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Abstract: A novel and compact interferometric refractive index (RI) point sensor is developed using
hollow-core photonic crystal fiber (HC-PCF) and experimentally demonstrated for high sensitivity
detection and measurement of pure gases. To construct the device, the sensing element fiber (HC-PCF)
was placed between two single-mode fibers with airgaps at each side. Great measurement repeatability
was shown in the cyclic test for the detection of various gases. The RI sensitivity of 4629 nm/RIU was
demonstrated in the RI range of 1.0000347–1.000436 for the sensor with an HC-PCF length of 3.3 mm.
The sensitivity of the proposed Mach–Zehnder interferometer (MZI) sensor increases when the length
of the sensing element decreases. It is shown that response and recovery times of the proposed sensor
inversely change with the length of HC-PCF. Besides, spatial frequency analysis for a wide range
of air-gaps revealed information on the number and power distribution of modes. It is shown that
the power is mainly carried by two dominant modes in the proposed structure. The proposed sensors
have the potential to improve current technology’s ability to detect and quantify pure gases.

Keywords: refractive indexsensor; gassensor; hollow-corephotoniccrystal fiber; Mach–Zehnder interferometer

1. Introduction

Gas sensing is essential for safety and maintenance operations in many industries, including
the power generation [1], petrochemical [2], and food-processing sectors [3]. For detecting the presence
of gases, especially in extreme conditions, the silica optical fiber provides a promising platform, due
to its unique properties. These include immunity to electromagnetic radiation [4], high-temperature
durability [5], compactness, as well as high accuracy and sensitivity [6]. Researchers have
pursued the applicability of optical fiber sensors across many sensing applications, because of
their multifunctional sensing capabilities (e.g., refractive index (RI), temperature, and pressure) [7].
The various mechanisms that have been investigated for gas-sensing functionality include
Raman scattering [8], surface Plasmon resonance [9], evanescent-field absorption [10], derivative
spectroscopy [11], and interferometric sensors [6]. Successes in these research projects relied upon
experimentation with a range of optical fibers: D-shaped fiber, multimode fiber, fused silica fiber optic

Sensors 2020, 20, 2807; doi:10.3390/s20102807 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5307-6960
https://orcid.org/0000-0002-8115-5877
https://orcid.org/0000-0002-0512-7209
http://www.mdpi.com/1424-8220/20/10/2807?type=check_update&version=1
http://dx.doi.org/10.3390/s20102807
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 2807 2 of 15

bundles, and photonic crystal fiber (PCF) [6,8–11]. Various types of fiber optic interferometers have
been studied for their RI-sensing capabilities: the Sagnac, Michelson, Fabry–Perot, and Mach–Zehnder
interferometers (MZIs) [6]. Wang et al. [12] developed a micro Fabry–Perot cavity interferometer
and achieved the RI sensitivity of 851 nm/RIU while having a very low-temperature sensitivity
of 0.27 pm/◦C and low-temperature cross-sensitivity of 3.2 E−7 RIU/◦C. Hu et al. [13] proposed
an intrinsic Fabry–Perot interferometer based on simplified hollow-core fiber and achieved a RI
measurement resolution of 6.5 E−5. These types of sensors typically show low insertion loss and they
are relatively easy to fabricate. A Michelson interferometer was constructed by splicing a stub of
large-mode-area PCF to single-mode fiber (SMF) and an RI resolution of E−4 in the RI range of 1.33–1.45
was reported [14]. Facile fabrication procedure and high stability over time were reported as key
advantages. Sun et al. [15] proposed a hybrid interferometer by forming a Fabry–Perot cavity in one of
the optical paths of the Michelson interferometer. The spectral response of this hybrid sensor allows
multiparameter sensing as it has two distinct interference fringes. The simultaneous measurement
capability was reported with an RI measurement resolution of 8.7 E−4 in the RI range of 1.33–1.38 with
a temperature sensitivity of 13 pm/◦C. A photonic crystal fiber Sagnac interferometer was developed
by Liu et al. [16] as an RI sensor, by filling the central hole of the fiber with microfluidic analytes.
Fabrication of these sensor types are complicated as filling air holes of a PCF is challenging. A high
sensitivity of about 19,000 nm/RIU with a resolution of 1.05 E−6 was achieved in their work. MZI based
optical sensors have received significant attention because they are robust, compact [17], and low-cost
units that also have high levels of precision [18].

