behaviorally significant (i.e.,
varied with task performance across runs). To perform this
analysis at the group level, it was important to ensure that the
inter-network region pairs that potentially relate to behavior were
anatomically matched between subjects. We thus focused on
subjects with simultaneous task-responsive sites across key
region-of-interests (ROIs) where electrode coverage was available
within the DMN, DAN, and SN (Fig. 1c–f): (1) PMC within the
DMN;6 (2) dPPC, including superior parietal lobule (SPL) and
intraparietal sulcus (IPS), within the DAN2; and (3) dAIC within
the SN (Fig. 5a)4. In resulting cohorts of six subjects with dPPC-
PMC and four subjects with dAIC-PMC coverage, the peak-
responsive electrodes within PMC, dPPC, and dAIC, respectively,
showed task-evoked HFB activity profiles that closely resembled
the grand average patterns that we had found for the whole
DMN, DAN, and SN (Fig. 5b; cf. Fig. 4a).

We hypothesized that time-shifted, but not zero-lag, negative
inter-electrode coupling between PMC and dPPC/dAIC would
reflect a subject’s level of overall sustained attention that varied
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across GradCPT runs. We defined behavioral performance
within each run by the measure of sensitivity (d′), which is
based on the accuracy of task performance (accounting for both
hits and false alarms)43,44. To assess the relationship with
sustained attention performance (d′), we estimated the coordi-
nation of dPPC-PMC and dAIC-PMC activity across each task
run using continuous HFB envelope fluctuations. Based on
previous work indicating that coupled HFB power fluctuations in
the 0.1–1 Hz resemble patterns of BOLD functional connectiv-
ity31–34, we expected that behaviorally significant time-lagged
interactions would be most apparent in minimally filtered HFB
signals. We computed both zero-lag correlations and lag-
minimum HFB correlations, defined as the maximum negative
correlation between regions for time series that could be shifted
from −2 to +2 s (Fig. 5c).

We found that d′ was significantly associated with dPPC-PMC
lag-minimum correlation (F1,32= 13.3, p= 0.0009), but not with
zero-lag correlation (F1,32= 1.24, p= 0.27), across 35 task runs
within the cohort of 6 dPPC-PMC subjects for the 0.1–1 Hz HFB
range (F tests conducted on a linear mixed effects model with
separate fixed factors for lag-minimum and zero-lag correlation).
Specifically, the coefficients signified that greater dPPC-PMC lag-
minimum, but not zero-lag, HFB correlation was associated with
better sustained attention (higher d′) (Fig. 5d). The negative
association between 0.1 and 1 Hz lag-minimum dPPC-PMC
correlation and behavior was seen for HFB but not for lower
frequency ranges of iEEG power amplitudes (Fig. 5e). When
using the unfiltered, rather than 0.1–1 Hz filtered, HFB envelope,
the relationship between d′ and dPPC-PMC lag-minimum
correlation was weaker but remained significant (F1,32= 7.45,
p= 0.01, F test on linear mixed effects model).

In contrast to the dPPC-PMC findings, for dAIC-PMC
coupling, sustained attention (d′) was not significantly asso-
ciated with inter-electrode lag-minimum correlation (F1,20=
0.24, p= 0.63, F test on linear mixed effects model) or with zero-
lag correlation (F1,20= 1.21, p= 0.28, F test on linear mixed
effects model) of the 0.1–1 Hz HFB envelope across 23 task
runs within the cohort of four dAIC-PMC subjects. When using
the unfiltered dAIC and PMC HFB envelopes, the relationship
between sustained attention and lag-minimum correlation
was stronger but was not significant (F1,20= 3.79, p= 0.07,
F test on linear mixed effects model). Thus, in summary,
dPPC-PMC (DAN-DMN) lagged anticorrelation was consis-
tently associated with variations in attentional performance
across time scales of HFB activity, whereas dAIC-PMC
(SN-DMN) lagged anticorrelation was less consistently asso-
ciated with performance.

Lagged antagonism is reduced during wakeful rest. We sought
to further confirm that lagged inter-network antagonism exhib-
ited behavioral relevance over-and-above the contribution of
zero-lag coupling. We hypothesized that during wakeful rest,—a
state that typically promotes introspective and internally oriented
thoughts8— there would be a reduction in time-shifted DMN-
DAN/SN negative coupling of the 0.1–1 Hz filtered HFB envel-
ope. We therefore compared the inter-network electrode coupling
between sessions of externally oriented task performance
(GradCPT) versus wakeful rest for subjects with simultaneous
coverage of task-responsive DMN-DAN (13 subjects, 301 elec-
trode pairs) and DMN-SN (19 subjects, 573 electrode pairs)
electrodes. We included the coupling measures of lag-minimum
and zero-lag correlation as separate fixed effects within single
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models to account for potentially overlapping variance between
these measures.

