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.ree-dimensional speckle tracking echocardiography (3D STE) is an emerging noninvasive method for predicting left ven-
tricular remodeling (LVR) after acute myocardial infarction (AMI). Previous studies analyzed the predictive value of 3D STE with
traditional models. However, no models that contain comprehensive risk factors were assessed, and there are limited data on the
comparison of different 3D STE parameters. In this study, we sought to build a machine learning model for predicting LVR in
AMI patients after effective percutaneous coronary intervention (PCI) that contains the majority of the clinical risk factors and
compare 3D STE parameters values for LVR prediction. We enrolled 135 first-onset AMI patients (120 males, mean age 54± 9
years). All patients went through a 3D STE and a traditional transthoracic echocardiography 24 hours after reperfusion. A second
echocardiography was repeated at the three-month follow-up to detect LVR (defined as a 20 percent increase in left ventricular
end-diastolic volume). Six models were constructed using 15 risk factors. A receiver operator characteristic curve and four
performance measurements were used as evaluation methods. Feature importance was used to compare 3D STE parameters. 26
patients (19.3%) had LVR. Our evaluation showed that RF can best predict LVR with the best AUC of 0.96. 3D GLS was the most
valuable 3D STE parameters, followed by GCS, global area strain, and global radial strain (feature importance 0.146, 0.089, 0.087,
and 0.069, respectively). To sum up, RF models can accurately predict the LVR after AMI, and 3D GLS was the best 3D STE
parameters in predicting the LVR.

1. Introduction

Acute myocardial infarction (AMI) has been the leading
cause of cardiac death among all the cardiovascular events.
According to the China cardiovascular disease report 2018
[1], the prevalence of AMI in Chinese urban area is 0.999‰,
which is still growing, with a total number of 753,142
percutaneous coronary interventions (PCIs) being carried
out in 2017. Left ventricular remodeling (LVR), an structural
adaptation of the myocardium to compensate for the con-
tractile dysfunction of myocardial fibers [2], is an important

reference in early cardiac rehabilitation treatment for it is the
main cause of heart failure after AMI [3–6]. .erefore, a
robust prediction on the occurrence of LVR is invaluable to
the recovery of AMI patients.

Some studies have explored the values of serological
indicators, echocardiographic parameters, cardiac magnetic
resonance imaging (CMRI) [7–10], and coronary angiog-
raphy (CAG) in LVR prediction. Among all the imaging
examinations, echocardiography is most vastly applied be-
cause it is less costly, less time-consuming, and friendly to
almost all types of patients, with a good balance of simplicity
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and predictive power. .ree-dimensional speckle tracking
echocardiography (3D STE) is a noninvasive method that
outmatches traditional echocardiography in diagnostic
power and other imaging methods both in an economical or
a practical term [10–12]. 3D STE tracks the deformation of
the myocardium through actual three-dimensional obser-
vations rather than geometrical assumptions. .ere have
been some studies that used 3D STE to predict LVR [13–16],
but few studies have compared the abilities of different 3D
STE parameters in predicting LVR or built a comprehensive
model to predict LVR using factors that include 3D STE.

With the growing attention on machine learning, the
medical application of this technology has become a new
focus [17]. Machine learning is an interdisciplinary
subject, which involves probability theory, statistics, ap-
proximation theory, convex analysis, algorithm com-
plexity theory, and other disciplines [18–22]. It is flexible,
expandable, and automatic, which makes it adaptable for
risk stratification, diagnosis, and predictions, but cur-
rently, we cannot find any machine learning algorithm
being applied to predict the occurrence of LVR.

In this study, we attempted (1) to investigate the pre-
diction power of machine learning methods in predicting
LVR and (2) to investigate the difference of 3D STE pa-
rameters in predicting LVR.

2. Materials and Methods

2.1. Patient Population and Protocols. 172 consecutive pa-
tients with first-onset AMI were initially enrolled in this
study. All the AMI patients were diagnosed according to
the guideline recommendations. Exclusion criteria were
as follows: age <18 years, a history of previous coronary
heart disease requiring a PCI, severe valvulopathy, left
bundle branch block, atrial fibrillation, malignant ar-
rhythmia, and/or any condition compromising the pa-
tient’s ability to comply. Patients received reperfusion
within 12 hours. 24 h after effective PCI, patients went
through a standard transthoracic echocardiography and a
3D STE examination. After three months, patients went
through another standard transthoracic echocardiogra-
phy. We defined LVR as an increase ≥20% in LVEDV at
three-month follow-up [2, 23–28]. .e study protocol was
approved by the ethics committee of the General Hospital
of the Southern .eatre Command, PLA, and oral in-
formed consent was obtained from all the patients. Due to
the sensitivity of patients’ personal information in a
military hospital, an application for waiver of written
informed consent was applied and approved by the same
ethics committee (No. 202041).

2.2. 3D STE Examinations. 3D STE was performed using a
GE Vivid E9 ultrasound diagnostic system (Horten, Nor-
way) with a 4D volume probe (4 V-D). First, left ventricular
volume data from an apical four-chamber view of four to six
consecutive ECG-gated cardiac cycles were obtained and
stored during a single end-expiratory breath hold. .en, we
outlined the LV endocardial and epicardial borders as a

region of interest. .en, the 3D GLS, 3D GCS, 3D GRS, and
3DGAS values were displayed in a bulls-eyed plot (Figure 1).

