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ABSTRACT

Gene expression noise influences organism evolu-
tion and fitness. The mechanisms determining the
relationship between stochasticity and the functional
role of translation machinery components are crit-
ical to viability. eIF4G is an essential translation
factor that exerts strong control over protein syn-
thesis. We observe an asymmetric, approximately
bell-shaped, relationship between the average intra-
cellular abundance of eIF4G and rates of cell pop-
ulation growth and global mRNA translation, with
peak rates occurring at normal physiological abun-
dance. This relationship fits a computational model
in which eIF4G is at the core of a multi-component–
complex assembly pathway. This model also cor-
rectly predicts a plateau-like response of transla-
tion to super-physiological increases in abundance
of the other cap-complex factors, eIF4E and eIF4A.
Engineered changes in eIF4G abundance amplify
noise, demonstrating that minimum stochasticity co-
incides with physiological abundance of this factor.
Noise is not increased when eIF4E is overproduced.
Plasmid-mediated synthesis of eIF4G imposes in-
creased global gene expression stochasticity and re-
duced viability because the intrinsic noise for this
factor influences total cellular gene noise. The nat-
urally evolved eIF4G gene expression noise mini-
mum maps within the optimal activity zone dictated
by eIF4G’s mechanistic role. Rate control and noise
are therefore interdependent and have co-evolved to
share an optimal physiological abundance point.

INTRODUCTION

It is estimated that more than 76% of yeast’s total cellu-
lar energy budget is committed to protein synthesis (1).
Moreover, the control of protein synthesis is closely linked
to growth capacity (and thus competitiveness) and has ac-
cordingly been honed by selective pressures over hundreds
of millions of years. Studies in microorganisms have sug-
gested that, despite the complexity of genetic and metabolic
control networks, the relationship between growth and the
biosynthetic capacity of the translation machinery seems
to follow relatively simple principles (2). Imprecision in the
control of protein synthesis is a potential threat to organ-
ism survival; equally, gene expression noise generated via
the translation machinery can be expected to influence the
viability of individual cells. To place this into context, recent
modeling work has estimated the effective cost of noise as
equivalent to up to 25% of overall yeast fitness (3).

A critical step in cap-dependent translation initiation in
eukaryotes involves association of the eukaryotic transla-
tion initiation factor eIF4G with the cap-binding protein
eIF4E (encoded by CDC33; Figure 1A). eIF4G helps re-
cruit the ribosomal 43S complex (comprising the 40S sub-
unit plus the Multi-Factor-Complex (MFC) factors eIF1,
Met-tRNAMet.eIF2.GTP, eIF3 and eIF5, together with
eIF1A) to the 5′end of mRNA (4). eIF4E and eIF4G, to-
gether with the DEAD-box helicase eIF4A (encoded by
TIF1 and TIF2), also form the cap-binding complex eIF4F
(Figure 1A), and eIF4G-Pab1 interactions are capable of
mediating interactions between the 5′ and 3′ ends of mRNA
(5). The high affinities between eIF4E, eIF4G and mRNA
suggest that these three components readily form a core
complex in vivo (6–8), whereby eIF4G is thought to act as a
molecular scaffold upon which this, and even higher order
complexes, are built. eIF4G exists in two isoforms in S. cere-
visiae (eIF4G1/eIF4G2, encoded by TIF4631 and TIF4632,
respectively), in mammalian cells (eIF4GI/eIF4GII), and in
plants (4). There is a further essential DEAD-box helicase,
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Figure 1. The role of eIF4G in the translation initiation pathway. There are potentially multiple routes to formation of the 48S pre-initiation complex. Here
we illustrate alternative paths to formation of the cap-binding complex on capped mRNA, followed by further steps en route to 40S subunit recruitment
(A). In the interest of clarity, we represent the 40S ribosomal subunit plus eIF1, eIF1A, Met-tRNAi-eIF2-GTP, eIF3 and eIF5 as 40S+ (see key in the grey
panel). Further reaction steps shown here represent the disassembly of the cap-binding complex and the combination of scanning to the AUG start codon
and joining of the 60S ribosomal subunit. (B) Experimental data from previous work that used a chromosomal tet07 construct to delineate the relationship
between eIF4G abundance (below the wild-type level; green data points) and global translation rate combined with new data exploring this relationship
in the region >100% eIF4G abundance (orange data points). The fit (black line) has been generated by allowing the pathway model (Supplementary
Figure S2) to generate a fit to the experimental data. Overexpression was achieved by replacing the natural promoter PTIF4631 with PTDH3, PTEF1, PPAB1
or PTRP1 upstream of TIF4631. The x-axis shows the abundance of eIF4G as a percentage of the average wild-type abundance of this factor. Values on
the y-axis are shown as percentage of the average wild-type global protein synthesis rate. For comparison, the magnitude of the coefficient of variance for
eIF4G::GFP (total noise, as determined by flow cytometry) is also represented on the plot. (C) Equivalent plot and computational model fit for eIF4E.
(D) An interaction map with nodes representing the translation factors eIF4A, eIF4B, eIF4E, eIF4G, Ded1 and Pab1 (see key in grey panel), and edges
representing the known possible interactions. mRNA is represented by R. The multiple interactions of eIF4G (with R, A, E and P) that are on the main
assembly pathway are highlighted in red. Dashed lines indicate (transient) interactions with eIF4B and Ded1.

called Ded1, that can associate with the cytoplasmic (and
nuclear) cap-binding complex. This protein promotes trans-
lation initiation but the mechanism of its action is unclear
(9,10).