For DMN-DAN electrode pairs, task versus rest sessions
exhibited significant differences, both in terms of lag-minimum
(F1,608= 158.2, p= 2.1 × 10−32, F test on linear mixed effects
model) and zero-lag (F1,507= 166.5, p= 3.8 × 10−33, F test on
linear mixed effects model) coupling of HFB envelopes. During
task relative to rest, lag-minimum correlation showed stronger
anticorrelation of DMN-DAN electrode pairs (Fig. 6a), and zero-
lag correlation was decreased in magnitude (Fig. 6b). The two
coupling measures each explained unique variance in DMN-DAN
differences between task and rest; an adjusted R2 value of 0.33 was
obtained when accounting for both measures, whereas 0.15 (zero-
lag) and 0.13 (lag-minimum) values were obtained when
accounting for single measures each alone (Fig. 6c).

For DMN-SN electrode pairs, task versus rest sessions also
exhibited significant differences, both in terms of lag-minimum
(F1,1164= 9.4, p= 0.002, F test on linear mixed effects model) and
zero-lag (F1,1164= 112.7, p= 3.4 × 10−25, F test on linear mixed
effects model) coupling of 0.1–1Hz HFB power amplitudes.
However, during task relative to rest, lag-minimum correlation
showed similar distributions across electrode pairs (Fig. 6d), whereas
zero-lag correlation was decreased in magnitude (Fig. 6e). The two
coupling measures did not explain unique variance in DMN-SN
differences between task and rest: an adjusted R2 value of 0.087 was
obtained when accounting for both measures, whereas 0.080 (zero-
lag) and 0 (lag-minimum) values were obtained when accounting
for single measures each alone (Fig. 6f). Thus, when accounting for
lagged activity, there was improved distinction between task and rest
conditions for DMN-DAN but not DMN-SN electrode pairs.
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Discussion
Here, using recordings from electrodes implanted directly in the
human brain, we characterized the behavioral relevance of elec-
trophysiological dynamics within and between large-scale antag-
onistic brain networks (DMN versus DAN and SN). We found that
task-evoked responses within these networks during the pre-
sentation of behaviorally relevant external stimuli were best char-
acterized by activity within the HFB (70–170 Hz) range. The HFB
responses peaked fastest in the DAN, were at intermediate speed in
the SN, and were slowest in the DMN. Relatively increased HFB
power within the DMN and SN signified upcoming lapses of
attention (behavioral errors), and the occurrence of behavioral
errors was associated with dissociable HFB profiles among the
three networks (with SN showing a most amplified increase during
errors). Supporting the functional importance of temporal delays
between antagonistic networks, we found that greater lagged, but
not zero-lag, anticorrelated coupling between dPPC (a DAN
region) and PMC (a DAN region) activity was associated with
better sustained attention across repeated sessions of continuous
task performance. Furthermore, lagged, anticorrelated coupling
between the DMN and DAN was reduced during wakeful rest (a
state marked by internally oriented thought) relative to externally
oriented task performance. These findings underscore the beha-
vioral relevance of previously unrecognized, temporally delayed
coordination between antagonistic brain networks.

Antagonistic patterns of task-evoked DMN-DAN/SN activity
have been found in functional neuroimaging studies across an
extensive variety of task conditions involving both stimulus-
driven and goal-oriented attention45,46. States of lapsing attention
and mind-wandering, which are largely incompatible with sus-
tained, externally oriented attention, have been associated with
increased DMN activation, or a lack of DMN suppression17,19,20.
It has thus been proposed that anticorrelated networks may
continuously compete with one another for control of shared
computational resources47,48.

Building on this framework, our finding that task-evoked
DAN activations precede SN activations, and that both precede
DMN deactivations, may point toward a causal chain of events
that is required for successful deployment of stimulus-driven and
goal-oriented attention. During a baseline (or low cognitive
demand) state, the DMN maintains control over computational
resources (e.g., for imagery associated with internally oriented
cognition). When behaviorally relevant sensory information is
successfully transferred to DAN/SN regions, those regions gain
control over resources that the DMN previously had access to,
and subsequently the DMN is actively suppressed. During lapses
of attention, pre-existing neural activity is in a state of high
DMN and SN engagement, and incoming behaviorally relevant
stimuli may not be processed efficiently. Such a pre-trial state,
potentially associated with mind-wandering, appears to involve a
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lack of opposing activity between networks (DMN versus SN)
that otherwise function antagonistically when attentional
resources are successfully deployed. Delayed and attenuated
processing of sensory input would result49 and would manifest as
behavioral errors.

An important caveat is that our finding of a systematic tem-
poral order of electrophysiological responses does not necessarily
imply causal interactions among the DAN, SN, and DMN, and
further study on directional relationships will be needed. Our
results may, however, impose important constraints on models of
network dynamics, as they leave open the possibility that task-
evoked DAN and SN activations could influence DMN deacti-
vations, whereas they argue that DMN deactivations are unlikely
to influence DAN and SN activations. The relatively late sup-
pression of the DMN relative to activation in other association
networks suggest a temporal hierarchy that may accord well with
findings that situate DMN regions as those with longest con-
nectivity paths and furthest geodesic distance from primary
sensory regions50. Moreover, our findings accord with other iEEG
studies showing relatively late DMN task-evoked responses29,51 as
well as with work suggesting that temporal receptive windows are
prolonged within DMN compared with other higher-order
association regions52,53.