According to Korup et al., left ventricular dilatation
began within three hours after acute myocardial infarction,
and no further progress was made after that in the first six
days [29]. Sakuma et al. reported that the optimal timing to
detect myocardial changes for predicting LVR is 24 hours
after reperfusion of the culprit artery [30]. Based on these
studies, we assessed 3D myocardial contractions at 24 hours
after PCI.

2.3. Coronary Angiography. All patients went through CAG
to identify an infarct-related artery (IRA), measure the
thrombolysis in myocardial infarction (TIMI) grade, and
carry out revascularization through PCI. CAG was per-
formed with a digital subtraction angiography machine. For
coronary artery reperfusion therapy, subsequent PCI was
performed to recover blood flow in the IRA. .e blood flow
level of the coronary artery was measured with the TIMI
grade during CAG both at baseline and after coronary
angioplasty. Patients with a TIMI grade ≥3 after coronary
angioplasty were included in the statistical analysis.

2.4. Statistics. All statistical analyses were performed using
IBM SPSS 21.0 (Chicago, IL, USA) software and Python with
modules including Scikit-learn based on Abraham A’s
method [31], as well as Pandas, Numpy, Tensorflow, and
Matplotlib. Data as continuous variables were expressed as
means± SD. Categorical variables were presented as abso-
lute numbers and relative frequencies. Normal distribution
of variables was checked with the Kolmogorov–Smirnov
test. Continuous variables were compared using Student’s t-
test. Fisher’s exact test or the chi-squared test was used to
compare categorical variables.

In this study, before we compared 3D STE in a specific
model, we used 15 risk factors to build six models including
Decision Tree (DT), Random Forest (RF), eXtreme Gradient
Boosting (eXGB), K-Nearest Neighbors (K-NN), Gaussian
Naive Bayes (GNB), and Logistic Regression (LR) and
compared the prediction power of all six models. .e
modules of the above machine learning methods were
imported into Python so that no extra coding was needed. 5-
fold cross-validation was performed to enhance the effect of
testing and modeling capability. A receiver operator char-
acteristic (ROC) curve was performed, and area under the
curve (AUC), accuracy, sensitivity, specificity, and F1 score
were calculated to evaluate classifiers.

In this study, data analysis proceeded according to the
following steps. (1) Preliminary analysis: input patient data
set and conduct one-way ANOVA, chi-square, and corre-
lation analysis. (2) Model construction: input significant
factors from step one, and import modules including DT,
RF, eXGB, K-NN, GNB, and LR to Python. Each parameter
was tested under 5-fold cross-validation that randomly se-
lected 75% of the dataset as the training set and the rest 25%
as the test set. (3) Tuning: conducted multiple program
running and sorted out the best values of the model pa-
rameters such as n_estimators, max_depth, and
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random_state. (4) Model comparison: compared con-
structed models using AUC, accuracy, sensitivity, specificity,
and F1 score. (5) 3D STE comparison: after the best clas-
sification method was confirmed, we compared 3D STE
parameters through feature importance from the model..e
data analysis work flow is displayed in Figure 2.

3. Results

3.1.Demographic andClinical Characteristics. Initially, there
were 172 patients enrolled in this study. 37 were further
excluded due to the following reasons: (1) 13 patients with a
TIMI grade< 3, (2) 12 patients due to poor myocardial
tracking (>2 nonvisualized segments), (3) 10 patients for
disagreement to participate, and (4) 2 patients died. Even-
tually, 135 patients (mean age, 54± 9, 88.9% males) were
included in our study.

Patients were divided into two groups according to the
occurrence of LVR. Table 1 displays baseline demographic
and clinical characteristics. Age, sex, body mass index,
body surface area, medical history, angiographic findings,
blood tests findings as well as medication during follow-
up were compared. Patients with LVR were older than

patients without LVR (56.85 ± 11.80 yrs vs.
53.22 ± 7.92 yrs, p � 0.044, S). .ere is no significant dif-
ference among the other characteristics.

3.2. Echocardiographic Data. Baseline and three-month
follow-up standard echocardiographic parameters as well as
baseline 3D STE parameters are presented in Table 2. 26
patients (19.3%) were defined as LVR (>20% increase in
LVEDV), and 109 patients (80.7%) did not have LVR. No
significant differences were found in baseline standard
echocardiographic characteristics between LVR and non-
LVR patients. Follow-up LVEDV, LVESV, and LVEF were
all significantly different between the two groups (respec-
tively, 126.94± 19.77 vs. 105.32± 25.53, p< 0.001;
62.39± 14.12 vs. 47.86± 18.34, p< 0.001; 51.43± 7.00 vs.
55.42± 8.79, p � 0.025). Follow-up LVMI was not significant
between the LVR and non-LVR patients.

