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Abstract: Skull base surgery has undergone significant progress following key technological de-
velopments. From early candle-lit devices to the modern endoscope, refinements in visualization
techniques have made endoscopic skull base surgery (ESBS) a standard practice for treating a va-
riety of conditions. The endoscope has also been integrated with other technologies to enhance
visualization, including fluorescence agents, intraoperative neuronavigation with augmented reality,
and the exoscope. Endoscopic approaches have allowed neurosurgeons to reevaluate skull base
neuroanatomy from new perspectives. These advances now serve as the foundation for future
developments in ESBS. In this narrative review, we discuss the history and development of ESBS,
current visualization techniques, and future innovations.
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1. Introduction

Over the last century, the evolution of skull base surgery has, in large part, been
dependent on technology to improve our ability to visualize and work in small, deep,
and dark corridors. Starting only with the naked eye and candlelight, neurosurgery
progressed through improving forms of visualization and illumination to surgical loupes
and headlights, to microscopes, endoscopes, and exoscopes. Improved magnification
and illumination have allowed neurosurgeons to move from very large open craniotomy
approaches to smaller, more tailored open and keyhole approaches, and to endonasal
approaches, which use the natural nasal cavity to access the skull base [1].

Endoscopic skull base surgery (ESBS) in particular has emerged as an established sur-
gical approach for specific pathologies, including pituitary macroadenoma, cerebrospinal
fluid rhinorrhea, craniopharyngioma, midline chordoma, and anterior skull base menin-
gioma. Beyond neurosurgery, the use of ESBS has grown in otolaryngology, where ESBS is
an established approach for treating olfactory neuroblastoma (in particular, Kadish A and
B tumors), juvenile nasopharyngeal angiofibroma, cholesterol granuloma, and recurrent
nasopharyngeal cancer. ESBS is also an option for select patients with vasomotor rhinitis,
allergic rhinitis, and sinonasal squamous cell carcinoma [2]. Although adoption rates vary
by pathology, the past 30 years have seen an increasing trend in the use of ESBS, with a
majority (53.7%) of nonfunctioning pituitary adenomas treated with ESBS compared to
non-endoscopic approaches [3]. One survey found ESBS was used by 80% of skull base
surgery respondents, comprising both neurosurgeons and otolaryngologists [4].

Compared to traditional microscopic approaches, ESBS offers the advantages of im-
proved magnification and illuminance of structures, panoramic visualization with angled
lenses, and maneuverability around important neurovascular structures (e.g., internal
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carotid arteries, cranial nerves) [5]. ESBS offers the advantages of improved neurological
function (e.g., greater visual field improvement for pituitary macroadenoma, greater hy-
pothalamic preservation for craniopharyngioma) and postoperative outcomes (e.g., shorter
hospital length of stay, reduced patient discomfort) relative to open microsurgical ap-
proaches [6]. However, ESBS has notable limitations. It provides a two-dimensional (2D)
monocular view, requires two co-surgeons, and has certain anatomic constraints—offering
the best outcomes for smaller, midline pathologies—compared to microscopic surgery.
Complications in ESBS include cerebrospinal fluid rhinorrhea (8.9% incidence), vascular
injury and endocrine dysfunction (2.0%), central nervous system infection (1.7%), and death
(0.4%) [7]. ESBS represents an additional approach for treating skull base pathologies and
requires judicious use by the skull base surgeon to offer patients the best individualized
treatment plan.

In this contemporary narrative review, we provide a comprehensive description of the
current state of visualization techniques in ESBS. We present a selection of cited articles
based on a search of MEDLINE/PubMed for articles published within the last ten years and
foundational articles determined by the authors to be relevant to this topic. We discuss the
history and development of ESBS, current visualization techniques, and future innovations.