Researchers have proposed disparate configurations in fabricating in-line MZI sensors for sensing
ambient RI changes. Implementation techniques already tested extend from core mismatch splicing of
optical fibers [19] to cladding collapse of PCF [20], tapering of fibers [21], the use of microfiber [22],
and splicing of hollow-core fiber [23]. Similarly, many approaches have been used in attempts
to enhance ambient refractive index sensitivity of fiber-optic MZIs. Huang et al. [18] developed
a thin-core fiber-based MZI for ammonia sensing with a sensitivity of 850 nm/RIU in the RI range of
1.5–1.518. In other studies, graphene-coated fiber-optic MZI sensors were found to have gas sensing
sensitivity in the range of 3–6 pm/ppm [24,25]. Duan et al. [26] engineered a compact MZI by creating
a short-length (62.5 µm) of cavity through offset-splicing the SMFs on both ends. Their innovative
design resulted in a sensitivity of 3400 nm/RIU in the RI-range of 1.0 to 1.0022. PCF has also proven to
be an excellent choice for fabricating RI sensors because the effective RI of the propagating cladding
mode is highly sensitive to the surrounding environment [27–29]. Yang et al. [29] demonstrated
the viability of a compact PCF Mach–Zehnder refractometer for sensing methane. They coated
a polymer (fluoro-siloxane) over the internal surface of air holes, with one end of the PCF fusion
spliced to an SMF while the other end was open for gas-molecule penetration. Through this fabrication
technique, a sensitivity (defined as wavelength change per percentage of methane) of 0.514 nm%–1
was achieved [29]. This otherwise promising sensor type has drawbacks; it requires a long response
time when retrieving initial conditions and also has a low level of gas selectivity.

The article by Cregan et al. in 1999 was the first research that utilized HC-PCF for the application
of gas detection [30]. The presence of hollow channels in a fiber’s core and cladding regions makes
it difficult to fusion splice an HC-PCF to an SMF. The air holes in HC-PCF hold a large volume of
air. During fusion splicing, air will expand and distort the fiber structure. In 2011, Qu et al. [31]
suggested using hollow-core fiber to infiltrate various aqueous analytes in high RI measurements with
a sensitivity of 1400 nm/RIU. Subsequent to this innovative proposal, a 5.1 m HC-PCF gas cell was
used for the detection of methane [32]. Generally, it takes time for gas molecules to fill the cavities
of HC-PCF, so this technique makes a delay in the initial measurement response to the presence
of the gas [33]. Furthermore, Wynne et al.’s [34] suggestion regarding the pressure-driven filling
of air-holes with gases is not applicable for real-time monitoring. Moreover, focused ion beam or
femtosecond laser-assisted micro-channels can be fabricated on the cladding of HC-PCF to accelerate
gas diffusion [35,36]. Nicholas et al. [37] proposed an HC-PCF-based MZI using ceramic ferrules
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to connect a 344-mm-long HC-PCF to two SMFs. An alternative HC-PCF-based MZI gas sensor
has been reported, which employs the HC-PCF as one of the interferometer’s arms [38]. Many of
the sensors proposed to date either have complex configurations or poor sensitivity and response
time for high-resolution measurement of gases. Ahmed et al. [39] reported a highly sensitive MZI
structure that uses a small stub of HC-PCF for monitoring of CO2; however, a detailed study on such
a configuration is necessary to better understand its performances and to explore other potential
applications. Recently, we studied length-dependent performance of these devices to understand their
sensing properties [40]. However, more studies are required to better understand design parameters
and sensing performance of these MZI sensors.