The dynamics of anticorrelated activity in relation to task
performance have previously been studied largely with group-
level fMRI, focused on zero-lag interactions of slow hemody-
namic signals. States of greater DMN-DAN/SN anticorrelation
have been associated with greater vigilance and behavioral
stability15,16,54,55. Across individuals, greater baseline BOLD
anticorrelation has been associated with lesser response time
variability56, fluid intelligence57, and greater working memory
capacity58—all of which are behavioral measures that may rely on
sustained attention. Moreover, attenuated anticorrelation has
been found in clinical conditions involving attentional
dysfunction59,60 as well as in cognitive decline with aging58,61.

Our findings extend those results in multiple ways: first, we
provide critical neurophysiological validation for DMN-DAN/SN
antagonistic activity profiles during task-related sustained atten-
tion at the level of functionally localized neuronal populations.
Second, we show that electrophysiological activity within and
between these networks is associated with momentary changes in
sustained attention. Third, and most importantly, we show that
behaviorally relevant, antagonistic activity involves inter-network
lags of up to hundreds of milliseconds that are too short for fMRI
to detect. Our iEEG analyses may have been sensitive to beha-
viorally relevant, time-resolved interactions that would not be
detectable with current human neuroimaging methods. Despite
the low temporal resolution of functional neuroimaging, inter-
network directional and lagged interactions have long been of
interest in task and resting states62. As fMRI studies contend with
regional heterogeneity in blood flow dynamics63, it remains an
open question whether advances with accelerated neuroimaging
will allow detection of temporally ordered, anticorrelated DMN-
DAN/SN activity and its variation over time.

In the functional neuroimaging literature, the antagonistic
relationship between the DMN and DAN—potentially high-
lighting a competition between internally- and externally oriented
attention—has received intense focus and scrutiny. Though
typically lesser emphasized, the SN, also shows negatively corre-
lated BOLD activity with the DMN7,64,65. Functional neuroima-
ging evidence indicates that the SN and DAN have dissociable
roles in externally oriented attention. The DAN shows domain-
general activation (in tandem with DMN deactivation) during
various conditions involving goal-oriented attention2. The SN
shows activation during detection of salient external stimuli66 and
during behavioral errors in fMRI67, iEEG68, and single-unit

recordings from key SN nodes69. It has been proposed that the
SN, and the dAIC in particular, causally facilitates switching
between other networks (including DMN and DAN) to reorient
attention during salient event detection3,5. In partial agreement, a
recent application of dynamic causal modeling to resting state
fMRI data suggested that the SN and DAN exert intrinsic inhi-
bitory influences on the DMN70. Our iEEG results extend these
frameworks and confirm the presence of electrophysiological
DMN-SN and DMN-DAN antagonistic interactions during
continuous task performance. The temporal profiles of task-
evoked activity that we identified are broadly compatible with the
possibility that the SN could act as a switch between the DAN
and DMN.

We found strong evidence for dissociable electrophysiological
activity in the DAN and SN. First, the task-evoked SN responses
peaked several hundreds of milliseconds later than DAN
responses. Second, compared with the DAN (and DMN), the SN
was more likely to show increased HFB activation during incorrect
relative to correct behavioral responses. Third, DMN-DAN,
compared with DMN-SN lagged anticorrelation, was more
strongly associated with attentional performance. Fourth, DMN-
DAN but not DMN-SN lagged anticorrelation was reduced during
wakeful rest compared with continuous task performance. Inter-
estingly, fMRI evidence indicates that the SN may flexibly couple
with either the DAN or DMN based on task conditions71. Though
our results here were based on an externally oriented continuous
performance task, future iEEG studies exploring distinct cognitive
processes may provide further insight into context-dependent
temporal dynamics of DAN, DMN, and SN interactions.

The fMRI-based finding of anticorrelated networks during
wakeful rest has led to the notion that there could be an intrinsic,
state-independent, antagonistic relationship between the DMN
and other networks7. Under this framework, the brain may
continuously shift between states that draw, respectively, from
internally- and externally oriented sources of information8,12.
However, the concept has remained controversial, in large part
due to technical limitations of fMRI10. Infraslow resting state
BOLD anticorrelations become introduced into data following
preprocessing with global signal regression21, but anticorrelations
have also been detected in the absence of global signal regression
and with alternative noise-correction strategies72,73. Though
anticorrelation of infraslow inter-network activity has been
recovered in computational models74, electrophysiological DMN-
DAN/SN anticorrelations are not typically reported in non-
invasive M/EEG75–77. However, using 3–6min resting state iEEG
recordings, Keller et al.32 showed that a subset of region pairs
with resting BOLD anticorrelations exhibited anticorrelated
0.1–1 Hz HFB activity (of smaller magnitude compared to those
found in BOLD data), especially when global signal regression
was applied to iEEG data.