A 3D STE assessment was carried out 24 hours after
effective PCI (defined as a TIMI grade≥ 3). .e results are
also presented in Table 2. 3D GLS and 3D GRS in patients
with LVR were significantly reduced (respectively,
−9.90± 2.60% vs. −12.99± 3.10%, p< 0.001 and
28.13± 7.13% vs. 32.29± 9.43%, p � 0.037).
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Figure 1: .ree-dimensional speckle tracking echocardiography (3D STE) analysis shows the result of global longitudinal strain (GLS) and
global area strain (GAS) on a bull’s eye depiction acquired by EchoPAC 112 (GE Medical System, Horten, Norway) from a patient. (a)
Curves of instantaneous segmental 3D GLS in a patient (−18.9%). (b) Curves of instantaneous segmental 3D GAS in a patient (−21.8%).

Journal of Healthcare Engineering 3



3.3. LVR Risk Factors. A correlation analysis was conducted
to find out possible risk factors that have impact in pre-
dicting LVR. .e results are presented in Table 3. Age, 3D
GLS, 3D GCS, and 3D GRS were correlated with the oc-
currence of LVR. Among all of the 3D STE parameters, the r
value of 3D GLS is the best, the second is 3D GRS, and the
third is 3D GCS. In this correlation analysis, 3D GAS does
not correlate with the occurrence of LVR.

Univariate analysis showed that 3D GLS, 3D GRS, and
LVMI were associated with LVR occurrence. .e odds ratio
(OR) and 95% CI for each of 3D STE parameters along with
other factors are displayed in Table 4. One of the important
findings in the univariate analysis was that 3D GLS was the

best predictor of LVR occurrence (OR, 1.374; 95% CI,
1.176–1.604; p< 0.001). And 3D GRS was also a good
predictor (OR, 0.949; 95% CI, 0.903–0.998; p � 0.040).
Further assessment of these factors was conducted by using
machine learning methods to build models that contained
most of the clinically important factors.

3.4.LVRPredictiveModels. DT, RF, eXGB, K-NN, GNB, and
LR were applied to construct models with 15 clinical risk
factors including age, sex, smoking, BMI, body surface area,
serum creatinine, cTnL, time to perfusion, left anterior
descending branch occlusion as the infarct-related artery,
multivessel occlusion, LVMI, and four 3D STE parameters.

INPUT
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One-way
ANOVA

Preliminary analyses

Correlation

Model construction

Input
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Figure 2: Data analysis work flow.

Table 1: Demographic and clinical characteristics.

LVR (n� 26) Non-LVR
(n� 109) p

Age, yrs 56.85± 11.80 53.22± 7.92 0.044
Male, % 88.5 89.0 NS
Body mass index, kg/ m2 25.67± 2.65 24.57± 2.77 NS
Body surface area, m2 1.75± 0.18 1.72± 0.14 NS
Medical history
Hypertension (%) 46.2 42.2 NS
Diabetes (%) 42.3 26.6 NS
Smoking (%) 84.6 89.9 NS

Angiographic findings
Time to reperfusion
(h) 12.69± 5.33 10.81± 5.67 NS

Multivessel disease
(%) 46.2 49.5 NS

LAD as the IRA (%) 65.4 57.4 NS
Blood tests findings
cTnI 11.54± 6.77 9.84± 8.49 NS
SCr, μmol/l 85.92± 19.05 84.69± 21.75 NS

Medications during
follow-up
Antiplatelets (%) 100 100 —
ACEI/ARB (%) 100 95.4 NS
β-Blockers (%) 100 95.4 NS
Statins (%) 100 100 —

LAD: left anterior descending branch. IRA: infarct-related artery. ACEI:
angiotensin-converting enzyme inhibitors. ARB: angiotensin receptor
blockers. NS: p> 0.05, nonsignificant.

Table 2: Echocardiographic characteristics according to the oc-
currence of LVR.

LVR (n� 26) Non-LVR
(n� 109) p

LVEDV (baseline)
(ml) 99.68± 16.56 105.431± 25.07 NS

LVEDV (follow-up)
(ml) 126.94± 19.77 105.32± 25.53 <0.001

LVESV (baseline)
(ml) 47.75± 9.96 48.98± 18.40 NS

LVESV (follow-up)
(ml) 62.39± 14.12 47.86± 18.34 <0.001

LVEF (baseline) (%) 51.70± 6.23 54.40± 8.55 NS
LVEF (follow-up)
(%) 51.43± 7.00 55.42± 8.79 0.025

LVMI (baseline) (g/
m2) 79.79± 19.00 85.82± 9.33 NS

LVMI (follow-up)
(g/m2) 81.87± 19.34 85.54± 8.79 NS

3D GLS (%) −9.90± 2.60 −12.99± 3.10 <0.001
3D GCS (%) −14.10± 7.53 −18.07± 19.49 0.071
3D GAS (%) −19.72± 3.84 −21.33± 6.28 NS
3D GRS (%) 28.13± 7.13 32.29± 9.43 0.037
LVEDV: left ventricular end-diastolic volume. LVESV: left ventricular end-
systolic volume. LVEF: left ventricular ejection fraction. LVMI: left ven-
tricular mass index. 3D GLS: three-dimensional global longitudinal strain.
GCS: global circumferential strain. GAS: global area strain. GRS: global
radial strain.
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.e constructed models were then compared to show which
was the best in predicting LVR in this sample.

