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Abstract

High-throughput gene expression analysis is increasingly used in radiation research for dis-

covery of damage-related or absorbed dose-dependent biomarkers. In tissue samples, cell

type-specific responses can be masked in expression data due to mixed cell populations

which can preclude biomarker discovery. In this study, we deconvolved microarray data

from thyroid tissue in order to assess possible bias from mixed cell type data. Transcript

expression data [GSE66303] from mouse thyroid that received 5.9 Gy from 131I over 24 h

(or 0 Gy from mock treatment) were deconvolved by cell frequency of follicular cells and C-

cells using csSAM and R and processed with Nexus Expression. Literature-based signature

genes were used to assess the relative impact from ionizing radiation (IR) or thyroid hor-

mones (TH). Regulation of cellular functions was inferred by enriched biological processes

according to Gene Ontology terms. We found that deconvolution increased the detection

rate of significantly regulated transcripts including the biomarker candidate family of kalli-

krein transcripts. Detection of IR-associated and TH-responding signature genes was also

increased in deconvolved data, while the dominating trend of TH-responding genes was

reproduced. Importantly, responses in biological processes for DNA integrity, gene expres-

sion integrity, and cellular stress were not detected in convoluted data–which was in dis-

agreement with expected dose-response relationships–but upon deconvolution in follicular

cells and C-cells. In conclusion, previously reported trends of 131I-induced transcriptional

responses in thyroid were reproduced with deconvolved data and usually with a higher

detection rate. Deconvolution also resolved an issue with detecting damage and stress

responses in enriched data, and may reduce false negatives in other contexts as well.

These findings indicate that deconvolution can optimize microarray data analysis of hetero-

geneous sample material for biomarker screening or other clinical applications.
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Background

Gene expression profiles are specific for every cell type and determine not only cellular func-

tion but also cellular responses to diverse or specific stressors. In in vivo research, studies are

often performed with heterogeneous tissue samples, since cell type-specific separation of sam-

ple material usually deteriorates sample integrity impeding subsequent analysis. mRNA is used

in high-throughput expression microarrays for analysis of genome-wide transcriptional regu-

lation. The single-stranded nucleic acids, however, are exposed to natural degradation in tissue

samples. Therefore, extraction and purification of mRNA must be performed expeditiously to

avoid further degradation. Analysis of single cell types in vitro would prevent convolution of

data, yet also abrogate the in vivo context. At present, this dilemma cannot readily be solved

experimentally. However, computational deconvolution methods can be used to extract cell

type-specific information from gene expression data obtained from heterogeneous tissue sam-

ples [1]. For biomarker discovery, accuracy of observed transcriptional regulation in response

to a given stressor is essential. In statistics, false positives (type I error) are considered more

severe for experimental research, since allegedly positive instances are reported and committed

to the knowledge base creating misleading information [2]. In biomarker discovery, false nega-

tives (type II error) can be regarded as similarly severe, since potential biomarkers would

remain undiscovered, which may preclude subsequent (successful) trial studies.

The thyroid gland is a risk organ in radionuclide therapy using 131I and 211At, since their

halogenic properties result in high uptake in thyroid tissue [3–9]. In our group, we have per-

formed several expression microarray studies using mouse and rat as model systems for dis-

covery of biomarkers for ionizing radiation (IR) exposure. We have studied differential

transcript expression in thyroid tissue in response to i.v. administered 211At and 131I [10–13].

Furthermore, we have studied the impact of systemic effects in vivo from the irradiated thyroid

on transcriptional regulation in the kidneys, liver, lungs, and spleen [14–19]. We also per-

formed expression microarray studies for biomarker discovery in cortical and medullary kid-

ney tissues after i.v. administration of 177Lu and 177Lu-octreotate [20,21]. The biomarker

candidate genes proposed in these studies, however, were obtained from tissue expression data

and other significant cell type-specific gene regulation may have been missed due to convo-

luted expression signals.

Regarding cell composition of the thyroid in particular, the gland is composed of follicular

cells, also called thyroid epithelial cells, which line the follicular lumen and secrete the thyroid

hormones (TH) triiodothyronine and thyroxine. Parafollicular cells, so called C-cells, are occa-

sionally interspersed between follicles and secrete another hormone named calcitonin. Tran-

script regulation indicative of absorbed dose level or induced cellular damage in either cell

type may not be detected in convoluted data. In recent studies, kallikrein transcripts were pro-

posed as biomarkers of 131I and 211At in thyroid tissue showing different regulation patterns in

relation to absorbed dose and radiation quality [22] as well as diurnal robustness regarding sig-

nificant detection [16]. Accordingly, the effect of convolution on detection rate of these bio-

marker candidates should be investigated. Signature genes that are associated with IR- or TH-

induced regulation have been used previously to evaluate the extent of regulation induced by

ionizing radiation as the initial stressor or as a response to differentially regulated thyroid hor-

mones: the analysis indicated IR-induced changes of TH regulation in thyroid tissue, as well as

changes in TH-responding genes in non-thyroid tissues, i.e. that non-thyroid tissues were sub-

ject to systemic effects in parallel to immediate radiation exposure [18]. For further details on

signature gene analysis, please refer to previous work [18].