An in-line fiber optic MZI sensor, which is compact and robust with high sensitivity, is presented
in this report. The HC-PCF MZI sensor utilized a short length of HC-PCF placed in between two SMFs,
with gaps at each interface. The light propagation, working principles, and essential performance
parameters of the proposed gas sensor are presented in this study. These include response and recovery
times, RI sensitivity, as well as the number and power distribution of modes. Relative RI detection was
used in all experiments, because of the difficulties in absolute RI measurement with high accuracy [41].
Experiments show promising results in the sensor’s RI sensitivity. The device responds well to different
gases and shows good repeatability on gas detection.

2. Working Principles

Figure 1a schematically shows a fiber arrangement of the proposed MZI sensor. A short length
of HC-PCF was positioned on the V-groove and aligned with SMFs. There is an air gap at each end
of the sensing element fiber. The schematic illustration of light transmission in the sensor is shown
in Figure 1b. The lead-in SMF carries the incoming light wave. It radiates from the SMF core after
reaching the first sensor gap in region 2 and acts as a pseudo-point light source. In the first air gap,
the fundamental mode broadens and when it reaches the HC-PCF both fundamental and higher-order
modes are excited in the circular channels of the sensing element. Interaction between the light and
the gas molecules takes place in region 3 along the length of the sensor. Optical interference occurs
in region 4 (second gap) due to the phase difference between the fundamental mode and higher-order
modes. The lead-out SMF then transfers the interference spectrum to an interrogator (or spectrum
analyzer). The device’s reference and sensing arms are both in contact with gas molecules; however,
the effect of RI change on the interference in the sensing arm is higher than in the reference arm.
That imbalance occurs due to differences in optical-path lengths and phase shifts between the arms.
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Figure 1. (a) Schematic of the proposed sensor arrangement, (b) schematic of light transmission
within the sensor, and (c) microscopic image of the cross-section of 10-micron hollow-core photonic
crystal fiber (HC-PCF) fiber. SMF = single-mode fiber.

Figure 1c shows the cross-section of the HC-PCF used in this study. This fiber offers low index
guiding of light as the core-index of the HC-PCF is lower than the effective index of the cladding [42].
The photonic bandgap effect makes propagation impossible in the microstructure cladding leading
to light confinement in the core. This design enhances gas sensing capabilities as the HC-PCF
provides a remarkably strong interaction between gas molecules and light particles, due to strong field
confinement [43,44]. Higher-order core modes and surface modes are supported by HC-PCF fibers [45].
The optical path difference between the reference arm and sensing arm defines the fiber-optic MZI
sensor’s interference spectrum. Such interference is a function of core intensity (I core), cladding
intensity (I cladding), and phase difference (φ) [17,46], which can be written by the following equation:

I = Icore + Icladding + 2
√

IcoreIcladding cos∅ (1)

Modes that are traveling the same distance (L) will have the phase difference (∆φ) of:

∆φ = 2π(∆neff)L λ−1 (2)

∆neff is the difference in the effective RI between the core and cladding modes in equation 2, λ is
the input wavelength, and L is the length of the HC-PCF path. Maximum transmission occurs at
∆Φ = 2πm (m is an integer) and peaks forms on the transmission signal at the following wavelengths:

λm = (∆neff)L m−1 (3)

Therefore, the mth order spectral shift can be written as:

∆λm = (∆neff + ∆n)L m−1
− ∆neff m−1 = ∆nL m−1 (4)

L is constant in the above equation and consequently, a change in the refractive index of
the MZI’s core and cladding will change ∆n and correspondingly ∆λm. Consequently, a shift occurs
at the transmission spectrum of the device and such change can be used for sensing of a measurand.