In our work, we did not apply global signal regression, and
there was an absence of zero-lag resting state anticorrelation in
the 0.1–1 Hz HFB range for most of the DMN-DAN and DMN-
SN electrode pairs investigated. One possible explanation for this
stems from our finding of coordinated inter-network delays,
which could suggest that intrinsic negative interactions between
networks may be better detected when accounting for lags on the
order of hundreds of milliseconds. It is possible that the hemo-
dynamic response “blurs” this inter-network temporal lag over
time, resulting in zero-lag negative BOLD correlations. Further
study of the spontaneous electrophysiological dynamics of inter-
network interactions, potentially combined with BOLD imaging
and/or hemodynamic response modeling (see ref. 78), is needed to
test this hypothesis.

In conclusion, our findings establish a behavioral significance
of systematic temporal lags underlying the coordination of
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activity between antagonistic brain networks. This knowledge is
critical for the interpretation of task and resting state functional
neuroimaging studies and for understanding the basis of changes
in inter-network relationships in health, aging, and disease. The
temporally ordered inter-network interactions identified here
point toward the possible capacity for causal influences, a topic
that requires further study with neuromodulatory techniques
such as direct brain stimulation.

Methods
Subjects. Data from 31 human subjects (S1–31) who were undergoing neuro-
surgical treatment for refractory focal epilepsy were included in analyses reported
here. Data from S1–10 were collected at Stanford University Medical Center,
whereas data from S11–31 were collected at Beijing Tian Tan Hospital (see Sup-
plementary Table 1 for full demographic and other details). Subjects were
implanted with intracranial electrodes that either were depth electrodes placed
stereotactically within one or both hemispheres (29 subjects) or subdural electrodes
arranged in grid and strip configurations over one hemisphere (two subjects).
Electrode placement was decided based on clinical evaluation for resective surgery.
Intracranial electrode monitoring took place over the course of multiple days.
Subjects at all experiment sites provided verbal and written informed consent to
participate in research. For procedures at Stanford, the Stanford Institutional
Review Board approved all procedures described herein. For procedures at Beijing,
the Medical Ethics Committee of Beijing Tian Tan Hospital approved
all procedures.

Subjects included in analyses presented here were selected from a cohort of 46
patients who participated in the cognitive task procedures herein. Exclusion criteria
were as follows: (1) poor behavioral performance (criteria described below) that
could indicate lack of compliance with task instructions or inability to perform the
task successfully (n= 12); (2) major structural brain abnormalities that impeded
MRI-based cortical surface reconstruction, including encephalomalacia and
damage from prior resections (n= 3).

Intracranial EEG data acquisition. iEEG recordings were performed at bedside of
the subject’s private clinical suite. For Stanford patients, data were recorded with a
Nihon Kohden (Tokyo, Japan) clinical monitoring system using a sampling rate of
1000 Hz and a bandpass filter of 1.6–300 Hz. For Beijing patients, data were
recorded with a Nihon Kohden system using a sampling rate of 1000 Hz (bandpass
filter of 0.08–300 Hz) or 2000 Hz (bandpass filter of 0.08–600 Hz). See Supple-
mentary Table 2 for recording parameters. For Stanford patients, depth electrode
contacts (Ad-Tech Medical Instrument Corporation, Oak Creek, WI, USA) were
cylindrically shaped (0.86 mm diameter, 2.29 mm height) with inter-electrode
spacing of 5–10 mm. For subdural electrodes, contacts were circle-shaped with
diameter of 2.3 mm in the exposed area of recording and inter-electrode spacing of
5–10 mm. For Beijing patients, depth electrode contacts (HKHS Healthcare,
Beijing, China) had a contact length of 2 mm, diameter of 0.8 mm, and inter-
electrode spacing of 1.5 mm. During recording, the iEEG signals were referenced to
the most electrographically silent channel outside of the seizure focus. The total
number of unique electrode sites within subjects ranged from 48 to 210 (Supple-
mentary Table 2).

Continuous performance task sessions. The GradCPT18 was administered in
multiple runs (range: 4–8) for each patient, with each run lasting 2–8 min (see
Supplementary Table 2 for the number of runs obtained and total task duration per
subject). The number of runs obtained within each patient depended on time
available for research testing in the clinical environment, which varied across
patients. The task was administered at bedside, in multiple sessions when neces-
sary, via a laptop (running Windows 10 Pro and Windows 8.1, respectively, in
Stanford and Beijing) with its screen positioned ~70 cm from the patients’ eyes at
chest level. Stimuli were presented using Psychophysics Toolbox79 in Matlab
R2016b (MathWorks, Natick MA, USA). An RTBox device80 was used to send
transistor–transistor logic pulses to an empty channel on the EEG montage to mark
the onset times of each stimulus.