Merged ROC curves of all six classifiers are presented in
Figure 3. Table 5 shows all the evaluation parameters of the
constructed models. As a result, the RF model predicted
LVR with the best AUC of 0.96, the best accuracy of 90.48%,
and the second best specificity of 94.12%, surpassing the
other models. eXGB ranked second to RF with an AUC of
0.90. DT and LR ranked third with equal AUCs of 0.83. .e
K-NN model had an AUC of 0.77, and GNB had the lowest
AUC of 0.60. LR and K-NN had the best sensitivity (94.64%
and 92.86%).

Since the RF model was the best in this work, we further
ran a visualization of the model structure. .e structure of
one of the decision trees that formed the RF model is vi-
sualized and displayed in Figure 4. For each sample, a de-
cision tree identifies it through multiple nodes and finally
contributes a vote to decide if it is LVR or non-LVR. Each
decision tree might have different features and different
number of nodes. In the example given in Figure 4, the
decision tree votes its decision through three processes: first,
the value of a sample’s age; second, the BSA or 3D GLS; and
final, the BSA or age.

3.5. Comparison of Different 3D STE Parameters in Predicting
LVR. As a result of the above section, we found that RF can
construct the best model to predict LVR, and consequently,
we used such model to display the comparison of different
3D STE parameters’ ability in predicting LVR. .e model
was trained under 5-fold cross-validation that randomly
selected 75% of the sample as the training set (n� 101) and

25% of the sample as the test set. A feature importance
analysis of the RF model was conducted, and the resulted
diagram is displayed in Figure 5. .e five most important
features of the RF model were 3D GLS, age, 3D GCS, time to
perfusion (TTP), and 3D GAS (feature importance: 0.146,
0.140, 0.089, 0.087, 0.087, respectively).

4. Discussion

It is difficult to predict which AMI patients will and which
will not develop LVR after a successful PCI. We built several
prediction models including the conventional model and
machine learning models and discovered that RF achieved
higher predictive power than other models in our work and
used the Random Forest model to compare 3D STE pa-
rameters, finally discovering the overwhelming predictive
value of 3D GLS, thus bringing more attention to possible
future investigation into 3D GLS. Our study was the first to
build a machine learning model for LVR prediction using
factors that were mostly encountered in clinical practice plus
four 3D STE parameters and compare 3D STE parameters
values for predicting LVR in AMI patients after effective PCI
by using the Random Forest method.

4.1. Predictive Models for LVR. In this study, we built a
strong RF model for LVR prediction, using most of the

Table 3: .e correlation of factors with LVR occurrence.

Factors r p value
Age 0.174 0.043
cTnI 0.134 0.121
LAD 0.064 0.462
Sex −0.007 0.939
TTP 0.129 0.137
Smoker −0.066 0.444
Multivessel −0.027 0.758
3D GLS 0.396 <0.001
3D GAS 0.139 0.107
3D GCS 0.179 0.038
3D GRS −0.185 0.031
LVMI −0.106 0.220
Scr 0.036 0.677
TTP: time to perfusion. BMI: body mass index.

Table 4: .e univariate analysis of LVR predictive factors.

Factors OR 95% CI p value
3D GLS 1.374 1.176–1.604 <0.001
3D GAS 1.047 0.974–1.125 0.214
3D GCS 1.059 0.992–1.131 0.087
3D GRS 0.949 0.903–0.998 0.040
Age 1.049 0.998–1.104 0.061
LVMI 0.962 0.925–1.000 0.047
Scr 1.003 0.983–1.023 0.789
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Figure 3: Comparison of the ROC curves of all models. .e
Random Forest model showed the best AUC of 0.96 (blue line), and
eXGB showed the second best AUC of 0.90 (green line).

Table 5: Evaluation of constructed models.

Classifier AUC Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

F1
score

DT 0.83 85.71 75.00 88.24 0.81
RF 0.96 90.48 50.00 94.12 0.85
eXGB 0.90 76.19 50.00 82.35 0.87
K-NN 0.72 83.82 94.64 94.87 0.83
GNB 0.60 70.73 44.44 79.49 0.79
LR 0.83 85.37 92.86 92.31 0.83
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important factors we encountered in the clinical practices.
Some studies also built various predictive models for LVR in
AMI patients. Bochenek et al. built a regression model using
global longitudinal strain solely as a risk factor, with an AUC
of 0.77 and accuracy of 80% [32]. Sugano et al. used 3D GCS
to predict LVR, with an AUC of 0.73 and sensitivity of 84%
[33]. Xu et al. built regression models that contained several

clinical risk factors, but their work focused on evaluating
these factors and did not assess these models’ ability as a
whole in predicting LVR [34]. Most of the studies build
regression models to investigate the predictive value of a
separate risk factor. We did not find studies that assessed
models using various clinical risk factors, whether it in-
cluded 3D STE parameters or not.