3. Experimental Procedures

3.1. Fabrication of the MZI Sensor

Two types of fibers were used to fabricate the HC-PCF MZI sensors: the SMF (Corning SMF28)
and the HC-PCF (NKT Photonics HC-PCF 1550). Lead-in and lead-out fibers are standard single-mode
fibers (SMF-28) with a core diameter of 8.2 µm, numerical aperture of 0.13, and a mode field diameter
(MFD) of 9.3 µm (±0.5 µm). This sensor type utilizes an NKT Photonics HC-PCF fiber (HC-PCF 1550) as
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the sensing element. The HC-PCF fiber has a numerical aperture (NA) of 0.2, MFD of 9.00 µm (±1 µm)
and core diameter of 10.00 µm. This sensing fiber element also has cladding air holes of diameter
3.10 µm and a cladding pitch of 3.80 µm. These fibers can guide several modes within a transmission of
1490 to 1680 nm [30]. In constructing the sensor, the SMFs and HC-PCF were assembled on a standard
microscope glass slide (25 mm× 5 mm× 1 mm). Micro-machining created a V-groove on the microscope
glass (25 mm length, 95 µm width, and 48 µm depth) using a femtosecond laser, which is used to align
fibers. A CT-30 Fujikura cleaver was used to cleave fibers. To be able to cleave short lengths of HC-PCF
in the order of a few millimeters, it was necessary to extend the length of the adapter plate to decrease
the distance between the cutting blade and the adapter plate. Therefore, a 4 mm long aluminum plate
was machined and marks at increments of 1 mm on it. Attaching the extension plate to the adapter
plate made it possible to cleave fibers with lengths down to 2 mm. The cleaved stub of HC-PCF was
positioned in the middle of the V-groove and fixed using epoxy glue. The exact length of the fiber,
as well as the cleaving angles on both sides of the cleaved HC-PCF, were checked by examining them
under an optical tooling microscope. Afterward, the single-mode fibers were positioned in fiber holders
mounted on linear-translation micro stages and aligned with the sensing element fiber on the V-groove.
Figure 2a shows an isometric view of the fabrication setup. To achieve a strong interference spectrum,
gap lengths on both sides of HC-PCF were accurately adjusted. In this way mode splitting and
recombination can be controlled. Fibers were then glued to microscope glass when an acceptable
signal was observed. To provide mechanical strength to the assembly, the glass slide was secured
in a meshed stainless steel tube, as shown in Figure 2b. Testing proved the robust effectiveness of
the resulting sensor. Spacing between the HC-PCF and SMFs enabled ambient gas to diffuse into
the HC-PCF air holes.
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Figure 2. (a) Isometric view of the fabrication setup using two linear-translation micro stages for
accurate control of gap distances, (b) packaged sensor using meshed stainless steel tube.

The normalized transmission spectrum of a sensor with an HC-PCF length of 3.30 mm and a gap
distance of 1 mm on each side (Sensor C) is shown in Figure 3a. Figure 3b shows the fringe spacing of
the same sensor. The measurement was taken when the device was immersed in Nitrogen (99.99% pure,
atmospheric pressure) at room temperature. Each valley measured at the sensor’s output, see Figure 3a,
results from interference between the signal arms in the MZI at that wavelength. The magnified
spectrum graph shows a fringe spacing of 1.91 nm and a full width at half maximum (for transmission
dip) of 0.47 nm. For the same configurations, the fringe spacings of sensor A (L = 4.97 mm) and sensor



Sensors 2020, 20, 2807 6 of 15

B (L = 4.73 mm) are 1.70 nm and 1.74 nm, respectively. The fringe spacing of the transmission spectrum
increases as the length of HC-PCF decreases.
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and atmospheric pressure, (b) fringe spacing of the same sensor.