During task performance, grayscale visual images of either city or mountain
scenes appeared within round frames (with white background) and gradually
transitioned from one to another for the duration of the task. Each transition lasted
800 ms. Using linear pixel-by-pixel interpolation within each trial, image coherence
began to gradually increase from time zero (minimum coherence) until 400 ms
(maximum coherence) before gradually decreasing back to minimum coherence (at
800 ms). In the majority of runs, scenes were presented randomly with 10%
mountain and 90% city, but the same scene could not repeat on consecutive trials.
In eight subjects (S11–18), half of the runs were performed with 25% mountain and
75% city rates; these runs were included in all analyses except for those of inter-run
variability in task performance, owing to potential changes in task difficulty). For
both cities and mountains, there were 10 unique images. The presented order of
these unique images was randomized on each iteration of the task to mitigate
learning specific sequences. Subjects were instructed to press the space bar on the
laptop upon noticing each city appearing but to withhold response when noticing a

mountain appearing. Subjects were asked to perform their best and to keep going
when they noticed themselves making an error. Each task session began with a 20 s
baseline period in which the patient was instructed to fixate on a blurred mask
stimulus (same size as scene stimuli) and get ready to begin. Subjects performed
with their dominant hand, except in occasional situations where there was
discomfort of the dominant hand.

Resting state recordings. Resting state runs were obtained and analyzed within
19 patients included in our final cohort. Prior to resting state recordings, subjects
were asked to relax and not think of anything in particular, whereas either keeping
eyes closed or open. In select resting state runs, subjects were instructed to fixate on
a central cross on the laptop screen.

MRI acquisition. In a pre-operative MRI session, all subjects underwent structural
MRI (T1-weighted). In addition, a computed tomography (CT) scan was obtained
following electrode implantation, which was used for anatomical localization of
electrode contacts. For Stanford patients, neuroimaging was performed at Stanford
Hospital on a 3.0 Tesla GE 750 MR system equipped with an eight-channel receive
only head coil (8HRBrain). In Beijing, neuroimaging was performed at Beijing
Dongzhimen Hospital on 3.0 Tesla Siemens MAGNETOM Verio system with a 32-
channel head coil. For T1 scans at Stanford, the parameters were 256 × 256 matrix,
160 slices, 0.94 × 0.94 × 1.00 mm voxels, 240 mm field of view, 13 degree flip angle,
9.63 ms repetition time, and 3.88 ms echo time. For T1 scans in Beijing, an
MPRAGE sequence was acquired with parameters 256 × 256 matrix, 176 slices,
1.00 × 1.00 × 1.00 mm voxels, 9 degree flip angle, 1900 ms repetition time, and 2.53
ms echo time.

Anatomical localization of electrode contacts. We used the iElvis pipeline81 for
anatomical localization of electrode contacts. First, we processed and reconstructed
the T1 scan using Freesurfer v6.0.0 (recon-all command)82. We then aligned the
post-implant CT image to the pre-implant T1 scan using a rigid transformation
(six degrees-of-freedom, affine mapping), and we inspected the quality of the
registration. Using BioImage Suite83, we manually labeled each electrode location
on the T1-registered CT image. For subdural electrode cases, we then projected the
electrode coordinates to the leptomeningeal surface and applied correction for
post-implant brain shift, using previously described methods84. In stereotactical
EEG cases, minimal post-implant brain shift is expected, and thus no further
adjustment was made. The electrode coordinates obtained from these approaches
were used for visualization and to assign electrodes to anatomical regions and
networks of interest.

Anatomical classification of electrode contacts. We assigned each electrode to
membership within the DMN, DAN, SN, or none of these three networks, based on
alignment with the Yeo population-level standard atlas of seven cortical net-
works37. To do so, we registered the Yeo atlas from fsaverage space to individual
cortical surfaces such that each vertex on the pial surface was classified within one
of the seven networks81. For subdural electrode contacts, network assignment was
based on the brain shift-corrected vertices. For depth electrodes, as coordinates
were in volume (rather than surface) space, we assigned each electrode to the
nearest cortical and white matter vertex. Depth electrodes were considered to be
within cortex and were assigned to a cortical network only if the following con-
ditions were met: the squared distance to the nearest cortical vertex was shorter
than that (a) to the nearest white matter vertex, (b) between the nearest cortical and
white matter vertices, and (c) was <4 mm.

We additionally conducted ROI based analyses of the dPPC, PMC, and dorsal
anterior insula (dAIC) owing to their well-described memberships within the
DAN, DMN, and SN, respectively (see Analyses of Inter-Electrode Coupling and
Task Performance). We classified electrode contacts as being within the dPPC,
PMC, or dAIC based on individual-level anatomy reviewed on 3D T1 volumes and
cortical surface reconstructions.

As both the superior parietal lobule (SPL) and intraparietal sulcus (IPS) have
been linked to the DAN2,85, we considered these adjacent areas within the parietal
lobe as a single ROI, which we term dPPC. The IPS part of the dPPC was
considered as the sulcus which runs along the anterior-posterior axis within lateral
parietal cortex, approximately from the post-central sulcus to the transverse
occipital sulcus. The SPL part of the dPPC (Brodmann area (BA) 7) included the
parietal cortex regions that are medial to the IPS, extending in the anterior-
posterior axis from the post-central sulcus to the parieto-occipital sulcus.