Recently, biomarker screening in vivo has gained importance in radiation research and a

host of whole-tissue omics expression data have been committed to the knowledge base. A
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computational method is desired to increase the potential biomarker gain from these experi-

mental efforts and reduce the rate of false negatives. An estimation of cell-specific expression

profiles can be obtained using statistical permutation analysis, but to the best of our knowl-

edge, this has not been demonstrated before. With this concept study, we assess the usefulness

of deconvolution for increasing the detection rate of biomarker candidates in whole tissue

samples.

Specifically, the aim of this study was to investigate if the detection rate of significantly reg-

ulated transcripts in thyroid microarray data could be increased by deconvolution, and conse-

quently, to what extent results on radiation-induced responses would differ–or remain

similar–between convoluted and cell type-specific data sets. Gene expression microarray data

of thyroid tissue was taken from a previous study on diurnal variation of gene regulation in

mice in response to 131I [16]. It should be noted that there are different methods to deconvolve

gene expression data. For instance, marker gene probesets can be used as reference expression

signals for each cell type, as has been demonstrated for deconvolution of gene expression data

from heterogeneous brain tissue [23]. In comparison, thyroid tissue has a simple microanat-

omy consisting of only two tissue-specific cell types whose frequency can be easily estimated

by histological analysis. Hence, a deconvolution method based on cell frequency was chosen

over marker probeset-based deconvolution. In particular, the csSAM (cell type-specific signifi-

cance analysis of microarrays) package in R was used, which deconvolves cell type-specific

expression based on cell type frequency in the sample material using least-squares fit [24].

A comparison of detection rate of analytical endpoints between data sets was performed to

evaluate potential bias from convoluted microarray data. Endpoints of interest were total tran-

script regulation, kallikrein transcript regulation, responses in IR-associated and TH-respond-

ing signature genes, and regulation of transcript-associated cellular functions. Specifically, the

analytical robustness of previously reported results [16] on transcriptional regulation in mouse

thyroid following i.v. 131I administration was evaluated.

Materials and methods

2.1 Experimental design

In the previous experimental study, female BALB/c nude mice (Charles River Laboratories

International, Inc.; Salzfeld, Germany) were i.v. injected with 90 kBq 131I (prepared in physio-

logical saline) at different times during the day (n = 4/group) and killed after 24 h [16]. Paired

control groups were mock-treated with physiological saline (n = 3–4/group). Thyroids were

excised, flash-frozen in liquid nitrogen, and stored at -80˚C until extraction of total RNA (RIN

value of at least 6.0). Illumina MouseRef-8 Whole-Genome Expression BeadChips (Illumina;

San Diego, CA, USA) were used for microarray analysis as described elsewhere [16]. Absorbed

dose to the thyroid over 24 h was estimated as 5.9 Gy using the MIRD formalism; please refer

to Langen et al. (2015) for details on dosimetry [16]. The gene expression data have been

deposited in NCBI’s Gene Expression Omnibus with GEO accession GSE66303. In the present

study, thyroid data of groups treated at 9.00 am with 131I or physiological saline (n = 4/group)

were used for deconvolution analysis.

2.2 Quantitative real-time PCR (QPCR)

The quantitative real-time polymerase chain reaction (QPCR) assay was performed to validate

microarray results. For each specimen (n = 4/group), cDNA was synthesized from 1 μg total

RNA, i.e. from the same RNA eluate committed to microarray analysis, using SuperScript™ III

First-Strand Synthesis SuperMix by Invitrogen (Thermo Fisher Scientific; Carlsbad, CA, USA)

according to the manufacturer´s protocol. Validated TaqMan1 Gene Expression Assays and
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the TaqMan1 Gene Expression Master Mix were obtained from Applied Biosystems (Thermo

Fisher Scientific; Carlsbad, CA, USA). Ten target genes were selected for QPCR validation that

showed significant regulation in thyroid microarray data (Atp2a1, Ccnd1, Ccng1, Klk1b16,

Myh2, Pck1, Pvalb, Tpm2). Three constitutive genes that showed homogeneous expression

across the entire data set (Cyp11b1, Rptn, and Prg3) were used for normalization using the

arithmetic mean of Ct values. cDNA samples were run in triplicate for each assay and the

ΔΔCt method was used for quantification of differential expression.

2.3 Cell frequency analysis of thyroid tissue

Thyroid glands were excised from two female BALB/c nude mice aged to six weeks and five

months, respectively. Thyroids were fixed in formalin (4%, phosphate buffered), dehydrated,

and embedded in paraffin following standard procedure. Transverse microtome sections

(4 μm) were stained with hematoxylin-eosin following standard protocol. Images were

acquired with a Nikon DS-Fi1 camera system (Nikon; Japan) using an Olympus BX45 micro-

scope (Olympus; Japan) and NIS-Elements F 2.30 software (Nikon; Japan). Eight microscope

images (20x magnification) from each mouse were analyzed, and in total, over 3,100 thyroid

cells were counted to calculate cell frequency of follicular cells and C-cells.