Translation initiation involves cycles of progressive sto-
ichiometric assembly (and disassembly) of intermediate
complexes (Figure 1A). A recent comprehensive rate con-
trol study (11) revealed that control of the rate of protein

synthesis, at least under exponential growth conditions, is
distributed primarily over a subset of components of the
translation machinery. eIF4G exerts stronger rate control
over yeast protein synthesis in vivo than the cap-binding
protein eIF4E, a factor that has long been regarded as a key
controlling factor in eukaryotic protein synthesis. This high
flux-control value is consistent with the critical molecular
‘scaffolding’ function of eIF4G, a factor that interacts with
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multiple partners. eIF4G is one of the least abundant trans-
lation factors in yeast, with an average intracellular abun-
dance approximately forty times lower than that of the elon-
gation factor eEF1A, and ten-fold lower than that of eIF4A
(the most abundant initiation factor), yet both eIF4G and
eIF4A exert comparatively strong rate control over protein
synthesis (11). There is evidence that the intracellular con-
trol of eIF4G activity has wider significance. For example,
reduced abundance can extend the lifespan of yeast and ne-
matodes, and overabundance is correlated with certain can-
cers in humans (12).

Previous genetic and biochemical studies of translational
control have generally reported mechanistic and control
data averaged over many millions of cells. Our focus in
this study is the role of eIF4G at the single cell level. In
a wider context, there are many intracellular machineries
that feature key (scaffolding) proteins which bind multiple
other components (examples include the pheromone signal-
ing pathway (13), ribosome biogenesis (14), and proteasome
assembly (15)). Therefore studying molecular noise and
single-cell functionality in relation to eIF4G is of broader
relevance.

Here we observe that, while the average abundance of
eIF4G across a population of cells is quantitatively aligned
with the mechanistic requirements of the protein synthe-
sis pathway, individual cells manifest significant variation
(noise) in the numbers of molecules of eIF4G mRNA and of
eIF4G protein. Given the powerful role of eIF4G as a rate-
controlling factor and the mechanistic features constrain-
ing its optimum abundance range, this heterogeneity has the
potential to act as a driver of variation in protein synthesis
capacity between individual cells, thus generating extrinsic
noise that impacts on the entire cellular system. We explore
the relationship that has evolved in yeast between optimiz-
ing average population-level protein synthesis efficiency and
the observed level of cell-to-cell heterogeneity for expression
of the eIF4G gene. Overall, this provides insight into the
relationship between mechanistic features of the initiation
phase of protein synthesis and the noise parameters for the
translation machinery in individual cells.

MATERIALS AND METHODS

Strain construction and analysis

The Saccharomyces cerevisiae strains used in this paper are
summarized in a table in the Supplementary Data section.
Unless otherwise stated, standard methods were used to
construct the yeast strains, all of which are based on PTC41.
For the construction of genomic GFP gene fusions, a cas-
sette comprising the yeast enhanced GFP (yeGFP) gene
and a selective marker was chromosomally integrated and
fused to the C termini of the respective target genes. For
the construction of cassettes combining the PTEF1 promoter
with a range of stem-loop structures, the PTEF1 promoter
plus a selective marker were amplified using specific primers
containing the stem-loop sequences in the flanking region.
Each of the resulting cassettes was chromosomally inte-
grated upstream of the coding region of the target gene.
The tetO7 strains created for characterization of the eIF4G
abundance versus protein synthesis relationship were con-
structed and analysed as described previously (11). A range

of promoters were also used to boost the rate of synthesis
of eIF4G1 to yield abundance levels above the physiologi-
cal norm (Figure 1B; Supplementary Data). Mass spectro-
metric analysis of translation factor concentrations was per-
formed (in triplicate) on a Thermo Scientific™ TSQ Quan-
tiva™ Triple Quadrupole Mass Spectrometer via the se-
lected reaction monitoring (SMP) approach using Skyline
software (16). Signal strengths were compared to those ob-
tained in earlier, internally calibrated, estimations of protein
abundance (11). Details of the mass spectrometry methods
and data are provided in the Supplementary Data section.

Cell-to-cell heterogeneity measurements

One day prior to a batch of experiments, single colonies
from each of the strains were picked and grown overnight
in YNB (plus amino acids) medium with shaking at 30◦C.
The following morning, cells were diluted to give an optical
density at 600 nm (OD600) of ∼0.2. Diluted cultures were
then grown to mid-exponential phase (OD600 ∼ 0.6) with
continued shaking at 30◦C. smFISH (17) was performed on
fixed, mid-exponential-phase, yeast cells using (Quasar 570-
and Quasar 670-tagged) probes (listed in the Supplemen-
tary Data section) targeted to multiple regions of the respec-
tive gene sequences. For flow cytometry, a mid-log phase
culture from each strain was subjected to sonication at 50–
60 Hz for ∼15 s in order to separate any cell aggregates.
After sonication, sterilized PBS was added to each tube for
flow cytometry measurements. To minimize variation due
to delays between sample delivery and measurements, dif-
ferent strains were prepared for flow cytometry at intervals
of 15 min. Yeast cells synthesizing GFP fusion proteins were
illuminated using a 488 nm laser, and fluorescence was col-
lected through 505 nm long-pass and 530/30 nm band-pass
filters on a BD Fortessa X20 flow cytometer. The data were
recorded using the ‘Area’ option. Flow cytometry data were
exported from the acquisition program (FACSDiva) in the
FCS3.0 format with a data resolution of 218. A custom R
programme was written (using flowCore, flowViz and flow-
Density Bioconductor packages) to calculate statistics for
each file. For calculating the coefficients of variation (CV
values), cytometry files were processed as follows:

1. The first second, and last 0.2 s, of data were removed to
minimize errors due to unstable sample flow through the
cytometer.