We defined the PMC as in previous work34,86,87. The PMC included areas
posterior to the post-central sulcus within the posterior cingulate cortex (within BA
23a and 23b), retrosplenial cortex (BA 29/30), and medial parietal cortex/
precuneus (BA 31 and 7 m). These areas were bounded by the marginal branch of
the cingulate sulcus (dorsally/anteriorly) and by the parieto-occipital sulcus
(posteriorly).

The dAIC was defined based on boundaries and landmarks defined
previously88,89 to demarcate areas that corresponded largely to the agranular
anterior insular zone90. This included the accessory gyrus of the insula, and/or
portions of the anterior, middle and posterior short gyri of the insula that were
superior to the inferior-most point of the short insular sulcus. These dorsal anterior
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subregions of the insula have been consistently linked with the salience, or cingulo-
opercular, network4,91.

Intracranial EEG: data preprocessing. Data from iEEG recordings were pre-
processed similarly for task and rest runs using a pipeline consistent with previous
work33. The procedures drew from tools in the Matlab-based LBCN preprocessing
pipeline (https://github.com/LBCN-Stanford/Preprocessing_pipeline), SPM1292,
and Fieldtrip93. For task runs, the recording was first cropped to retain data only
within the pre-task baseline and task performance periods. Notch filtering was
performed to attenuate power-line noise (zero-phase, third order, butterworth filter
with band-stop between 57–63, 117–123, and 177–183 Hz for data from Stanford,
and band-stop between 47 and 53, 97–103, and 147–153 Hz for data from China).
We then re-referenced the signal from each channel to the common average signal
across all channels, with the following channel types excluded from the common
average: those that (a) showed pathological activity during clinical monitoring (as
noted by a neurologist); (b) were manually labeled as clear outliers on power
spectra plots of all channels; (c) had a variance greater or lesser than five times the
median variance across all channels; or (d) had greater than three times the median
number of spikes across all channels, with spikes defined as 100 μV changes
between successive samples. We then performed time-frequency decomposition
using a Morlet wavelet transform with frequencies of interest log-spaced between 1
and 170 Hz (38 total values). To normalize the distributions of power amplitude
estimates, for each frequency of interest, we rescaled each time sample by the log
ratio of the whole run’s power amplitude time series. This rescaling step accounted
for the band-specific 1/f decline of the power spectrum94. Subsequently, we per-
formed averaging of power amplitude estimates within seven frequency bands,
including δ (1–3 Hz), θ (4–7 Hz), α (8–12 Hz), β1 (13–29 Hz), β2 (30–39 Hz),
γ (40–70 Hz), and HFB (70–170 Hz). We then visually inspected the HFB time
series in each run, and we excluded electrodes that showed irregular, spikey or
pathological activity (that may have been otherwise missed in our inspection/
exclusion prior to time-frequency decomposition).

Behavioral analysis. Because of the fast pace of the GradCPT and the overlap of
stimuli across adjacent trials, key presses were assigned to trials using a previously
described iterative algorithm18,19. Presses were assigned relative to the beginning of
each image transition. For trials in which the reaction time (RT) was highly deviant
(before 70% image coherence for current trial, or after 40% coherence for the
following trial), the following criteria were used for trial assignment: (1) If the
previous or current trial had no response, the press was assigned to the trial in
which the response occurred; (2) If both adjacent trials had no response, the press
was assigned to the trial closest in time (excluding cases where the trial was a
mountain image). (3) If multiple presses could be assigned to a given trial (based
on (1) and (2)), the fastest RT was assigned to that trial. Based on these trial
assignments, we computed the rates of omission errors (withheld button presses to
non-target city scenes) and commission errors (button presses to target mountain
scenes) within each run. Subjects were included in analyses only if they had per-
formed at least four GradCPT runs that each had omission and commission error
rates < 15% and 60%, respectively (i.e., approximately three times greater than the
average error rates reported in other healthy and patient populations18,36).

We used sensitivity (d′) as a measure of overall task performance, based on
signal detection theory95, within each session:

d0 ¼ Z hit rateð Þ � Z false alarm rateð Þ

where Z(p) is the inverse of the cumulative distribution function of the Gaussian
distribution. Thus, the higher the d′ value, the higher the overall accuracy of
behavioral performance (based on responses to both cities and mountains).
Evidence indicates that d′, based on GradCPT performance, is a generalizable
measure of sustained attention43,44.

Functional localization of task-responsive iEEG electrodes. After assigning
electrodes to membership within networks, we retained for analysis only those
electrodes that were anatomically within the DMN, DAN, or SN. To functionally
localize all task-responsive sites within these networks, we screened electrodes for
evoked HFB power amplitude during correct omissions (withheld behavioral
responses) to rare, target trials (mountain scenes) relative to correct commissions
(behavioral responses) to frequent, city trials in the GradCPT. Based on replicated
findings from previous fMRI studies18,36, and on the known association between
BOLD activity and electrophysiological HFB activity25,41,96,97, we expected that
HFB power would show an increase in DAN and SN sites as well as a decrease in
DMN sites during correct omissions and commission errors.