4.2. �e Predictive Value of 3D STE for LVR. .is study
demonstrated that 3D GLS, among all the 3D STE pa-
rameters, is the strongest in predicting LVR in AMI patients
undergoing effective PCI, the power of which exceeded other
conventional markers such as cTnI, which is consistent with
most similar studies [15, 32, 35–37]. We assumed that this
phenomenon partly resulted from the intuitive feature of 3D
STE in observing heart movement. .e effect of cTnI on the
occurrence of LVR is subtle, and the same goes for other
serological biomarkers, while 3D STE detects detailed heart
movement to predict probable myocardial changes in the
future.

In our study, due to its original characteristics, the RF
model constructed requires less calculation and fits better in
real-world clinical cases, in which the samples are usually
small and imbalanced.

4.3. Different 3D STE Parameters in Predicting LVR. In our
model generated by RF, 3D GLS was the most important
feature, as shown in Figure 5 (feature importance of 3D GLS:
0.146, age: 0.140, 3D GCS: 0.089, TTP: 0.087, and 3D GAS:

BSA ≤ 1.7
Gini = 0.2

Samples = 64
Value = [92, 12]

Class = non-LVR

3D GLS ≤ –12.2
Gini = 0.5

Samples = 18
Value = [14, 17]

Class = LVR

BSA ≤ 1.5
Gini = 0.0
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Value = [41, 1]
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BSA ≤ 1.7
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Gini = 0.3
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Gini = 0.4
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Value = [14, 2]
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Figure 4: One of the decision trees in the resulted Random Forest model. A Random Forest model is a combination of multiple diverse
decision trees..e decision tree displayed in this figure had age, 3D GLS, and BSA as classification features..e grayness in a box means the
probability of a node being predicted as LVR. .e parameter “sample” means the number of randomly chosen samples in this node. .e
parameter “Gini” measures the diversity of the samples, that is, the probability of inconsistent categories between two samples from a data
set. .e smaller the Gini index, the higher the purity of the sample. .e parameter “class” means this node tendency of this vote.
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0.087). .is result is in consistence with many other studies
that used traditional biostatistical models. A reasonable
explanation for the excellent performance of 3D GLS lies in
the anatomic characteristic of the coronary artery and the
capillary network inside the heart muscles. 3D GLS observes
the most vulnerable myocardium layer, the sub-endocar-
dium, which is anatomically far from the coronary artery
and receives the least nutrition from its capillary network,
rendering it the most vulnerable to coronary artery blockage.
.ese myofibrils are the first to show abnormality in a heart
attack and remain poorly cared for after the revasculari-
zation, in which the affected endocardial movement is
uncoordinated, and the amplitude is reduced.

In one of our previous studies, we compared 3D STE
parameters with 2D STE in predicting LVR in ST-elevated
myocardial infarction patients, coming to the conclusion
that 3D GRS was the second best 3D STE parameter, fol-
lowed by 3DGAS, while 3DGCS showed no predictive effect
[36]. However, in this study, we had a different result. 3D
GCS was the second best 3D STE parameter, followed closely
by 3D GAS (feature importance 0.089 and 0.087). As
Random Forest commonly has a better result in small and
imbalanced sample and we included more risk factors in this
work, we believe this result is more accurate, but further
investigation is needed to confirm this theory.

4.4. Random Forest Model. In this work, we decided to
compare the 3D STE parameters with the RF model for it
had the best performance, outmatching DT, eXGB, K-NN,
GNB, and LR models. .e DT is simple in calculation and
vastly used, but overfitting remains as one of its main
disadvantages, which might be the reason why it did not
have a good performance in this work. .e eXGB is a highly
efficient and optimized distributed gradient boosting library
[38]. It is highly flexible and portable, which excels in big
data analysis. However, the imbalance of a dataset can affect
the training of an eXGB model, which explains why it was
not as good as RF in this work..eK-NN algorithm searches
the most similar training samples to predict the observation
value of a new sample. It usually performs well in numerical
data and discrete data, but performs badly when the sample
is imbalanced, which is quite opposite to the RF. .e
Gaussian NB usually has a good performance in small
sample studies, but in this study, it still performed badly. We
assumed the main reason was that many of the variables in
this study were discontinuous, whichmay affect the power of
Gaussian NB. .e other reason is that the Gaussian NB
presumed that none of the variables interact with each other,
which is unlikely in this study, and this may heavily affect the
predictive power of the Gaussian NB model, and the LR
performed badly in this work for the same reason.

Random Forest is a highly flexible machine learning
algorithm that performs well in small and imbalanced
samples [19]. .at explains why it excelled in this study. It
is based on bagged decision trees that are trained on
bootstrap samples. And these decision trees combined and
formed a Random Forest. Its coding was uploaded in the
supplement files.

In the our RF model, Gini impurity was used to measure
the partitioning attribute. Assuming that the proportion of
the kth sample in the current sample set D is pk (k� 1, 2, . . .,
K), the purity of the dataset D can be measured by the Gini
value:

Gini(D) � 􏽘
K

k�1
􏽘

k′≠k

pkpk′ � 1 − 􏽘
K

k�1
p
2
k. (1)

When Gini (D)� 0, the sample was the purest, and then,
the category extracted was of the same type, either LVR or
non-LVR. When Gini (D)� 0.5, the probabilities of two
categories were the same, meaning the tree cannot distin-
guish LVR or non-LVR. .erefore, the smaller the Gini (D),
the higher the purity of the dataset D. For the tuning of
parameters, see the supplementary materials (available
here).