2.4 Deconvolution of microarray data

Deconvolution was performed with csSAM package version 1.2.4 [24] retrieved from the

CRAN repository (https://cran.r-project.org/) using the R statistical computing environment

version 3.0.1 (http://www.r-project.org). The function csfit {csSAM} deconvolves cell type-spe-

cific expression based on the frequency of each cell type in the sample material using least-

squares fit. Input data was log-transformed since it generally results in lower false discovery

rates as opposed to log transformation after deconvolution [24,25]. Cell frequency of C-cells

relative to follicular cells was set to 0.11, 0.1046, and 0.1154 (three values needed: mean value

and mean value ±SEM were chosen) according to cell counting results reported below. Decon-

volved datasets are available via the figshare repository (https://doi.org/10.6084/m9.figshare.

6715349). In order to validate overall results concerning this input parameter, we also per-

formed deconvolution and supplemental data analysis (as indicated) with a lower C-cell fre-

quency estimate of 0.05 (+/- 0.005) as indicated below.

2.5 Data analysis

Data processing of deconvolved expression data was performed with Nexus Expression 3.0

(BioDiscovery; El Segundo, CA, USA). The false discovery rate (FDR) was controlled using the

Benjamini-Hochberg method with an adjusted p-value cutoff of 0.01 and significantly regu-

lated transcripts, hereafter referred to as (differentially) regulated, were identified with a log2

ratio threshold of at least 0.58 (fold change� 1.5) [2]. The pool size for intensity based pooling

was set to 200. The same statistical processing was used for the convoluted microarray data in

the previous study [16]. The relative impact of IR- and TH-induced regulation on observed

responses was assessed by significant regulation of respective signature genes as described pre-

viously [18]. Briefly, 56 genes associated with IR-induced responses were adapted from Snyder

and Morgan, and Chaudhry [26,27]; 61 genes and gene groups (encoding multimeric proteins)

associated with TH-induced regulation were compiled from literature [18]. Supplemental

analysis was performed for data deconvolved with a C-cell frequency of 0.05, in order to vali-

date overall results with regard to high vs. low C-cell frequency estimation: a cluster analysis

was performed for overall transcript regulation using gplots {heatmap.2} in R (version 3.4.3);

supplemental signature gene analysis was performed as described above.
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Cellular function of transcript regulation was analyzed by categorization of enriched biolog-

ical processes according to Gene Ontology (http://www.geneontology.org) terms as described

elsewhere [15]. Briefly, significance of enrichment was accepted with a p-value of less than

0.05. The strength of response was expressed as the percentage of scored vs. filtered transcripts

of all significant biological processes grouped in a given category or subcategory. The result

was visualized as a heat map also stating the sum of scored and filtered transcripts (first and

second value, respectively) for each category and subcategory.

Results

3.1 Cell frequency in BALB/c nude mouse thyroid

Heterogeneity of thyroid samples regarding cell type is shown in a (magnified section of a) rep-

resentative image used in cell counting analysis (Fig 1). The cell frequency of C-cells relative to

follicular cells in tissue samples was estimated to be approximately 11% with a SEM of 0.54%.

Morphological differences between 6-week-old and 5-month-old mice were not observed,

while irregular C-cell distribution was seen. Due to the limited number of specimens, we

acknowledge lack of accuracy of the C-cell frequency estimate and potential overestimation.

3.2 Differences in total significant transcript regulation

The total significant transcript regulation, i.e. the number of differentially regulated transcripts

compared between the 131I-treated group and the mock-treated control group, showed clear

Fig 1. Microanatomy of mouse thyroid tissue. The image shows a 20x magnification of a transverse microtome

section of normal thyroid tissue from a 5-month-old female BALB/c nude mouse. Thyroid epithelial cells (follicular

cells) and parafollicular cells (C-cells) are indicated exemplarily by white and black arrow, respectively. Scale bar (top

right), 100μm.

https://doi.org/10.1371/journal.pone.0197911.g001
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differences between convoluted data for thyroid tissue and deconvolved data for follicular cells

and C-cells (Fig 2). Analysis of convoluted thyroid data yielded 1015 significantly regulated

transcripts with up- and down-regulation differing by nearly 100 transcripts. Thyroid microar-

ray data was validated using QPCR (S1 Table). In deconvolved data, significant transcript reg-

ulation was distinctly higher in follicular cells (1642 transcripts) but lower in C-cells (814

transcripts), while up- and down-regulation were on the same level. The potential impact of

high vs. low estimation of C-cell frequency can be considered low, since cluster analysis of data

deconvolved with either 0.11 or 0.05 relative frequency showed highly similar heatmap profiles

Fig 2. Significant transcript regulation. The Venn diagram shows the number of up- and down-regulated transcripts (up- and down-arrows, respectively) for each

data set and the distribution of shared transcripts between data sets. Results of transcript regulation for thyroid tissue adapted from Langen et al. [16].

https://doi.org/10.1371/journal.pone.0197911.g002
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(please see S1 Fig). Complete lists of significantly regulated transcripts in the thyroid, follicular

cells, and C-cells are shown in S2–S4 Tables, respectively.