2. The History and Development of Endoscopic Skull Base Surgery

The ancient Egyptians conducted the first recorded transnasal procedures during
mummification, where long instruments were used to perform excerebration (i.e., the
removal of the brain and its surrounding structures) through the nose [8] (Figure 1). The
concept behind endoscopy originated with Phillip Bozzini, who invented the lichtleiter
(“light conductor”) in 1805 [9]. Bozzini used candlelight and a small mirror to allow internal
visualization through natural orifices or small incisions. In 1853, Antonin Jean Desormeaux
coined the term l’endoscope to describe his oil lamp-lit instrument for visualizing the internal
genitourinary system (Figure 1). However, endoscopic illuminance was dependent on
candles and oil lamps until the invention of the incandescent lightbulb by Thomas Edison
in 1879. In 1906, Hermann Schloffer performed the first transnasal neurosurgical procedure,
guiding past the sphenoid bone to resect a pituitary tumor—termed the transsphenoidal
approach. The development of fiberoptics in the 1950s by physicists Harold Hopkins and
Narinder Singh Kapany and the rod-lens system by Harold Hopkins in the 1959 led to
the modern fiberoptic endoscope [10]. In 1963, Gerard Guiot reported the first fiberoptic
endoscopic transnasal transsphenoidal approach [11]. However, rapid advancements
made the operating microscope the gold standard for transsphenoidal and transcranial
approaches to skull base lesions during this time period [9].
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Figure 1. (a) Examples of instruments used for excerebration in Ancient Egypt. Reprinted/adapted
with permission from Ref. [12]. 2022, Wellcome Collection. (b) Lamp-lit endoscope designed by
Desormeaux. Reprinted/adapted with permission from Ref. [12]. 1891, Lea Brothers & Company.
(c) Current endoscopic endonasal operating room suite at the Cleveland Clinic. The high-definition
surgical endoscope setup improves visualization and ergonomics for two simultaneous surgeons.
Reprinted/adapted with permission from Ref. [12]. 2022, Pablo F. Recinos, M.D.
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The development of coupled-charge devices by Bell Laboratories in 1969 gave rise
to video-based endoscopy, which was further refined by Karl Storz during the second
half of the twentieth century. In 1992, the first endoscopic endonasal pituitary resection
was reported by Roger Jankowski et al. [13], and in 1997, Ricardo Carrau and Hae-Dong
Jho published the first large case series of fully endoscopic endonasal pituitary surgery
in 50 patients [14]. Subsequent refinements in visualization technology, instrumentation,
anatomical knowledge, and reconstruction techniques have made ESBS a widely adopted
surgical practice today [15] (Figure 1).

3. The Current State of Visualization Techniques in Endoscopic Skull Base Surgery
3.1. Illuminance and Brightness

Endoscopic image quality depends on specific image characteristics, including illu-
minance, brightness, resolution, and dimensionality. Illuminance is the amount of light
distributed across a surface area [16]. Proper illuminance of anatomic structures is critical
for ESBS. A variety of light sources have been developed with different emission spectra.
Currently, most endoscopes use xenon light sources that produce excellent illuminance
with their high content of blue wavelength light to provide accurate color representation of
tissues. However, these light sources carry the risk of thermal tissue damage, especially
with high-watt lightbulbs. Light-emitting diode (LED) light sources have also been de-
veloped. These instruments carry a lower risk of thermal tissue injury while providing
adequate light quality for ESBS [17] (Figure 2).
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Figure 2. Light sources from high to low heat production. Incandescent lightbulbs produce more heat
(red) than LED light sources (blue). LED: light emitting diode. Reprinted/adapted with permission
from Ref. [18]. 2022, Erion Junior de Andrade, M.D., M.Sc.

Projecting sufficient light towards the structure of interest (i.e., illuminance) is equally
as important as capturing enough returning light to form a recognizable image (i.e., bright-
ness). Brightness is the amount of illuminance perceived by an observer [16]. In ESBS,
brightness relates to the amount of light radiating from the visualized structures towards
the endoscope light sensor, which is then transmitted to the monitor and seen by the
surgeon. Brightness is directly proportional to illuminance and inversely proportional to
distance squared. Appropriate brightness can be ensured by increasing the endoscope
light source illuminance or decreasing the distance between the structure of interest and
the endoscope. However, maximal brightness cannot always be ensured. For example,
decreasing illuminance or increasing working distance to reduce thermal tissue injury can
limit image brightness.