For this analysis, we minimally smoothed the HFB power amplitude time
course within each session using a 50-ms Gaussian window. We then extracted the
HFB time series from windows surrounding each mountain trial, with each
window starting at 800 ms prior to mountain scene onset (start of fade-in) and
ending at 1600 ms after the onset. We excluded mountain trials that were preceded
by other mountain trials. We also extracted time windows with the same
boundaries around correct commission trials (city trials with button presses). For
these correct commissions, we extracted only those that were both preceded and
followed by other city trials (and both with correct responses) to avoid potential

contamination with responses evoked by rare mountain scenes. Among these
retained correct commission trials, we deleted a random subset of trials within each
session such that the remaining subset included a total number of trials that
matched the number of mountain (target) trials within the same run. For the
purposes of this analysis, we refer to mountain and correct commission city trials
as “target” and “baseline” trials.

To assess significance of HFB responses during target compared to baseline
trials, we adopted a nonparametric cluster-based permutation test as implemented
in Fieldtrip38 conducted separately for each network within each subject and
accounting for multiple electrodes within each network. Combining trials across
GradCPT runs within each subject, we performed independent samples t tests on
normalized HFB power amplitude values to compare conditions, using data from
each time point ranging from time zero to +1500 ms relative to trial onset
(beginning of stimulus fading in). A two-tailed threshold of p= 0.05 was applied to
the obtained t-values. Subsequently, adjacent samples exceeding the threshold were
grouped together into clusters. The sum of t-values within each cluster was
calculated for cluster-level statistics, and the maximum of those values was taken as
the test statistic. These procedures were then repeated using the Monte Carlo
method with 1000 randomizations of trials. Channels including observed clusters
with a Monte Carlo significance probability less than 0.05 (two-tailed) were
considered as significant. Based on this screening procedure, we retained for
further analysis those SN and DAN sites that showed significant temporal clusters
of increased HFB and those DMN sites that showed significant temporal clusters of
decreased HFB.

Multiple kernel learning analyses of distinct frequencies. To comprehensively
assess the possible contributions of different frequency bands of activity to task-
evoked iEEG responses, we performed a multiple kernel learning (MKL)-based
analysis. The MKL approach is a machine learning-based method for feature
selection that can be applied to classifying iEEG task conditions by including
multiple frequency bands of activity as well as multiple electrodes in a single
model40. We used MKL in the PRoNTo toolbox98 to classify correct omission (city)
versus correct commission (mountain) trials.

For each subject, all electrodes that were anatomically identified as being within
one of the networks of interest (DMN, DAN, SN) were included in the model. For
each trial, power amplitudes from each electrode were extracted and averaged
between time 0 to 1500 ms after trial onset for seven frequency bands (δ, θ, α, β1,
β2, γ, HFB). As there were more correct commission than correct omission trials in
each subject due to the nature of the task, we randomly subsampled from correct
commission trials such that we obtained matched trial numbers across categories.
Model features were defined as kernels, or pair-wise similarity matrices across the
time series of all trials, which were constructed for each electrode and frequency
band (i.e., the number of kernels per subjects was m × 7, with m being the number
of electrodes). Each kernel was normalized and mean-centered to ensure that
modeling was not influenced by the scale of each kernel.

We then applied MKL, using a support vector machine to define a decision
boundary to discriminate between correct omission and correct commission trials.
As in previous work40, model parameters were optimized to determine the decision
boundary for each kernel, and decision boundaries were weighted by a parameter
dm to define a global decision boundary. We used a 10-fold cross-validation
scheme: in each fold, training was performed on 90% of trials, and testing was
performed on the 10% left out trials (with a different 10% left out on each fold).
Model accuracy was obtained as the average balanced accuracy (average of class
accuracies) across folds. During cross-validation, the soft-margin parameter, C, was
optimized by considering values 0.01, 0.1, 1, 10, 100, and 1000. A nested cross-
validation was performed where the value of C leading to highest model
performance in the inner cross-validation was selected, and that C value was used
to estimate performance in the outer cross-validation. To evaluate the
contributions of different frequency bands of activity to model performance, for
each fold we calculated the sum of dm values across electrodes for each of the seven
frequency bands. We then calculated the mean of those sums across the ten folds.
We performed a repeated-measures ANOVA to test the hypothesis that distinct
frequency bands would differ in their contributions to trial-type discrimination.
We also performed post-hoc paired t tests (two-tailed) to test our hypothesis that
HFB would have stronger contributions than other frequency bands (significance
set at FDR-corrected p of 0.05).

TTP analyses. We performed TTP estimation of HFB responses separately for
correct omission versus commission errors trials and for all identified task-
responsive electrodes in the DAN, SN and DMN. Within a time window ranging
from +200 to +1500 ms after trial onset (i.e., beginning of mountain scene fade-
in), we identified the maximum peak time point (for DAN and SN) or minimum
peak time point (for DMN) for each electrode’s trial-wise mean HFB response. The
+200 ms bound was selected a) to avoid possible contamination with responses to
previous city stimuli, and b) based on prior iEEG findings suggesting that earlier
peaks were unlikely to be plausible for DAN and DMN regions29,34. The +1500 ms
bound was selected to limit possible contamination with responses to subsequent
stimuli in the task. We used a linear mixed model to test whether electrodes within
the DAN, SN, and DMN had distinct TTP distributions. Subject was entered as a
random effect, network identity (DAN, SN, or DMN) was entered as a fixed effect,
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and TTP was entered as the dependent variable. We also performed three post-hoc
tests that were based on similar linear mixed effects models but that had two rather
than three network identities entered as the fixed effect (i.e., DAN and SN, DAN
and DMN, DMN and SN). For these linear mixed models and those described
below, we performed F tests on the coefficients with significance set at p < 0.05
(Satterthwaite’s approximation), two-tailed.