3.3 Differences in significant regulation of kallikrein transcripts

Pronounced differences in detection rate of significantly regulated transcripts of the kallikrein

family were observed between convoluted and deconvolved data sets (Fig 3; see S5 Table for

respective fold change values and adjusted p-values). Notably, all but one gene belonged to the

Mus musculus species-specific kallikrein subfamily Klk1b. Overall, 19 kallikrein transcripts

were detected, all of which were detected in at least one deconvolved data set, while only 14

transcripts were detected in convoluted thyroid data. Specifically, 8 transcript probes were

detected in thyroid tissue and in both follicular cells and C-cells, while 6 transcript probes

were detected in thyroid tissue and in either follicular cells or C-cells. In contrast, 4 transcript

probes were detected in both follicular cells and C-cells but not in convoluted thyroid data,

and one transcript probe (Klk1b4, ILMN_1238736) was detected in only follicular cells but nei-

ther in C-cells nor thyroid tissue. Interestingly, gene regulation of Klk1b5 was detected in all

three data sets but with different transcript probes, i.e. Klk1b5 (ILMN_1224893) in thyroid tis-

sue and follicular cells and Klk1b5 (ILMN_2731191) in follicular cells and C-cells.

Furthermore, most transcript probes that were detected in at least two data sets showed

pronounced differences in log2 ratio, while only three transcript probes showed similar expres-

sion levels in convoluted and deconvolved data sets, i.e. Klk1b27 (ILMN_1252131), Klk1b5
(ILMN_1224893) and Klk1b8 (ILMN_1216962). All significantly regulated kallikrein tran-

script probes were down-regulated with generally high log2 ratio values, i.e. deconvolution did

not change direction of regulation among this set of genes.

3.4 Differences in signature gene responses

For both IR-associated and TH-responding signature genes, detection rate of regulated genes

was higher in deconvolved data than in convoluted data (Tables 1 and 2). This trend was also

reproduced with the supplemental deconvolution analysis using a C-cell frequency estimate of

5% (see S6 and S7 Tables, respectively). Few of these genes (probes) were detected in more

than one data set. Regarding IR-associated signature genes, 4 genes (6 probes) were detected in

thyroid tissue while 7 genes (7 probes) were identified in deconvolved data, i.e. 6 genes (6

Fig 3. Kallikrein transcript regulation in convoluted and deconvolved data. Significant regulation of kallikrein

transcripts is shown in convoluted and deconvolved expression microarray data from normal mouse thyroid.

Regulation is in response to 90 kBq 131I after 24 h following i.v. administration. Illumina probe ID (ILMN) is written in

parentheses. Black, convoluted thyroid tissue; hashed, deconvolved follicular cells; white, deconvolved C-cells.

https://doi.org/10.1371/journal.pone.0197911.g003
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probes) in follicular cells and 1 gene (1 probe) in C-cells (Table 1). Only two genes were detected

in both convoluted and deconvolved data: Gjb2 (ILMN_2999627) was down-regulated with -2.9

log2 ratio in thyroid tissue and down-regulated with -5.1 log2 ratio in C-cells. The other tran-

script probe for Gjb2, i.e. ILMN_1227148 which targets the same transcript variant as ILMN_29

99627, was only detected in convoluted data, however. Concerning Ccng1 (ILMN_2500276),

deconvolution changed direction of regulation from 0.81 log2 ratio in thyroid tissue to -2.5 log2

ratio in follicular cells. Regarding TH-responding signature genes, 10 genes (13 probes) were

detected in thyroid tissue (Table 2). In follicular cells, 11 genes (11 probes) were detected, while

6 genes (6 probes) were detected in C-cells, and only one probe (Atp2a1, ILMN_2666864) was

detected in both deconvolved data sets. As such, 3 more regulation instances were identified

upon deconvolution. Atp2a1 and Cd44were the only genes identified in all three data sets.

Atp2a1 regulation was detected with the same probe (ILMN_2666864) and showed large varia-

tion in log2 ratio between data sets, i.e. up-regulation ranged from 5.3 log2 ratio in thyroid tissue

to 10.6 log2 ratio in C-cells. Cd44 (ILMN_3114585) was differentially expressed in both thyroid

tissue and follicular cells, with -0.69 and -3.2 log2 ratio, respectively, while Cd44 (ILMN_2754

990) was more strongly regulated in C-cells with -5.6 log2 ratio.