An RF can be described as a cluster of many decision
trees in which each decision tree independently votes for the
most possible classification at input x [39, 40]. It is a highly
flexible and expandable machine learning algorithm based
on the concept of integrated learning, which integrates many
basic decision tree units into a “forest.” Every decision tree
can classify a result through its own features (as shown in
Figure 4), and the RF assembles the decisions of all these
trees and gives the final decision. It is capable of simulta-
neously handling thousands of input variables without de-
letion, and the speed of RF calculation is a lot faster than
traditional models.

In this study, we showed that RF is a more powerful
method of predicting LVR after AMI. Furthermore, due to
its flexibility, scalability, and faster calculation speed, RF is
promising in the clinical practice of predicting LVR after
AMI.

4.5. Clinical Implications. Our study built LVR predictive
models with machine learning techniques and discovered
that the best 3D STE parameters in predicting LVR after
AMI is 3D GLS, and the second is 3D GCS. .is model is
more accurate because (1) it included 15 risk factors that
were encountered regularly in clinical practice and (2) in
clinical practice, the sample is always a small and imbalanced
one. And this model is more rapid for it needs less calcu-
lation steps. .ough we have not verified the value of this
model in clinical practice, because it is still in its early stage,
we believe more and more research will transfer the value of
this work into clinical application.

Rapid prediction of future LVR in patients with AMI
after PCI is instructive for cardiologists to stratify patients,
especially for the detection of patients with poor prognosis.
.ese patients need careful treatment plans to avoid relapse,
HF deaths, heart transplantation, and to prevent major
ventricular arrhythmia. Further research is required to help
supplement the clinical benefits of the model and 3D STE.

4.6. Limitations. One of the limitations of this study is that
the positive and negative proportion was imbalanced (26
LVR patients vs. 109 non-LVR patients), thus affecting the
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robustness of the machine learning models. .ough RF can
reduce this effect, a more balanced data set is still required to
give a more convincing result. .e other limitation is this
study only represents the results of an ultrasound machine
from one kind of vendor, so it may be less comparable to
results from different vendors. .e rigor of this work should
be demonstrated by using different ultrasound machines
with the similar size of samples.

5. Conclusions

.ere are two main conclusions of this study: (1) the ma-
chine learning method Random Forest constructs the best
model under the circumstances of predicting LVR with 3D
STE; and (2) for AMI patients undergoing effective PCI, the
3D STE parameter 3D GLS acquired at 24 hours after the
PCI is highly likely to best predict the occurrence of LVR.

Data Availability

.e data used to support the findings of this study are in-
cluded within the supplementary information files.

Conflicts of Interest

.e authors declare that no conflicts of interest exist re-
garding the publication of this paper.

Authors’ Contributions

Junda Zhong and Peng Liu contributed equally to this work.

Acknowledgments

.is study was funded by General Program of the National
Natural Science Foundation of China (61976222), Major
Projects of Applied Science and Technology, Guangdong
Province (2017B010125001), Logistics Research Project
(CLB18J041), Animal Experiment Project (SYDW[2017]04),
and Medical Technology Youth Top Notch Project
(20QNPY082). .e authors sincerely acknowledge and
thank all the staff members of their department and hospital
that contributed their time and effort in this study.

Supplementary Materials

1. Tuning: the tuning of parameters in the construction of a
Random Forest model. 2. Random forest construction: the
coding of the construction of Random Forest. 3. Raw data:
raw data of the research, including all the data of all patients
used in the statistical analysis. (Supplementary Materials)

References

[1] S. Hu, R. Gao, L. Liu et al., “China cardiovascular disease
report,” Chinese Circulation Journal, vol. 3, pp. 209–220, 2019.

[2] J. N. Cohn, R. Ferrari, and N. Sharpe, “Cardiac remodeling-
concepts and clinical implications: a consensus paper from an
international forum on cardiac remodeling,” Journal of the
American College of Cardiology, vol. 35, no. 3, pp. 569–582,
2000.

[3] Y. Sun, “Myocardial repair/remodelling following infarction:
roles of local factors,” Cardiovascular Research, vol. 81, no. 3,
pp. 482–490, 2008.

[4] H. Shih, B. Lee, R. J. Lee, and A. J. Boyle, “.e aging heart and
post-infarction left ventricular remodeling,” Journal of the
American College of Cardiology, vol. 57, no. 1, pp. 9–17, 2011.

[5] P. Martens, P. Nijst, F. H. Verbrugge, M. Dupont,
W. H. W. Tang, and W. Mullens, “Profound differences in
prognostic impact of left ventricular reverse remodeling after
cardiac resynchronization therapy relate to heart failure eti-
ology,” Heart Rhythm, vol. 15, no. 1, pp. 130–136, 2018.