2. Thresholds of 40 000–100 000 and 10 000–90 000 for the
FSC and SSC gates, respectively, were typically used to
limit the influence of cellular debris and aggregated cells.

3. For the remaining data, the FSC and SSC values of the
highest density centre of the FSC–SSC scatterplot were
calculated, and the distance of the ith sample to the cen-
tre was determined:

Distance i = √ (
(FSC i − FSC centre)2+(SSC i − SSC centre)2

)

4. The GFP data within the radius were used to calculate
the coefficient of variation: CV = � / �

The CV values for ratios between GFP-tagged proteins
and mCherry-tagged eIF4A2 (Figure 3) were calculated ac-
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cording to the formula:

Noise2 =
〈
(G F P − mCherr y)2

〉

2〈G F P〉〈mCherr y〉
as described previously (18).

Growth competition method

Growth competition experiments were conducted to detect
small differences in growth rate between distinct strains:
WT, PTIF4631TIF4631::GFP and PTEF1(M2)TIF4631::GFP.
Single colonies from each of the strains were picked and
grown overnight with shaking at 30◦C. The following morn-
ing, cells were diluted to give an optical density at 600 nm
(OD600) of ∼0.1. Diluted cultures were then mixed indi-
vidually in a 1:1 ratio with an isogenic competitor strain
(lys2::kanMX, in which the LYS2 gene in the WT strain
PTC41 was disrupted by the kanMX gene). The accuracy
of strain mixing was controlled via OD measurements. Then
each mixed culture was grown consistently at near mid-log
phase (OD600 ∼0.6) by repeated dilutions for approximately
98 hours with shaking at 30◦C. The proportion of each
strain in a mixed population was assessed by plating on (se-
lective) growth media: YPD, YPD + G418 (selection against
tested strains), and YNB-Lys (selection against the control
lys2::kanMX strain) prior to (t0) and after (t98) for the mid-
log phase culture. Colony numbers (No.) were counted for
each of the plates in order to determine the percentage of
each test strain remaining in the total population of cells.
The percentage of each tested strain in a population was
calculated using the following formula:

% of population
= No. tested (t98)/No. tested (t0)

No. tested (t98)/No. tested (t0)+No. competitor (t98)/No. competitor (t0)

Computational rate control model of cap complex assembly

The computational model comprises a random-order bind-
ing scheme where eIF4G and mRNA act as scaffolds,
and where eIF4A, eIF4E, Ded1 and Pab1 can bind both
scaffolds. This reaction scheme was created as a set of
rules with the software BioNetGen (19) which generates
an SBML model with the entire reaction network consist-
ing of 1744 reactions and 211 chemical species (note that
these reactions are irreversible and correspond to 872 re-
versible binding reactions). This model of cap-binding com-
plex formation was then imported to the software CO-
PASI (20) and complemented with two extra reactions to
mimic the rest of translation: one reaction where the com-
plex eIF4A:eIF4E:eIF4G:Ded1:Pab1:mRNA binds the 43S
complex, creating an elongating ribosome and free forms
of eIF4A, eIF4E, eIF4G, Ded1 and Pab1; the second reac-
tion where the elongating ribosome dissociates to a free 40S
ribosomal subunit, free peptide and free mRNA. The role
of these two steps is to allow the system to reach a steady
state where mRNA is continuously being incorporated into
ribosomal complexes and peptides are being produced, to
match the experimental scenario where translation is oper-
ating in a quasi-steady state. The final model thus has 1746
reactions and 215 species and is supplied in a supplemen-
tary file containing the initial BioNetGen rules, and the fi-
nal model in SBML and COPASI formats. The final model

was simulated, and its parameters estimated from the exper-
imental data, using the software COPASI. This represents
the model as a set of 213 simultaneous ordinary differential
equations, but which only contains 30 parameters given that
no binding cooperativity was considered (28 parameters for
the random-order cap-binding complex and 2 for the two
reactions representing the remaining steps of translation).
Parameter estimation was carried out in a sequence of 10
steps, alternating the Hooke-Jeeves algorithm (21) with the
Particle Swarm algorithm (22). A more detailed description
of the model and how it was applied is given in the Supple-
mentary Data section.

RESULTS

Optimal global translation rate within a narrow eIF4G activ-
ity range

Previous work demonstrated that global protein synthesis
in exponentially growing cultures of yeast cells is highly
sensitive to reductions in the intracellular concentration of
eIF4G (11). In this earlier study, eIF4G1 activity was mod-
ulated incrementally (via ‘titration’ with doxycycline) us-
ing a chromosomal tet07 regulatory construct in a strain
deleted for eIF4G2 (tif4632Δ). The rate control coefficient
(RJ

1; change of the rate of global protein synthesis as a func-
tion of the change in intracellular abundance of the specific
translation factor) was taken from the slope of the plot in
the near-physiological range (80–100% of the wild-type av-
erage global protein synthesis rate). Moreover, all three cap-
complex proteins (eIF4A, eIF4E and eIF4G) were found to
manifest strong RJ

1 values, thus emphasising the key role of
the cap-binding complex in the translation pathway.