3.5 Similarities and differences in associated cellular functions

The biological relevance of transcriptional changes was assessed by enriched biological pro-

cesses that were categorized according to associated cellular function (Fig 4). Results of convo-

luted thyroid data have been reported and discussed comprehensively in a previous study [16].

Briefly, 5 of 8 categories showed significant responses in convoluted data, i.e. cellular integrity,

cell cycle and differentiation, cell communication, metabolism, and organismic regulation,

whereas no significant regulation was detected for DNA integrity, gene expression integrity, or

stress responses. In deconvolved data, i.e. in both follicular cells and C-cells, regulation was

detected in all categories, and in general, detection rate of significantly enriched biological pro-

cesses was higher than in convoluted data. Regarding subcategories, 20 and 22 subcategories

were detected in follicular cells and C-cells, respectively, while only 16 subcategories showed

Table 1. Significant regulation of IR-associated gene signature.

Gene symbol

(synonym)

Probe ID Thyroid tissue

(conv.)

Follicular cells

(deconv.)

C-cells (deconv.)

log2 ratio; fold change (adjusted p-value)

Ccnd1† ILMN_1221503 -0.92; -1.9 (0.0019)

ILMN_2601471 -0.91; -1.9 (0.0002)

Ccng1 ILMN_2500276 0.81; 1.8 (0.0076) -2.5; -5.7 (0.0096)

Cdkn1a† ILMN_2846775 -3.4; -11 (0.0001)

Fos† ILMN_2750515 5.0; 32 (0.0001)

Gjb2 ILMN_1227148 -2.2; -4.6 (0.0000)

ILMN_2999627 -2.9; -7.5 (0.0000) -5.1; -34 (0.0000)

Naa35 (Mak10) ILMN_2828599 -2.6; -6.1 (0.0080)

Plcg2 ILMN_2601833 -1.1; -2.1 (0.0000)

Trp53inp1 ILMN_2506012 5.0; 32 (0.0000)

Trp53inp2 ILMN_2457585 -3.0; -8.0 (0.0024)

†Note that Ccnd1, Cdkn1a and Fos are reported as both IR-associated and TH-responding in the literature. Results of transcript regulation of respective signature gene

for thyroid tissue adapted from Langen et al. [16]. Conv., convoluted data; deconv., deconvolved data. Adjusted p-values given as 0.0000 designate values below 10−5, i.e.

values below the Nexus Expression limit.

https://doi.org/10.1371/journal.pone.0197911.t001
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significant responses in thyroid tissue. Among the latter, only 2 subcategories, i.e. signaling
molecules (metabolism) and general (metabolism), showed responses in thyroid data but were

negative in both follicular cells and C-cells.

The total number of scored transcripts (of enriched biological processes) differed strongly

between data sets. Follicular cells showed the highest number with 773 scored transcripts,

which was more than 2.5-fold higher than in convoluted thyroid data (297 scored transcripts).

C-cells showed the lowest number with 100 scored transcripts, yet also a somewhat wider

spread in regulated subcategories as described above. In general, regulation intensity of a cate-

gory or subcategory, i.e. percentage of scored vs. filtered transcripts as well as number of fil-

tered transcripts, also differed between the data sets.

Discussion

Biomarker discovery using high-throughput techniques is a novel approach in radiation

research. Despite the advantages of genome-wide screening for radiation effects, there are

Table 2. Significant regulation of TH-responding gene signature.

Gene symbol Probe ID Thyroid tissue

(conv.)

Follicular cells (deconv.) C-cells (deconv.)

log2 ratio; fold change (adjusted p-value)

Atp2a1 ILMN_2666864 5.3; 41 (0.0000) 7.8; 223 (0.0000) 11; 1552 (0.0000)

Camkk1 ILMN_1242310 -2.2; -4.6 (0.0045)

Camkk2 ILMN_1256263 -3.9; -15 (0.0001)

Ccnd1 ILMN_1221503 -0.92; -1.9 (0.0019)

ILMN_2601471 -0.91; -1.9 (0.0002)

Cd44 ILMN_3114585 -0.69; -1.6 (0.0001) -3.2; -9.2 (0.0000)

ILMN_2754990 -5.6; -49 (0.0000)

Cdkn1a† ILMN_2846775 -3.4; -11 (0.0001)

Egf ILMN_2684104 -4.9; -31 (0.0000) -5.3; -39 (0.0000)

Egfr ILMN_3128725 -4.9; -30 (0.0095)

Fos† ILMN_2750515 5.0; 32 (0.0001)

Hnrnph3 (Hnrph3) ILMN_2958912 5.7; 52 (0.0000)

Lmo2 ILMN_2767605 -1.2; -2.3 (0.0000)

Mbp ILMN_3081854 -2.9; -7.5 (0.0037)

Pck1 ILMN_1213632 1.2; 2.3 (0.0001)

Pfkp ILMN_2673233 5.7; 52 (0.0000)

Pik3c2a ILMN_1252098 -2.5; -5.7 (0.0087)