[6] L. B. Marinho, N. D. M. M. Nascimento, J. W. M. Souza et al.,
“A novel electrocardiogram feature extraction approach for
cardiac arrhythmia classification,” Future Generation Com-
puter Systems, vol. 97, pp. 564–577, 2019.

[7] V. H. C. de Albuquerque, D. d. A. Rodrigues, R. F. Ivo et al.,
“Fast fully automatic heart fat segmentation in computed
tomography datasets,” Computerized Medical Imaging and
Graphics, vol. 80, Article ID 101674, 2020.

[8] J. A. L. Marques, P. C. Cortez, J. P. V. Madeiro,
V. H. C. de Albuquerque, S. J. Fong, and F. S. Schlindwein,
“Nonlinear characterization and complexity analysis of car-
diotocographic examinations using entropy measures,” �e
Journal of Supercomputing, vol. 76, no. 2, pp. 1305–1320, 2020.

[9] J. N. Khan and G. P. McCann, “Cardiovascular magnetic
resonance imaging assessment of outcomes in acute myo-
cardial infarction,” World Journal of Cardiology, vol. 9, no. 2,
pp. 109–133, 2017.

[10] E. K. Kim, Y. B. Song, S.-A. Chang et al., “Is cardiac magnetic
resonance necessary for prediction of left ventricular
remodeling in patients with reperfused ST-segment elevation
myocardial infarction?” �e International Journal of Car-
diovascular Imaging, vol. 33, no. 12, pp. 2003–2012, 2017.

[11] M. Ahmad, “Real-time three-dimensional echocardiography
in assessment of heart disease,” Echocardiography, vol. 18,
no. 1, pp. 73–77, 2001.

[12] M. Uematsu, “Speckle tracking echocardiography,” Circula-
tion Journal, vol. 79, no. 4, pp. 735–741, 2015.

[13] M. Altman, C. Bergerot, A. Aussoleil et al., “Assessment of left
ventricular systolic function by deformation imaging derived
from speckle tracking: a comparison between 2D and 3D echo
modalities,” Eur Heart J Cardiovasc Imaging, vol. 15, no. 3,
pp. 316–323, 2014.

[14] D. Hayat, M. Kloeckner, J. Nahum et al., “Comparison of real-
time three-dimensional speckle tracking to magnetic reso-
nance imaging in patients with coronary heart disease,” �e
American Journal of Cardiology, vol. 109, no. 2, pp. 180–186,
2012.

[15] S. A. Luis, A. Yamada, B. K. Khandheria et al., “Use of three-
dimensional speckle-tracking echocardiography for quanti-
tative assessment of global left ventricular function: a com-
parative study to three-dimensional echocardiography,”
Journal of the American Society of Echocardiography, vol. 27,
no. 3, pp. 285–291, 2014.

[16] M. Li, S. Dong, Z. Gao et al., “Unified model for interpreting
multi-view echocardiographic sequences without temporal
information,” Applied Soft Computing, vol. 88, Article ID
106049, 2020.

[17] M. Santos, R. Munoz, R Olivares, P. P. R. Filho, J. Del Ser, and
V. Albuquerque, “Online heart monitoring systems on the
internet of health things environments: a survey, a reference
model and an outlook,” Information Fusion, vol. 53,
pp. 222–239, 2020.

8 Journal of Healthcare Engineering

http://downloads.hindawi.com/journals/jhe/2020/8847144.f1.zip


[18] H. Wen, Z. Liang, Y. Zhao et al., “Feasibility of detecting early
left ventricular systolic dysfunction using global area strain: a
novel index derived from three-dimensional speckle-tracking
echocardiography,” European Journal of Echocardiography,
vol. 12, no. 12, pp. 910–916, 2011.

[19] H. Zhang, H. Zhang, S. Pirbhulal, W. Wu, and
V. H. C. De Albuquerque, “Active balancing mechanism for
imbalanced medical data in deep learning–based classification
models,” ACM Transactions on Multimedia Computing,
Communication and Application, vol. 16, no. 1, pp. 1–15, 2020.

[20] S. Pirbhulal, O. W. Samuel, W. Wu, A. K. Sangaiah, and G. Li,
“A joint resource-aware and medical data security framework
for wearable healthcare systems,” Future Generation Com-
puter Systems, vol. 95, pp. 382–3913, 2019.

[21] Z. Gao, X.Wang, S. Sun et al., “Learning physical properties in
complex visual scenes: an intelligent machine for perceiving
blood flow dynamics from static CT angiography imaging,”
Neural Networks, vol. 123, pp. 82–93, 2020.

[22] J. A. Lobo Marques, P. C. Cortez, J. P. D. V. Madeiro,
S. J. Fong, F. S. Schlindwein, and V. H. C. D. Albuquerque,
“Automatic cardiotocography diagnostic system based on
Hilbert transform and adaptive threshold technique,” IEEE
Access, vol. 7, pp. 73085–73094, 2019.

[23] K. Y. Ngiam and I. W. Khor, “Big data and machine learning
algorithms for health-care delivery,” �e Lancet Oncology,
vol. 20, no. 5, pp. e262–e273, 2019.