To clarify the contribution of the second eIF4G isomer,
we performed the equivalent rate control study for eIF4G2
in a strain lacking eIF4G1 (tif4631Δ). It has been shown
previously that eIF4G2 is capable of compensating for the
absence of eIF4G1, provided that TIF4632 is expressed to a
sufficiently high level (23). Here, we found that eIF4G2 has
a very similar RJ

1 value to that of eIF4G1 (Supplementary
Figure S1). In other words, the two isomers are equivalent in
terms of their respective abilities to exert rate control dur-
ing exponential growth in yeast, a result that informs the
modeling analysis performed in this study.

Variations in gene expression steps can lead to the intra-
cellular abundance of a protein in any given cell being ei-
ther below, or in excess of, the average abundance measured
by standard biochemical methods for cell populations. To
help inform our understanding of the single cell biology
of eIF4G-mediated translational control, we integrated a
range of alternative promoters upstream of TIF4631 (Fig-
ure 1B) in order to explore the relationship between average
eIF4G abundance and global protein synthesis and growth
in the region above wild-type abundance. Combining the
resulting new overexpression data with earlier results ob-
tained for the region below wild-type abundance of eIF4G
(11), we observe that the relationship of the global mRNA
translation rate to the average intracellular abundance of
eIF4G describes an asymmetric bell-shaped curve centered
around the physiological level (determined previously to be
∼22 000 molecules per cell of the two eIF4G isomers com-
bined). In contrast, overproduction of eIF4E (24; Figure
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Figure 2. Cell-to-cell heterogeneity of eIF4G mRNA. smFISH experiments for simultaneous labelling of non-fused TIF4631 (red) and TIF4632 (green)
mRNAs (A), PTIF4631TIF4631::GFP mRNA (B), and PTEF1(M2)TIF4631::GFP-encoded mRNA (C). Distributions of mRNA counts per cell across cell
populations (D) reveal CV values for the mRNA species (see main text and Supplementary Figure S3). All cells were also treated with the nuclear stain
DAPI.

1C) or of eIF4A has comparatively little effect on transla-
tion or growth in yeast.

In order to obtain insight into why protein synthesis is
inhibited strongly both by an excess, as well as by an in-
sufficiency, of intracellular eIF4G, we established a compu-
tational model of the assembly of the cap-binding complex
on capped mRNA (Materials and Methods section; Supple-
mentary Figure S2) based on the interaction relationships
summarized in Figure 1. The model represents the assem-
bly of the cap-binding complex proteins eIF4A, eIF4E and
eIF4G together with the 5′end of the mRNA (some of the
possible reaction steps are illustrated in Figure 1A). It also
includes Ded1, a further essential DEAD-box helicase that
is required for translation initiation (9). Strong overexpres-
sion of Ded1 drives formation of a translationally repressed
Ded1–eIF4F–mRNA complex that accumulates in stress
granules (25). Since the repressed complex is not thought
to form in wild-type cells under conditions of exponential
growth on glucose, it does not feature in our model. More-
over, yeast has a non-essential eIF4B factor that is thought
to promote binding between eIF4A and eIF4G by somehow
stabilizing a specific conformation of the eIF4G HEAT do-
main (26). However, this protein has no effect on the bind-
ing between recombinant eIF4A and eIF4G in vitro (26),
and it seems unable to form a heterotrimeric complex to-
gether with these two factors. eIF4B binding is likely to be
transient and it has an in vivo rate control coefficient in the
near-physiological abundance range that is far lower than
those of the other eIF4F complex factors (11). For the sake
of simplicity, we have therefore not included eIF4B in the
model at this stage (Figure 1D and Supplementary Figure
S2).

A random assembly model (Figure 1A; Supplementary
Figure S2), which is consistent with previous biochemi-
cal, biophysical and genetic investigations (see, e.g. (8, 27-
29)), predicts that the required binding of eIF4G to mul-
tiple other factors to build the cap-binding complex con-
strains the optimal functional concentration range of this
factor, thus providing a good fit to the experimentally ob-
served data (Figure 1B). The observed asymmetric bell-
shaped profile is reminiscent of the so-called ‘prozone’ ef-
fect reported in early work on the formation of the three-
dimensional lattice of interactions between antigen and an-
tibody (30,31). Equally, the same model correctly predicts

no comparable inhibitory behavior arising from excess lev-
els of eIF4E (Figure 1C).

Cell-to-cell heterogeneity in mRNA abundance

We next determined whether eIF4G gene expression man-
ifests marked stochasticity, since cell viability can be ex-
pected to be sensitive to both upward and downward vari-
ations in the abundance of this protein. Moreover, fluctua-
tions in gene expression generally tend to be more signifi-
cant at lower intracellular transcript levels (32). We started
our characterization of the heterogeneity in the synthesis of
this factor using smFISH (single molecule Fluorescence In
Situ Hybridization). eIF4G mRNA copy number was de-
termined using fluorescently tagged mRNA-specific probes
targeted to TIF4631 and TIF4632 mRNAs, respectively
(Figure 2A and D). Our results indicate that the average
intracellular eIF4G mRNA abundance values are 11 ± 4
(TIF4631; total population CV = 0.36) and 2 ± 2 (TIF4632;
total population CV = 1.00), respectively, whereby the copy
numbers for the respective isomer mRNA species in each
cell are at best weakly correlated (Supplementary Figure
S3). The CDC33 and TIF1/TIF2 mRNA counts per cell
[14±5 (CV = 0.36) and 57±10 (CV = 0.18), respectively;
Supplementary Figure S3] reflect the large difference in in-
tracellular concentrations of eIF4E and eIF4A (11), and we
note that, overall, the mRNA CV values follow the order:
TIF4632 (eIF4G2) > TIF4631 (eIF4G1) ≥ CDC33 (eIF4E)
> TIF1/TIF2 (eIF4A). Collectively, the mRNA abundance
values exceed those estimated previously using high-density
oligonucleotide arrays (33,34), a finding that is relevant to
our analysis of gene expression noise. This apparent dis-
crepancy may be attributable to an underestimation of the
total number of all mRNA species in yeast, to which many
hybridization-based abundance estimates have been nor-
malized (34).