Prkag2 ILMN_3161626 0.80; 1.7 (0.0002)

Prkca ILMN_1217890 -1.9; -3.7 (0.0092)

Rcan2 ILMN_3033007 -5.0;-32 (0.0000)

Slc16a6 ILMN_1258950 -0.91; -1.9 (0.0005)

Slc2a1 ILMN_1258159 -0.94; -1.9 (0.0007)

Sms ILMN_1232323 -2.3; -4.9 (0.0003)

Vldlr ILMN_1218264 1.1; 2.2 (0.0000)

ILMN_2515601 1.1; 2.2 (0.0000)

ILMN_2796472 1.1; 2.2 (0.0000)

†Note that Ccnd1, Cdkn1a and Fos are reported as both IR-associated and TH-responding in the literature. Results of transcript regulation of respective signature genes

for thyroid tissue adapted from Langen et al. [16]. Conv., convoluted data; deconv., deconvolved data. Adjusted p-values given as 0.0000 designate values below 10−5, i.e.

values below the Nexus Expression limit.

https://doi.org/10.1371/journal.pone.0197911.t002
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methodological drawbacks when analyzing whole-tissue data from in vivo experiments.

Deconvolution of mixed cell type data is a step forward to overcome some of the limitations,

such as missing biomarker candidates due to false negatives and under-representation of radi-

ation-sensitive cell types. This work is the first to demonstrate the usefulness of the gene

expression deconvolution technique in context with radiation-induced effects. As such, the

total number of significantly regulated transcripts (probes) was strongly increased upon

deconvolution, i.e. more than 600 transcript probes remained undetected in thyroid tissue as

compared with follicular cells. This general finding demonstrated the usefulness of deconvolu-

tion for increasing detection rate of significantly regulated transcripts in mixed cell data. Nev-

ertheless, it should be pointed out that detection rate is not a criterion per se for the quality of

analysis. In context with biomarker discovery research, however, we reason that also false neg-

atives can be considered a "severe" error, since potential biomarker genes would be missed and

not validated in consecutive studies. In contrast, false positives would be erroneous candidates

that would be eliminated from the candidate pool in validation studies. We assume that a large

proportion of transcripts (probes) that were not detected in thyroid tissue data represent type

II errors due to misrepresentation of cell type frequencies, i.e. lack thereof, in statistical analysis

of convoluted data. Experimental validation studies are needed to confirm or reject this

assumption. Another critical point is the change in fold-change of detected transcripts: if the

same transcript (probe) was regulated in two or all data sets, the log2 ratios differed distinctly

between data sets in most cases, which can have consequences for down-stream analysis and

interpretation of biological effects. Thus, caution is advised when drawing conclusions from

mixed microarray data and analytical end-points should be validated with appropriate tools to

avoid bias.

Regarding the given experimental context, the specificity of deconvolved data may be of

concern: in theory, frequency can describe microanatomic or microdosimetric properties, i.e.

differentiating between different cell types, or between the hit and non-hit fraction. However,

the latter can be disregarded, since the range of emitted electrons by 131I is long compared

with follicle size [28,29], meaning that irradiation occurs homogeneously and both cell types

were subject to the same absorbed dose. Accordingly, deconvolved data is specific for respec-

tive cell type frequency in this experimental design without a confounding factor of differential

dose exposure.

Furthermore, it should be noted the 11% data subset is an estimate to differentiate the C-

cell response from the follicular cell response in a purely statistical fashion: for one, the larger

binning is possibly also enriched for low-abundance non-thyroid-specific cell types. In addi-

tion, by partitioning the signal based on cell type frequency, the more-abundant population

(89%) can be expected to exhibit higher changes due to higher relative expression values. On

the other hand, the semi-quantitative nature of the microarray analysis and downstream pro-

cessing such as intensity-based pooling may scale down this effect. As such, the deconvolved

data for follicular cells and C-cells represent an in silico statistical permutation analysis to

improve biomarker discovery, and differences between both cohorts may indicate–but do not

directly represent–biological differences. The biological specificity, i.e. relative response

Fig 4. Regulation of biological processes enriched from convoluted and deconvolved data. Significant regulation of

cellular function is shown for convoluted (conv.) and deconvolved (deconv.) transcript expression microarray data

from normal mouse thyroid. Regulation is in response to 90 kBq 131I after 24 h following i.v. administration. Enriched

biological processes were grouped into categories and subcategories of associated cellular function based on Gene

Ontology terms. The percentage of scored vs. filtered transcripts is shown as very low<3%, low 3–9%, medium 10–

29%, high 30–49%, and very high�50%, and colored as very light blue, light blue, blue, dark blue, and very dark blue,

respectively. Values in white text show number of scored/filtered transcripts for each category and subcategory. For

original results on enrichment analysis for convoluted thyroid tissue, please refer to Langen et al. [16].

https://doi.org/10.1371/journal.pone.0197911.g004
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intensity of individual genes originating from a certain cell type, can only be validated by sin-

gle-cell gene expression analysis, which would require another experimental design. Despite

its advantages, in situ single-cell analysis would require a large number of measurements to

achieve sufficient statistics, while single-cell analysis by means of tissue dissociation may intro-

duce stress and study-unrelated responses, or eliminate signals owing to the microenviron-

ment (depending on how long cells are kept in suspension).