3.2. Spatial Frequency Analysis

In order to analyze the modes participating in the modal interference process, the transmission
spectrum of MZIs with 4 mm of HC-PCF as a sensing element was Fourier transformed. This process
allowed us to obtain the sensor’s corresponding spatial frequency, described as v =

∆neff.D
λ2 [47], where

∆neff represents the effective RI-difference between core and cladding of the sensing element and D is
the distance between SMFs at each of the sensor’s ends. D varies from 4 mm to 16 mm in 500-micron
increments. Different peaks in the spatial frequency graph correspond to the interference between
the fundamental mode and different higher-order modes.

Testing the MZIs with 10 µm HC-PCF as their sensing element revealed several multimodal-
interference patterns occurring in the transmission spectrum. Further, in such a sensor, power is mainly
distributed between two dominant modes in the spatial frequency spectrum, a finding that holds true
across the entire range of gap distances. This phenomenon confirms that higher-order modes would
gradually leak off the sensing fiber, contributing to transmission losses. So, fewer peaks would turn up
in the spatial frequency graph due to a weakening interference-effect. As an example of the described
effect, Figure 4a presents the spatial frequency graph for an MZI with 4 mm of 10 µm HC-PCF and
gaps of 1.5 mm on each side (D = 7 mm). The sensor has a strong cladding mode with a spatial
frequency of 5 × 10−4 (1/nm) and a normalized fast Fourier transform (FFT) value of 3.14: labeled
core-cladding 1. Besides this dominant cladding mode, the sensor has a relatively weaker cladding
mode (core-cladding 2) with a spatial frequency of 1.1 × 10−3 (1/nm) and a normalized FFT value of
0.99. Experimental findings show that for gaps from 0 to 1.65 mm, core-cladding 1 is the dominant
cladding mode, while for higher gaps core-cladding 2 became the dominant mode. The highest power
transmission resulted in MZIs with gaps of 1.35 mm, and the amplitude of spatial frequencies was seen
to decrease intensely for gaps greater than 4.5 mm. Figure 4b was plotted by tracking dominant modes
to show how the magnitude of spatial frequencies increases by increasing gap lengths for this sensor.
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3.3. Characterization

In the first set of experiments, RI measurements using three MZIs (constructed with different lengths
of HC-PCF as their sensing elements) were carried out and their relative performances were compared.
Figure 5 schematically shows the sensor evaluation system that includes the optical interrogator,
a circulator, the MZI sensor, a Fiber Bragg Grating (FBG), reference gas tank, and measurand gas tanks.
The MZI sensors under investigation were placed in a chamber with four gas intake valves. Reference
nitrogen (N2), and measurand gas-tanks (‘He’, ‘Ar’, and ‘CH4’) were connected to these valves.
The experiment used helium, methane, and argon with purity levels of 99.999%, 99%, and 99.99%,
respectively. Using pressure regulators, an injection pressure of 15 psi was maintained during the testing
process. To maintain constant pressure in the test chamber a discharge tube with a bubbler was
connected to the test chamber. An interrogator (SM125) with a resolution of 1 pm was used to record
and evaluate changes in the transmission spectrum. In addition, a FBG (sensitivity ~10 pm/◦C) was
positioned in the chamber to monitor and record the temperature variations. The spectral shifts of
three sensor types and FBG were analyzed using the Micron Optics’ Enlight software. The experiments
started with injecting N2 into the test chamber for long enough time to make sure an even gas diffusion
into the air holes of HC-PCF was achieved. Measurand gases were then injected into the chamber
(‘He’, ‘Ar’, or ‘CH4’). Using the mentioned software, spectral responses were recorded. Response
and recovery times as well as refractive index sensitivity are among important sensing performance
parameters of a gas sensor and were studied for three MZIs. The cyclic tests were performed using
the various sensors to inspect the repeatability of RI measurements. Temperature, pressure and
the injected gas species determined the spectral response of each sensor. Therefore, MZI sensors
were temperature-characterized to compensate for the effect of temperature fluctuations during
the experiments.
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Another set of experiments sought to analyze the effect of gap distances on modal interference
in the proposed MZI gas sensor. Here, lead-in and lead-out SMFs were not glued to the glass to
facilitate easy adjustment of both airgaps. Using linear micro stages, gap lengths increased from 0 to
6 mm in 500-micron increments. Ensuring equal gap distance on both sides, we collected transmission
spectrums for an interferometer with 10 µm HC-PCF as its sensing fiber. Spectrums were Fourier
transformed to produce spatial frequency graphs, to explore the power distribution and the number of
the sensor’s modes.