Cell-to-cell variation in cap-complex protein abundance

Previous studies have generated conflicting conclusions re-
garding the relationship between mRNA copy number and
variation in the single-cell abundance of an encoded protein
(35,36). Given that the degree of cell-to-cell eIF4G hetero-
geneity can be expected to impact on the protein synthe-
sis capacity of individual cells, we characterized the noise
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Figure 3. Cell-to-cell heterogeneity in the ratios between cap-complex translation factors. Flow cytometry data were collected for GFP fusions with eIF4E
(A), eIF4G1 (B) and eIF4G2 (C) using, in each strain, a fusion between mCherry and eIF4A2 as a reference. The plots reflect the cell-to-cell variation in
the ratio between eIF4A2 and the other three factors. The CV values were calculated according to a formula given in the Materials and Methods section.

for the two isomers at the protein level. We constructed
GFP gene chromosomal fusions of TIF4631 and TIF4632
in which the full reading frames (and the functionalities)
of the respective genes were maintained. This allowed us to
study the distribution of the encoded eIF4G::GFP fusion
proteins across populations of exponentially growing yeast
cultures using flow cytometry. In separate experiments, we
found that the TIF4631::GFP and TIF4632::GFP mRNAs
manifest very similar intracellular content distributions to
those of the unfused mRNAs [e.g. TIF4631::GFP (10±4;
Figure 2B) vs TIF4631 (11 ± 4; Figure 2A)].

Overall gene expression noise is generally regarded as
comprising components that are intrinsic (specific to a given
gene in a single cell) and extrinsic (global differences be-
tween cells in terms of the gene expression environment).
Intrinsic and extrinsic noise sources can in principle be dis-
tinguished by comparing two (physiologically non-essential
and non-perturbing) reporter genes that are identically
regulated (37). Taking into account the sensitivity of cell
growth to translation factor abundance, we have adopted
a modified version of this strategy in which we determine
the expression ratio between two distinct translation factor
genes that have been tagged with different fluorescent re-
porters. We determined the intracellular ratio between the
intensity of eIF4A2::mCherry and each of the GFP fusions
with the other cap complex factors (Figure 3A-C). We used
this ‘reference construct’ because we have shown previously
that yeast exponential growth is relatively insensitive to ex-
pression changes if these affect only one of either of the two
eIF4A alleles (TIF1 and TIF2; 11). The (uncorrelated) cell-
to-cell variation in the ratios between eIF4G, eIF4E and
eIF4A followed the trend eIF4G2 > eIF4G1 > eIF4E.

Much of the extrinsic component of gene expression
noise is related to heterogeneity in size, shape and cell-cycle
stage in a cell population (see, e.g. (38,39)). The use of flow
cytometry gating based on forward (FSC) and side (SSC)
scatter parameters to limit the influence of such heterogene-
ity on the measured variation in protein abundance offers
an alternative approach to minimising the contribution of
extrinsic noise in the estimated CV value (40). We have ap-
plied gating analysis to the data obtained with the trans-
lation factor GFP fusions in an otherwise wild-type strain
background (Figure 4A and B). Consistent with the gene ex-

pression ratio measurements (Figure 3), these experiments
indicate a noise trend of eIF4G2 > eIF4G1 > eIF4E ∼
eIF4A. Comparison of the abundance ratio values (Figure
3) with the values derived from the gating method (Figure
4) for eIF4G2 (13% versus 15.7%), eIF4G1 (9.7% vs 11.6%)
and eIF4E (8.6% versus 10.9%) indicates that both methods
provide a good indication of the intrinsic noise for the re-
spective translation factors. Indeed, the percentage change
in CV value derived from the two types of method (tak-
ing eIF4G2 as the reference, normalized to 1.0) are strik-
ingly close: the abundance ratio method yields values of 1.0
(eIF4G2), 0.75 (eIF4G1) and 0.66 (eIF4E), while the gating
method yields values of 1.0 (eIF4G2), 0.73 (eIF4G1) and
0.69 (eIF4E). The cell-to-cell variance for eIF4G2 alone is
greater than for eIF4G1 but, taking into account the iso-
mers’ respective abundance levels, the observed total noise
for both factors together (Table 1) suggests that the individ-
ual noise contributions combine additively.