Another aspect is to what extent the C-cell frequency estimate would impact obtained

results. Age difference and biological variability between individuals were not observed in the

morphological analysis, although they have been reported for rats [30,31]. The estimation of

C-cell frequency has been reported with a relatively broad range, i.e. from a general 2–4% [32],

over 11% in (older) rats [30], and up to 23% in mice [33]. The latter study, however, selected a

specific thyroid area for their analysis, i.e. the middle third of the lobe, which has a higher con-

centration of C-cells, meaning that the average frequency in the whole organ would be dis-

tinctly lower. To the best of our knowledge, C-cell frequency and biological variability have

not been documented for BALB/c nude mice. In this regard, we acknowledge that the cell fre-

quency of 11% used for deconvolution may constitute an upper-end estimate. In order to

assess the impact of a potentially lower C-cell frequency [32], a supplemental deconvolution

analysis was performed with a 5% estimate. Cluster analysis showed that the transcriptional

profiles for both follicular cell data and C-cell data was highly similar between 11% and 5%

binning, and the overall trends of signature gene analysis were reproduced, which validated

the deconvolution analysis in this range.

This work demonstrated that deconvolution analysis may allow for detection of differential

radiation sensitivity between cell types, e.g. when a cell type is more radiosensitive but the dis-

tinct signature would be masked in convoluted data due to low cell frequency. This is an

important aspect for biomarker screening, in particular if the respective cell type is critical for

tissue function. Neglecting cell type-specific radiation sensitivity and respective expression sig-

natures may yield inaccurate results for radiation risk assessment. A mean absorbed dose of

5.9 Gy over 24 h to thyroid was calculated for i.v. administration of 90 kBq 131I [16]. For this

exposure condition, one ionizing radiation-associated transcript was detected in C-cells com-

pared with six transcripts in follicular cells. Regarding C-cells, studies on cell type-specific IR-

induced effects in normal rat thyroid tissue after 131I exposure, however, indicate increased

radiation sensitivity compared with follicular cells [34,35]. Taking the number of regulated IR-

associated genes as a measure, C-cells did not indicate increased radiation sensitivity in this

study. However, the analysis is based on a single time-point measurement, and it should be

noted that an increased response of IR-associated genes in C-cells may occur at earlier or later

time points. Therefore, it is not possible to deduce from these data if the different expression

signatures of follicular cells and C-cells are a result of differential radiation sensitivity.

TH-responding signature genes were used to estimate the extent of systemic effects that

potentially influenced transcriptional responses in non-thyroid tissues after i.v. 131I adminis-

tration. These genes are also expressed in thyroid tissue and allow for correlation between sys-

temic effects in target tissues and the regulatory thyroid gland in our previous studies

[15,16,18]. The higher regulation incidence of TH-responding signature genes compared with

IR-associated signature genes, as previously discussed for convoluted thyroid data [16], was

validated in deconvolved data with a distinctly increased detection rate considering both follic-

ular cells and C-cells.

All of the kallikrein transcripts detected in convoluted thyroid data were detected in at least

one, often both, deconvolved data sets. Moreover, several kallikrein transcripts were detected

in deconvolved data that remained undetected in convoluted data. Deconvolution thus sup-

ported kallikrein transcripts as biomarkers for absorbed dose and/or induced thyroid damage
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and increased detection rate among transcripts of a specific gene family. As a result, we con-

tinue with further investigation of kallikrein genes and gene products as a biomarker for radia-

tion exposure. It should be noted that QPCR on Klk1 and Klk1b16 validated the overall strong

down-regulation observed for the kallikrein family; however, log2-values from microarray and

QPCR analysis showed poor correlation for these specific probes–albeit better agreement with

deconvolved data. This discrepancy is assumed to result from the different sequence location

of respective QPCR assays and microarray probes. The kallikrein family shows high sequence

similarity among transcripts and sequence overlap or unspecific binding may thus yield vary-

ing results for different assay/probe locations.

Regarding signature gene analysis, the majority of transcripts detected in thyroid data

remained undetected in follicular cells and C-cells, i.e. only few specific signature gene tran-

scripts (probes) were detected in both convoluted and deconvolved data. In contrast, all kalli-

krein transcripts detected in convoluted data were reproduced in at least one, often both,

deconvolved data sets. It should be noted that log2 ratio values of kallikrein transcripts were

generally high, while log2 ratio values of IR-associated and TH-responding signature genes

were comparatively low with few exceptions. Comparing the change in detection rate upon

deconvolution between both signature gene sets and the kallikrein gene set, reproducibility of

significant regulation was distinctly higher in the latter set. This observation illustrated that

detection rates among weakly responding gene sets were more strongly affected by changes in

log2 ratio resulting from deconvolution than detection rates among strongly responding gene

sets. For biomarker candidates, it is thus desirable to show not only significant up- or down-

regulation, but also sufficiently high log2 ratio values so that regulation is detectable irrespec-

tive of statistical data processing (i.e. in terms of deconvolution), since highly complex tissues

may render deconvolution unfeasible.