[24] L. Bolognese, A. N. Neskovic, G. Parodi et al., “Left ventricular
remodeling after primary coronary angioplasty: patterns of
left ventricular dilation and long-term prognostic implica-
tions,” Circulation, vol. 106, no. 18, pp. 2351–2357, 2002.

[25] R. M. Lang, L. P. Badano, V. Mor-Avi et al., “Recommen-
dations for cardiac chamber quantification by echocardiog-
raphy in adults: an update from the American Society of
Echocardiography and the European Association of Car-
diovascular Imaging,” Journal of the American Society of
Echocardiography, vol. 28, no. 1, pp. 1–39, 2015.

[26] N. Yang, Z. G. Liang, Z. J. Wang et al., “Combined myocardial
deformation to predict cardiac resynchronization therapy
response in nonischemic cardiomyopathy,” Pacing and
Clinical Electrophysiology, vol. 40, no. 9, pp. 986–994, 2017.

[27] R. B. Devereux and N. Reichek, “Echocardiographic deter-
mination of left ventricular mass in man: anatomic validation
of the method,” Circulation, vol. 55, no. 4, pp. 613–618, 1977.

[28] S. A. Mollema, V. Delgado, M. Bertini et al., “Viability as-
sessment with global left ventricular longitudinal strain
predicts recovery of left ventricular function after acute
myocardial infarction,” Circulation: Cardiovascular Imaging,
vol. 3, no. 1, pp. 15–23, 2010.

[29] E. Korup, D. Dalsgaard, O. Nyvad et al., “Comparison of
degrees of left ventricular dilation within three hours and up
to six days after onset of first acute myocardial infarction,”�e
American Journal of Cardiology, vol. 80, no. 4, pp. 449–453,
1997.

[30] T. Sakuma, T. Okada, Y. Hayashi, M. Otsuka, and Y. Hirai,
“Optimal time for predicting left ventricular remodeling after
successful primary coronary angioplasty in acute myocardial
infarction using serial myocardial contrast echocardiography
and magnetic resonance imaging,” Circulation Journal,
vol. 66, no. 7, pp. 685–690, 2002.

[31] A. Abraham, F. Pedregosa, M. Eickenberg et al., “Machine
learning for neuroimaging with scikit-learn,” Frontiers in
Neuroinformatics, vol. 8, p. 14, 2014.

[32] T. Bochenek, K. Wita, Z. Tabor et al., “Value of speckle-
tracking echocardiography for prediction of left ventricular

remodeling in patients with ST-elevation myocardial in-
farction treated by primary percutaneous intervention,”
Journal of the American Society of Echocardiography, vol. 24,
no. 12, pp. 1342–1348, 2011.

[33] A. Sugano, Y. Seo, T. Ishizu et al., “Value of 3-dimensional
speckle tracking echocardiography in the prediction of mi-
crovascular obstruction and left ventricular remodeling in
patients with ST-elevation myocardial infarction,” Circulation
Journal, vol. 81, no. 3, pp. 353–360, 2017.

[34] L. Xu, X. Huang, J. Ma et al., “Value of three-dimensional
strain parameters for predicting left ventricular remodeling
after ST-elevation myocardial infarction,” �e International
Journal of Cardiovascular Imaging, vol. 33, no. 5, pp. 663–673,
2017.

[35] E. Abate, G. E. Hoogslag, M. L. Antoni et al., “Value of three-
dimensional speckle-tracking longitudinal strain for pre-
dicting improvement of left ventricular function after acute
myocardial infarction,” �e American Journal of Cardiology,
vol. 110, no. 7, pp. 961–967, 2012.

[36] W. Zhu, W. Liu, Y. Tong, J. Xiao et al., “.ree-dimensional
speckle tracking echocardiography for the evaluation of the
infarct size and segmental transmural involvement in patients
with acute myocardial infarction,” Echocardiography, vol. 31,
no. 1, pp. 58–66, 2014.

[37] H. Tanaka, K. Matsumoto, T. Sawa et al., “Evaluation of global
circumferential strain as prognostic marker after adminis-
tration of b-blockers for dilated cardiomyopathy,” �e In-
ternational Journal of Cardiovascular Imaging, vol. 30, no. 7,
pp. 1279–1287, 2014.

[38] S. Pirbhulal, W. Wu, K. Muhammad, I. Mehmood, G. Li, and
V. H. C. de Albuquerque, “Mobility enabled security for
optimizing IoT based intelligent applications,” IEEE Network,
vol. 34, no. 2, pp. 72–77, 2020.

[39] L. S. Athanasiou, D. I. Fotiadis, and L. K. Michalis, “Plaque
characterization methods using intravascular ultrasound
imaging,” Atherosclerotic Plaque Characterization Methods
Based on Coronary Imaging, Academic Press, Cambridge,
MA, USA, pp. 71–94, 2017.

[40] X. Sun, S. Wang, Y. Xia, and W. Zheng, “Predictive-trend-
aware composition of web services with time-varying quality-
of-service,” IEEE Access, vol. 8, pp. 1910–1921, 2020.

Journal of Healthcare Engineering 9