Intrinsic vs extrinsic gene expression noise in the translation
machinery

An important aspect of stochasticity associated with trans-
lation machinery components is the potential for noise gen-
erated during their intracellular synthesis to contribute to
the global noise level in the cell. We set out to obtain a more
complete understanding of this potential effect via experi-
ments in which we examined the (indirect) effects of mod-
ulation of the expression of one translation factor gene on
the expression noise of another. First of all, we found that
the noise value for a genomically encoded eIF4G2::GFP fu-
sion is increased in a TIF4631Δ strain (Table 1); here, the re-
duction in combined eIF4G activity attributable to the loss
of eIF4G1 resulted in enhanced noise. In a complementary
experiment, we observed that genomic overproduction of
a non-tagged eIF4G1 (overexpression of TIF4631 from the
strong PTEF1 promoter) resulted in increased noise in the ex-
pression of genomic TIF4632::GFP (Table 1).

In a second type of experiment, we characterized the im-
pact of the inherently more variable rate of plasmid-directed
synthesis of a translation factor on the expression noise of a
genomic GFP fusion. We used stable low-copy centromeric
plasmids for these experiments. Transformation of a TIF1Δ
strain with a plasmid carrying the natural TIF1 promoter



Nucleic Acids Research, 2017, Vol. 45, No. 2 1021

Cell Number
9000
8000
7000
5000
3000
1000
500

SS
C

 a
re

a 
(1

03  r
el

at
iv

e 
un

its
) 

   
  0

   
   

   
 5

0 
   

   
 1

00
   

   
 1

50
 

0          50        100        150 
FSC area (103 relative units) 

CV
%

 A  

C 

P T
IF

46
31

TI
F4

63
1 

 P T
IF

46
32

TI
F4

63
2 

    
   

   
 P

TI
F1

TI
F1

 
    

P C
D

C
33

C
D

C
33

 
   

1            3     5      10                         100 
Gate radius (103 relative units) 

50 
 
 
40 
 
 
30 
 
 
20 
 
 
10 
 
 
  0 

CV
%

 

 
 
20 
 
15 
 
10 
 
  5 
 
  0 

B

Figure 4. Estimation of the intrinsic noise for cap-complex translation factors. An SSC versus FSC plot (A) illustrates the procedure used to identify
subsets of cells that are increasingly homogeneous in terms of factors that contribute to extrinsic noise. A plot of CV versus gate radius (B) reveals the
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Table 1. Summary of genomic GFP fusion expression data

Construct/genotype Total Gated

GFP mean CV% CV% GFP mean

PTIF4631TIF4631::GFP 1250 ± 63.0 30.7 ± 0.8 11.6 ± 1.2 869 ± 57.9
PTIF4632TIF4632::GFP 464 ± 22.5 33.7 ± 1.0 15.7 ± 0.9 324 ± 25.8
PTIF4632TIF4632::GFP (TIF4631Δ) 495 ± 5.5 35.6 ± 1.2 18.6 ± 1.4 358 ± 10.3
PTIF4631TIF4631::GFP (TIF4632Δ) 1170 ± 29.1 31.7 ± 0.6 11.8 ± 0.7 823 ± 82.9
PTIF4631TIF4631::GFPPEST 969 ± 21.5 37.3 ± 0.9 16.0 ± 2.2 645 ± 18.6
PTIF4631TIF4631::GFP /
PTIF4632TIF4632::GFP

1570 ± 43.7 33.0 ± 0.4 12.7 ± 0.7 1140 ± 22.0

PTEF1(M2)TIF4631::GFP 1310 ± 54.0 32.8 ± 1.1 11.6 ± 0.6 872 ± 42.6
PTEF1(M2b)TIF4631::GFP 1075 ± 33.7 33.2 ± 0.4 12.1 ± 0.8 727 ± 27.8
PTEF1(M3)TIF4631::GFP 583 ± 5.5 39.9 ± 0.1 19.1 ± 1.5 369 ± 3.6
PTEF1(4)TIF4631::GFP 2600 ± 121 41.0 ± 0.7 13.7 ± 0.4 1450 ± 135
PTIF1TIF1::GFP 3014 ± 112 32.5 ± 1.1 11.1 ± 1.3 2070 ± 270
PCDC33CDC33::GFP 2960 ± 60.1 30.8 ± 0.6 10.9 ± 0.9 1981 ± 118
PTEF1CDC33::GFP 15400 ± 898 32.2 ± 1.1 12.1 ± 0.8 10500 ± 698
PTEF1TIF4631 / PTIF4632TIF4632::GFP 540 ± 1.5 33.6 ± 0.6 16.9 ± 0.3 368 ± 11.6
PTIF4631TIF4631::GFP* [pPTRP1TIF4631] 1160 ± 56.6 37.1 ± 0.3 13.8 ± 0.1 777 ± 78.2
PTIF4631TIF4631::GFP* [pPTRP1TIF4632] 1110 ± 45.8 41.9 ± 1.7 14.4 ± 0.4 703 ± 30.8

The names of the constructs listed here indicate the identity of the promoter and of the gene in each case. All constructs are genomic integrations unless
preceded by p (to indicate plasmid) within brackets. Measures used to reduce TIF4631 expression include fusion with a destabilizing PEST sequence,
insertion of inhibitory stem-loops (M2, M2b, M3; Supplementary Figure S5) into the 5′UTR, and shortening of the 5′UTR to 4 nucleotides (construct(4)).
Genomic TIF4631 was deleted in the strains carrying plasmids (marked with an asterisk).

plus TIF1 reading frame created a strain in which ge-
nomically encoded eIF4A::GFP synthesis (TIF4632::GFP)
manifested higher stochasticity (Supplementary Figure S4).
Another manifestation of this type of effect is evident in
the increased expression noise of genomically integrated
TIF4631::GFP in a TIF4631Δ strain transformed with a
plasmid carrying PTRP1TIF4631 or PTRP1TIF4632 (Table 1).
As with the TIF1 plasmid experiment described above, this
shows that the greater variability in copy number of the
plasmid-borne translation factor gene influences the cell-to-
cell heterogeneity of the genomic GFP fusion indirectly by
increasing the total stochasticity of the translation machin-
ery.