Comparison of correct versus incorrect trials. We compared HFB activity across
DAN, SN, and DMN electrodes prior to and during correct omission versus
commission error trials. For each electrode, we computed the mean HFB power
amplitude prior to target (mountain) onset in a −400 to 0 ms window (selected to
capture the brain state immediately preceding the target) as well as a post-target
window of +400 to +1200 ms (selected to capture the time period when the
highest amplitude responses were expected, while minimizing contamination with
responses during subsequent trials). For both the pre- and post-target HFB esti-
mates (each separately), averaged across trials for each electrode, we used linear
mixed effects models to test whether there were differences between correct
omission versus commission error trials within the DMN, DAN and SN. For each
network, subject was entered as a random effect, behavioral accuracy (correct
omission versus commission error) was entered as a fixed effect, and HFB power
amplitude (pre- or post-target) was entered as the dependent variable. Additionally,
to test for interactions between network and behavioral accuracy, we performed
linear mixed effects models (two-tailed) with subject entered as a random effect,
network identity entered a fixed effect, and the difference in HFB power amplitude
between commission errors and correct omissions (means subtracted between trial
types) entered as the dependent variable.

Analyses of inter-electrode coupling and task performance. To assess whether
coupling between antagonistic networks varied with task performance across
GradCPT runs, we focused on subjects who had simultaneous coverage of task-
responsive electrodes within key inter-network node pairs that were anatomically
matched across subjects. This included 6 subjects with dPPC-PMC coverage and
4 subjects with dAIC-PMC. Analyses were conducted using the peak-responsive
electrodes within each ROI (as defined based on cluster-based permutation testing
described above). To assess coupling between regions in continuous HFB power
amplitudes, we applied a bandpass temporal filter (zero-phase, butterworth, 4th
order) to the unsmoothed HFB envelope, retaining frequencies between 0.1 and
1 Hz31–33. We performed additional analyses of the HFB envelope, based on no
filtering (minimally smoothed, as described above). We deleted the 20-second pre-
task baseline window for these analyses. Inter-electrode coupling was assessed
using two metrics: (1) Zero-lag correlation, and (2) Lag-minimum correlation: the
minimum correlation (i.e., the greatest negative correlation) among cross-
correlations between the electrodes’ time series for inter-electrode shifts ranging
from −2 to 2 s. We then applied a Fisher r-to-z transformation to these values.

To compare inter-electrode coupling with run-to-run variability in behavioral
performance (d′) across subjects, we first normalized the inter-electrode coupling
and d′ values within subjects (i.e., for each run, we subtracted out the mean and
then divided by the standard deviation of values across runs). We then performed
linear mixed effect model analyses (two-tailed) with subject entered as a random
effect, behavioral performance (d′) as dependent variable and inter-electrode
coupling as fixed effects (zero-lag correlation and lag-minimum correlation as
separate variables). Only GradCPT sessions that included 90% city and 10%
mountain rate were included in these analyses so that task difficulty was matched
across sessions.

Analyses of inter-electrode coupling during task versus rest. We compared
HFB inter-electrode coupling across task performance versus resting state for all
subjects with simultaneous coverage of task-responsive DMN-DAN (13 subjects,
301 electrode pairs) and DMN-SN (19 subjects, 573 electrode pairs) electrodes and
who had undergone one or two resting state runs (Supplementary Table 2). Within
each run (task and rest), we filtered the continuous HFB power amplitudes to the
0.1–1 Hz range as described above. We deleted the 20-second pre-task baseline
window for each task run and the first 20 s from each rest run. For each inter-
network electrode pair, we computed inter-electrode coupling in two ways: (1) lag-
minimum correlation, and (2) zero-lag correlation. We applied a Fisher r-to-z
transformation to these values and then averaged the values across runs (when
more than one run was available). For both DMN-DAN and DMN-SN electrode
pairs, we then performed the following linear mixed effects model analyses (two-
tailed): (1) condition (task versus rest) as dependent variable, lag-minimum cor-
relation as fixed effect, and subject as random effect; (2) condition as dependent
variable, zero-lag correlation as fixed effect, and subject as random effect; and (3)
condition (task versus rest) as dependent variable, lag-minimum correlation and
zero-lag correlation each as separate fixed effects, and subject as random effect.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author on reasonable request.

Code availability
Code is publicly available for preprocessing of iEEG data (https://github.com/LBCN-
Stanford/Preprocessing_pipeline) as in this study. The code for analyzing the data of this
study are available from the corresponding author on reasonable request.
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