4. Results and Discussion

4.1. Refractive Index Sensing

Figure 6a illustrates the responses of sensor A (L = 4.97 mm) to methane, argon, and helium
for one cycle. MZI sensors were exposed to measurand gases separately, to determine its spectral
response to each gas. The sensor was interrogated with each measurand gas to investigate its spectral
response in a complete test cycle. Each cycle started with the injection of Nitrogen (99.99% pure) until
saturation followed by injection and measurement of target gas; and finally, an injection of Nitrogen
back into the chamber, to purge the gas. The injection of gases was carried out for 7 minutes at each
stage of a test cycle. As shown in Figure 6, the ambient gas in the test chamber determines the sensor’s
wavelength response. Considering the location of the spectrum in N2 as the reference, sensor A showed
spectrum shifts of 780 pm (±6 pm) when immersed in helium, 45 pm (±1 pm) when immersed in argon,
and 440 pm (± 3 pm) when immersed in CH4. Spectral shifts of three valleys at different wavelengths
were used to estimate mean wavelength shifts and measurement errors. Redshifts were recorded
in the transmission spectrum for Ar or He and blue shifts were recorded for CH4. This finding can be
explained in terms of spectral response to RI change. For a given ambient RI, the sensor’s transmission
spectrum shows redshift to a negative RI change and blue shift to a positive RI change. In standard
conditions, the RI values of He, Ar, N2, and CH4 are 1.0000347, 1.0002820, 1.0002944, and 1.0004365,
respectively. The interference fringe showed a redshift in the presence of helium and argon because
RI of nitrogen is higher than their RIs. In contrast, the spectrum underwent a blue shift for methane,
as the RI of nitrogen is lower than the RI of methane. The transmission fringe shifts of MZI sensors for
helium, methane, and argon are listed in Table 1.
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Table 1. Transmission fringe shift of the MZI sensors for helium, methane, and argon.

Sensor HC-PCF Length Spectral Shift
(pm) in Helium

Spectral Shift
(pm) in Methane

Spectral Shift
(pm) in Argon

RI Sensitivity
(nm/RIU)

A 4.97 mm 780 440 (negative) 45 3019

B 4.73 mm 1060 600 (negative) 70 4300

C 3.30 mm 1300 618 (negative) 100 4629

Sensor C, which has the shortest length of HC-PCF, shows the highest wavelength shifts among
the three sensors tested when interrogated with all three gases. In contrast, sensor A, which has
the longest HC-PCF stub of the three sensors, shows the smallest shifts. The RI sensitivities of
the interferometric sensors are listed in Table 1, all falling in the RI range of 1.0000347–1.0004365.
This RI range was selected based on the availability of gas tanks, and it could be extended in future
research. The highest sensitivity was achieved by sensor C: 4629 (nm/RIU). This suggests that the RI
sensitivity of the HC-PCF MZI sensors increases as the length of the HC-PCF stub decreases. As the next
step in our experiments, argon, methane, and helium gases were sequentially injected into the test
chamber, to investigate the sensors’ capacities to detect multiple gases. In each test cycle, the gas
injection was carried out in the sequence of N2, Ar, N2, CH4, N2, He, and N2. This sequence was
then repeated three times to determine sensing repeatability. Figure 6b shows the sequential gas
response for sensor A, where the test cycles produced identical results. An FBG was used to record
any temperature variation during the test. A maximum temperature fluctuation of 1 ◦C was recorded
during the entire experiment.