The relationship between stochasticity, rate control and fit-
ness

Control over the expression of a gene that plays a critical
role in global gene expression will be tightly coupled to or-
ganism viability. Since the latter is intrinsically linked with

the performance of the translation machinery, it is impor-
tant to understand how rate control exercised by eIF4G
over the translation machinery relates to gene expression
noise. Since eIF4G1 is the predominant isomer, and the
influence of eIF4G2 is equivalent in terms of rate control
(see above), the following experiments focus on modula-
tion of eIF4G1 activity alone. We accordingly reengineered
the rates of both transcription and translation that direct
eIF4G1 synthesis in order to explore the relationship be-
tween noise, the intracellular abundance of eIF4G1, and
the influence (rate control) of this factor over protein syn-
thesis activity. Guided by previous studies of the relation-
ship between stem-loop stability and translation efficiency
(41), we paired PTEF1 with a range of stem-loop structures.
For example, this enabled us to identify a combination of
the strong PTEF1promoter with a 5′UTR containing an in-
hibitory stem-loop structure (M2; Supplementary Figure
S5) that generated the same average yield of intracellular
eIF4G or of eIF4G::GFP as that produced by the natural
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Figure 5. Fluorescence profiles for GFP fusions generated using alter-
native promoters. Comparison of flow-cytometry data for expression of
TIF4631::GFP using the natural promoter PTIF4631combined with the nat-
ural TIF4631 5′UTR and the much stronger PTEF1 promoter combined
with a 5′UTR containing the M2 stem-loop (A). (B) Flow cytometry data
for genomically integrated CDC33::GFP expressed either from the natural
promoter PCDC33 or from PTEF1, both constructs using the natural CDC33
5′UTR. For clarity, we show only the outlines (colour-coded) of flow cy-
tometry distributions for six repeats of each experiment.

TIF4631 promoter/5′UTR combination (Figure 5A; Sup-
plementary Figure S6). In growth competition experiments,
the PTEF1/M2 TIF4631 combination was also found to sup-
port a growth rate indistinguishable from the equivalent
‘wild-type’ strain (Supplementary Figure S7). In a com-
parative experiment, we showed that marrying the PTEF1
promoter with CDC33::GFP without altering this gene’s
5′UTR increased the expression rate ∼5-fold but had only
a very small effect on the noise level (Figure 5B; Table 1).

Moreover, by constructing a wider range of genomi-
cally integrated constructs that support the synthesis of
eIF4G to levels above and below the average wild-type
abundance, we were able to paint a broader picture of
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Figure 6. Impact on gene expression noise of modifying the gene expres-
sion profile of TIF4631. A series of genomic constructs was built that
vary the rate of eIF4G1 expression by changing the promoter and/or the
5′UTR. Here we plot the noise for eIF4G1::GFP in the corresponding
strains. Data points in the upper plot represent the total population noise
of the flow cytometry data for the respective genomic constructs, while
those in the lower plot represent the noise values determined via the cor-
rection procedure illustrated in Figure 4A, B.

the relationship between intracellular abundance and noise
at the protein level. The resulting curve revealed that the
minimum noise level for eIF4G corresponds to the abun-
dance of this factor in wild-type yeast cells (Figure 6), ir-
respective of whether eIF4G synthesis is driven by PTIF4631
or PTEF1(M2). In other words, the gene expression noise
for eIF4G has evolved to a minimum at the abundance
point that also supports maximal protein synthesis and
growth (compare Figure 1B). Finally, implementation of
a noise modeling tool illustrates that the observed trends
cannot be explained by transcriptional noise generation,
since such a model predicts that PTEF1(M2)TIF4631::GFP,
by virtue of its increased transcript level, should gener-
ate less noise than PTIF4631TIF4631::GFP (Supplementary
Figure S8 and ref. 32). Interestingly, the experimentally
measured transcriptional noise was indeed reduced for
PTEF1(M2)TIF4631::GFP (Figure 2: CV = 0.35, compared
to 0.40 for PTIF4631TIF4631::GFP).
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DISCUSSION

The translation machinery is a primary engine of viability
and growth in living cells. Moreover, intrinsic noise in the
production of its components can potentially drive extrin-
sic noise that affects expression of the entire genome. In
the present work, we have found that the two isomers of
eIF4G manifest barely distinguishable rate control coeffi-
cients with respect to global protein synthesis in vivo. How-
ever, eIF4G1 is the dominant isomer in terms of intracel-
lular protein abundance and corresponding mRNA levels,
and the noise characteristics of the two isomers are distinct
and weakly correlated. The low abundance, core scaffold-
ing function and distinctive control profile make eIF4G an
important subject of study in the context of rate control
and gene expression noise. An assembly pathway involv-
ing multiple interactions focused around eIF4G is predicted
by our computational modeling to have a zone of maxi-
mum activity flanked by regions of reduced activity at both
lower and higher concentrations. This behavior is neither
predicted, nor experimentally observed, for the other cap-
binding complex factors. A potential explanation for the
drop in protein synthesis associated with eIF4G overpro-
duction derives from the model prediction that an excess
of this translation factor distorts the distribution of eIF4G
across the respective intermediate complexes in the assem-
bly pathway (see the Supplementary Data; Supplementary
Figure S2).