The detection rate of enriched biological processes was distinctly higher in deconvolved

data. This did not only change the intensity but also the biologic quality of the observed

overall response: deconvolved data yielded significant regulation in main categories (i.e.

DNA integrity, gene expression integrity, and stress responses) that were non-responding in

previous analysis of convoluted data [16]. These categories are of particular importance

when investigating IR-induced responses. DNA damage and repair are hallmarks of IR-

induced effects and false negatives in this category (DNA integrity) might lead to erroneous

conclusions on e.g. the extent of IR-induced damage, radiation sensitivity, or the timing of

DNA repair processes following irradiation. In particular, an absorbed dose of 5.9 Gy over

24 h, even at low dose rate, is expected to result in a DNA damage and repair response to

some extent. Lack of regulation in these categories was not in agreement with established

knowledge of the dose-response relationship for DNA damage induction. It should be

noted that the dose-response relationship is based mostly on in vitro data in radiation

research, and it is known that the dose-response relationship can differ in the in vivo setting.

This leads to an analytical dilemma, since two conclusions can be drawn from the disagree-

ment with literature: for one, the damage response in tissues behaves vastly different com-

pared with cultured cell lines; or for the other, data convolution in whole-tissue data masks

the damage response due to misrepresentation of individual cell types. Our work is the first

to demonstrate that deconvolution is a useful tool to address this dilemma. If deconvolved

data would also show no regulatory response for these categories, it would strengthen the

conclusion that the damage response in vivo is indeed different from the in vitro response in

this context; however, the detection of damage responses in deconvolved data suggests that

the alternative conclusion is more likely.
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Conclusions

Certain findings obtained from convoluted thyroid data were validated upon deconvolution,

such as distinct regulation of the kallikrein gene family and a dominating trend of TH-associ-

ated signature genes over IR-associated signature genes. Positive responses in biological pro-

cesses were also validated in deconvolved data. These results demonstrated the benefit of a

computational method to assess robustness of results obtained from convoluted expression

microarray data. Moreover, deconvolution also revealed responses in important radiation-

associated biological processes that remained undetected in mixed cell type data. Deconvolu-

tion is a useful tool to validate biomarker screening in mixed cell type data and can reduce the

risk of erroneous conclusion from false negatives.
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22. Rudqvist N, Spetz J, Schüler E, Langen B, Parris TZ, Helou K, et al. Gene expression signature in

mouse thyroid tissue after 131I and 211At exposure. EJNMMI Res 2015; 5(1): 59. https://doi.org/10.

1186/s13550-015-0137-8 PMID: 26492889

23. Capurro A, Bodea LG, Schaefer P, Luthi-Carter R, Perreau VM. Computational deconvolution of

genome wide expression data from Parkinson’s and Huntington’s disease brain tissues using popula-

tion-specific expression analysis. Front Neurosci 2015; 8: 441. https://doi.org/10.3389/fnins.2014.

00441 PMID: 25620908

24. Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F, Perry NM, et al. Cell type-specific gene

expression differences in complex tissues. Nat Methods 2010; 7: 287–289. https://doi.org/10.1038/

nmeth.1439 PMID: 20208531

25. Zhong Y, and Liu Z. Gene expression deconvolution in linear space. Nat Methods 2012; 9(1): 8–9;

author reply 9.

26. Snyder AR, Morgan WF. Gene expression profiling after irradiation: clues to understanding acute and

persistent responses? Cancer Metastasis Rev 2004; 23: 259–268. https://doi.org/10.1023/B:CANC.

0000031765.17886.fa PMID: 15197327

27. Chaudhry MA. Biomarkers for human radiation exposure. J Biomed Sci 2008; 15: 557–563. https://doi.

org/10.1007/s11373-008-9253-z PMID: 18454354

28. Josefsson A, Forssell-Aronsson E. Dosimetric analysis of (123)I, (125)I and (131)I in thyroid follicle

models. EJNMMI Res 2014; 4: 23. https://doi.org/10.1186/s13550-014-0023-9 PMID: 25006543

29. Josefsson A. Microdosimetry of radiohalogens in thyroid models. Gothenburg: Doctoral Thesis, Univer-

sity of Gothenburg; 2014 p. 29–31.

30. Martı́n-Lacave I, Conde E, Montero C, Galera-Davidson H. Quantitative changes in the frequency and

distribution of the C-cell population in the rat thyroid gland with age. Cell Tissue Res. 1992; 270(1): 73–

7. PMID: 1423525
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