To check the consistency of the sensor’s measurements, repeatability tests were performed using
all three sensors. For each test cycle, the sequential injection of nitrogen, measurand gas, and nitrogen
was performed at 5 minutes intervals. Figure 7a shows the repeatability of sensing helium gas using
all three sensors for eight cycles. The repeatability test for sensing methane gas was conducted for
three test-cycles, as shown in Figure 7b. Both graphs below show the normalized wavelength shift
that resulted when the chamber was sequentially filled with nitrogen and measurand gases. The data
shows great repeatability of gas detection using the proposed HC-PCF interferometer.
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The RI sensitivity of sensors A, B, and C are 3019 nm/RIU, 4300 nm/RIU, and 4629 nm/RIU,
respectively. Figure 8 shows the RI sensitivity of sensor A in the mentioned RI range. These data
points were obtained via five separate measurements with a measurement error of ± 1 E−6, ± 2.3 E−6,
and ± 5 E−7 for methane, helium, and argon, respectively. The proposed sensor configuration can
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improve on current technology, due to its linear RI response and high sensitivity to gases. The proposed
interferometric sensor has, nonetheless, the potential for advancing current capacity for gas detection,
quantitatively analyzing changes in pure gases as well as environmental monitoring applications.
The RI characterization tests were conducted using an optical interrogator that has a wavelength
accuracy of 1 pm (0.001 nm). Therefore, the sensor C (sensitivity of 4629 nm/RIU) has a RI resolution of
2.1 E−7. Similarly, the sensing resolution of sensors A and B can be calculated.
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The refractive index of any target gas (RI target gas) can be written as:

RItarget gas = RIN2 − ∆RI = RIN2 − ∆λ/(RI sensitivity) (5)

The spectral shift, ∆λ in the above equation can be attained by tracking valleys of transmission
fringe of a sensor, as shown in Figures 6 and 7. RIN2 is the refractive index of nitrogen, and ∆RI is
the relative difference in RI between nitrogen and measurand gas. By knowing the wavelength shift
(∆λ) and sensitivity of the MZI sensor, ∆RI can be calculated.

Table 2 compares the sensitivity achieved in the present research with other similar and alternative
studies available in published works. The table shows that the proposed MZI configuration shows
much higher sensitivity in gas sensing compared to its counterparts in the RI range of 1 to 1.02.
As shown in [40], decreasing the length of HC-PCF, the sensitivity of this sensor can be further
improved. The proposed sensor is fairly compact (3.3 mm) compared to other HC-PCF based RI
sensors [31,32,37,38], some of which are as long as ~35 cm. Therefore, the proposed MZI configuration
is believed to perform much better in single-point gas sensing. It is worth mentioning here that
even though a compact Fabry–Perot fiber sensor (in the range of micrometer) can be fabricated using
ultrafast laser micromachining they have relatively poor RI sensitivity [12]. Despite its excellent
gas sensing capabilities, the reported device has few drawbacks including fabrication complexity as
it requires alignment and positing of the HC-PCF stub and cross-sensitivity to other measurands such
as temperature and pressure. With the recent improvement in automated fiber alignment and positing
systems, we believe the fabrication complexity can be drastically reduced for commercial applications.
Similar to other fiber-optic sensors, the cross-sensitivities can be eliminated or reduced using an in-line
fiber sensor such as a properly packaged FBG. The demonstrated sensor also needs to be packaged
with a suitable membrane for selective sensing of gasses.
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Table 2. RI sensitivity comparison for gas sensing with other reported fiber-optic gas sensors.