There are many ‘multi-binding-partner’ proteins in com-
plex assembly pathways in living systems and it therefore
seems likely that optimal windows of activity analogous to
that seen here for eIF4G also feature in a wide range of bio-
chemical systems. It is worth noting that, for the sake of sim-
plicity, we have used a minimal computational model here
for the purpose of illustrating the principle that the ‘scaf-
folding’ role of eIF4G generates a distinctive (although we
think unlikely to be unique) type of relationship between
abundance and translation machinery activity. It is possi-
ble that further refinement of the model (e.g. inclusion of
the stimulatory role of eIF4B in assembly of the 48S pre-
initiation complex; (26,42,43)) might allow us to achieve
even more precise fits to the experimental data.

Analysis of the strains created in this study has demon-
strated that the noise level varies across the genomic
TIF4631 constructs that we have engineered, manifesting
a minimum that maps to the naturally determined aver-
age eIF4G abundance, which also coincides with the point
of maximal rate control. Thus minimization of expression
noise for this factor has co-evolved with optimization of the
rate control it exercises over the translation machinery. The
observed relationship of TIF4631 gene expression noise to
changes in intracellular abundance contrasts with the ab-
sence of a comparable relationship for CDC33. This differ-
ence in behavior is likely to be related to the fact that over-
production of eIF4E does not inhibit protein synthesis. In-
deed, the observed (intrinsic) protein noise does not corre-
late with the transcription rate for TIF4631/2, but rather
with the global protein synthesis rate. Consistent with this
correlation, given the marked insensitivity of global protein
synthesis to overexpression of CDC33, we note that five-
times overexpression of this gene does not amplify noise.

At the same time, we note our inability to reduce over-
all gene expression noise for the translation factors eIF4G
and eIF4E by increasing transcription rates (and reducing
transcript noise) for the individual genes. This could be
because these two factors are interdependent components
within a subcellular machinery that has evolved to a point
of shared minimum noise (a noise ‘floor’, compare ref 40)
that is dictated primarily by extrinsic factors. We find that
a transcription-based noise generation model does not pre-
dict the observed behavior, and therefore detailed further
investigation of potential mechanisms will be required in fu-
ture work. One aspect that deserves particular attention is
the observation that replacement of the natural promoter
PTIF4631 by the PTEF1 promoter (allied to the stem-loop M2)
does not reduce protein-level noise. One possible explana-
tion of this that merits future examination is that such a
stem-loop structure might itself in some way act to increase
noise.

For genes encoding the components of molecular ma-
chinery that is itself part of the expression pathway, the
distinction between intrinsic and extrinsic noise becomes
blurred. Thus intrinsic noise in the production of a factor
such as eIF4G also creates extrinsic noise in the transla-
tion of the entire yeast transcriptome, which in turn affects
biosynthesis of other machineries, including those for tran-
scription and ribosome biogenesis. Moreover, in any multi-
component assembly pathway, the ratio between the partic-
ipating factors can be as important as the absolute abun-
dance levels of the individual factors. Our measurements
indicate that the abundance ratios between the respective
cap-binding complex factors are maintained at relatively
low values, presumably as the result of selection to mini-
mize inter-component heterogeneity. The coupling between
component activity and global noise is seen in the increased
noise associated with the use of plasmid-borne genes, and in
the fact that noise is also increased when genomic engineer-
ing of TIF4631 expression shifts the eIF4G level either side
of the optimal window.

We are not aware of a previous report in the literature of
such a convergence of minimal gene expression noise to an
optimal rate control point for a subcellular machinery. Nev-
ertheless, our results illustrate how mechanistic constraints
are able to dictate behavior of this kind, and it is there-
fore likely that comparable relationships have also evolved
in other biomolecular machineries in living cells. We note
that the evolutionary trajectory of a biochemical mecha-
nism can evidently ‘trap’ a core component in a narrow
zone of optimal activity but that, despite this constraint,
the genetic expression pathway can evolve to minimize noise
within the same window. There are, at least in principle, a
few different ways that the cell can optimize the relation-
ship between noise and rate control in complex cellular ma-
chineries. In one strategy, combining strong transcription
and efficient translation to produce a high abundance, even
an excess, of a component that has a high rate control co-
efficient in the near-physiological concentration range (for
example, eIF4E or eIF4A) would allow the cell to minimize
the impact of abundance fluctuations because these would
largely span the relatively abundance-insensitive plateau re-
gion. This strategy cannot work for a protein like eIF4G
because of its specific abundance response curve and thus it



1024 Nucleic Acids Research, 2017, Vol. 45, No. 2

can be hypothesized that noise minimization has had to be
optimized to map to a relatively narrow optimal rate control
window. An alternative scenario would involve a specific
mechanism of intrinsic noise suppression such as autoreg-
ulatory feedback or noise filtering via a connected circuit
(44). However, we have seen no evidence for the existence
of such mechanisms in the case of the cap-complex fac-
tors. Finally, these considerations suggest that, in a multi-
component biomolecular machine, co-evolution of multiple
noise contributions occurs in order to minimize total sys-
tem noise. In turn, this would suggest that the only potential
way to engineer suppression of system noise further might
be to reduce the noise for most, if not all, (rate-controlling)
components simultaneously. Exploration of this hypothesis
would help advance further our understanding of the rela-
tionship between noise and evolution.
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