Optical Structure RI Range RI Sensitivity (nm/RIU) Reference

Proposed HC-PCF MZI 1.000034–1.000449 4629 This work
HC-PCF MZI 1.0000–1.0005 1233 [37]

Fabry-Perot (FP) based on hollow silica tube 1.00027–1.00189
1.00007–1.00051 1546 [48]

Surface plasmon resonance (SPR) with metallic surface grating
(tapered SMF) 1–1.41 500 [49]

Hybrid optical fiber FP interferometer 1.0005–1.00275 560 [50]
SPR based on fiber grating in multi-mode fiber 1–1.33 280 [51]

Cavity based FP 1.0000–1.0025 1053 [52]
Open cavity MZI 1–1.02 3402 [26]

4.2. Sensor Response and Recovery Times

Figure 9 illustrates the response and recovery times of sensor A for one cycle of methane sensing.
The time duration that an MZI device takes to reach 90% of the total wavelength shifts is defined as
response/recovery times. Accordingly, response and recovery times of sensor A are 32 s and 39 s for
methane. Response and recovery times of three HC-PCF MZI sensors to methane, helium, and argon
are listed in Table 3. Each reported time in this table is an average of five response or recovery times.
Results indicate that sensor A, which has the longest HC-PCF stub, shows the fastest response/recovery
times. However, the highest RI sensitivity was achieved using sensor C, which has the shortest length
of HC-PCF. Response and recovery times depend on HC-PCF lengths and the volume of the test
chamber. The test chamber has a dimension of 14.5 cm × 11.2 cm × 4.4 cm.
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Table 3. Response and recovery times of HC-PCF MZI sensors to different gases.

HC-PCF Length (mm) A (4.97) B (4.73) C (3.30)

Helium: response (s)/recovery (s) 50/50 50/55 57/57
Methane: response (s)/recovery (s) 32/39 44/46 46/56

Argon: response (s)/recovery (s) 37/44 62/49 110/100

4.3. Temperature Characterization

The RI of a gas depends not only on gas species but also on ambient temperature and pressure.
All the experiments were conducted at atmospheric pressure and room temperature. However,
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fluctuation of ~1 ◦C was recorded using an FBG sensor during the experiments, a result shown
in Figure 6b. Therefore, it is required to characterize the temperature sensitivity of the HC-PCF
MZI sensor before deploying the sensor for applications in the field. As part of the present research,
HC-PCF sensors were placed in an oven, and the temperature was varied from 35 ◦C to 65 ◦C in 10 ◦C
increments. Figure 10 displays the resulting correlation between recorded wavelength shifts and
measured temperatures of the sensors and FBG. The temperature sensitivities of sensors A, B, and C
were found to be 33.1 pm/◦C, 31.6 pm/◦C, and 20 pm/◦C, respectively. This finding shows that
the temperature sensitivity of the fiber-optic interferometer decreases when the length of the HC-PCF
decreases. As shown in Figure 10, a typical FBG has a temperature sensitivity of 10 pm/◦C and it is
insensitive to ambient RI change. Therefore, an in-line or parallel FBG can be placed as a reference
to eliminate temperature cross-sensitivity in ambient RI measurement for practical applications.
Like temperature, a fiber-optic pressure gauge that is insensitive to ambient RI can be used to eliminate
pressure cross-sensitivity in real-life measurement.
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5. Conclusions

A compact fiber-optic MZI sensor is proposed and has been experimentally demonstrated for
ultra-high sensitive detection of gases. Different lengths of HC-PCF stubs were used to construct and
characterize several sensors. The resulting MZI sensors were able to measure the RI of target gases
and showed great sensitivity to measurand gases. The Refractive index sensitivity of 4629 nm/RIU
was achieved for the MZI with an HC-PCF length of 3.30 mm. The RI sensitivity of the proposed
MZI sensor inversely relates to the length of the HC-PCF stub. However, response and recovery
times turned out to be shorter for longer HC-PCF stubs. The effect of gap distances on the number
and amplitude distribution of the sensors’ modes was examined, and spatial frequency analysis
revealed that power is mainly carried by two dominant modes in the proposed MZI. These novel and
compact sensors have high-temperature sensitivity, compared to an FBG. With appropriate packaging,
the proposed sensor becomes robust and is a suitable choice for low-percentage detection of gases as
well as environmental monitoring.
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