3.2. Resolution

In addition to brightness, resolution is important for generating precise images during
surgery. Currently, endoscopes are available in high definition (HD) (1280 × 720 pixels),
full HD (1920 × 1080 pixels), and ultra-HD/4K resolution (3840 × 2160 pixels) with the
aim of enhancing the visualization of anatomic structures [19]. Additional resolution
could be valuable when evaluating detailed anatomy, such as the tumor-tissue interface or
intradural features. In response, features such as digital zoom enhance visibility at a fixed
distance while maintaining adequate resolution. Digital zoom can improve instrument
maneuverability in small spaces, such as the nasal cavity, by allowing enhanced visibility
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at a longer distance so as other surgical instruments do not collide with the endoscope rod.
However, unlike optical zoom, digital zoom reduces the field of view.

It is important to appreciate the effects of viewing distance and screen size on perceived
resolution by the surgeon. The recommended viewing distance between the surgeon and
monitor ranges between 80–120 cm [20]. However, a typical viewing distance can range
from 99–152 cm. With a standard 76.2-cm monitor, any improved resolution from an ultra-
HD system can be perceived only when standing less than 122 cm away (Figure 3). With a
standard viewing distance of 152 cm, any improved resolution from an ultra-HD system
can only be perceived with a 101.6-cm or greater size monitor. Therefore, a larger viewing
monitor is needed at standard working distances in order to perceive the advantages of a
higher resolution system. However, larger monitors require additional physical space in
the operating room, and high-resolution systems generate larger image and video files that
result in a longer time to transfer these files to the medical chart or data storage device.
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Figure 3. Graph of the ability of the human eye to perceived screen resolution based on screen size
(x-axis) and distance from monitor (y-axis). Reprinted/adapted with permission from Ref. [21]. 2022,
Carlton Bale, M.S., M.B.A.

Beyond projecting images onto a two-dimensional monitor, certain endoscope systems
have been developed to provide three-dimensional (3D) endoscopy [22]. Stereoscopic
images generated by 3D endoscopy provide depth perception that facilitates surgery and
is familiar to those accustomed to working stereoscopically with operating microscopes;
however, certain users experience nausea, headache, or visual fatigue, limiting its adoption.
Three-dimensional endoscopy presents a learning curve for users because of its differences
from traditional endoscopy. In addition, the limitations of 2D images in traditional en-
doscopy can be overcome by the depth of field gained by seeing dynamic camera motion
and by proprioceptive information gained from instruments moving in and out of the sur-
gical corridor. Three-dimensional endoscopy remains a modern technology that requires
more investigation to inform optimized settings for safe, effective ESBS.
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3.3. Neuronavigation

Neuronavigation utilizes preoperative images and sensors to relate intraoperative
coordinates to locations on imaging. Current systems can use optical image guidance,
consisting of infrared light-detecting cameras and a reference array attached to the head
holder, or electromagnetic tracking, which measures the electromagnetic field generated by
a magnetic reference array typically placed on the patient’s forehead [23]. Neuronavigation
systems undergo calibration and reference these markers to generate images with overlayed
location coordinates. Surface contour matching requires identifying points on the patient’s
surface with a designated probe to map the patient’s surface features. The computer-
generated reconstruction of the patient is then referenced to map the current location of
calibrated instruments in relation to preoperative imaging [24]. These systems utilize
computer modeling to aid the surgeon pre- and intra- operatively (Figure 4).
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Figure 4. Preoperative planning with the Stryker Scopis neuronavigation system (Stryker Corporation,
Kalamazoo, MI, USA). This system utilizes “building blocks” technology to highlight designated
anatomical landmark. Reprinted/adapted with permission from Ref. [25]. 2022, Stryker Corporation.

Outside of the operating room, adaptations of these systems into virtual reality plat-
forms have been incorporation into neurosurgical training [26]. For ESBS, these platforms
include the Dextroscope (Volume Interactions, Bracco Group, Milan, Italy) and NeuroTouch
Endo (National Research Council of Canada, Ottawa, ON, Canada). These virtual reality
platforms provide trainees with haptic feedback during part-task training and scenario
simulations to promote operative skill development [27]. The advantages of virtual reality-
based training platforms extend to their potential use in tracking trainee progress to provide
feedback on trainee development and training program curricula.

Beyond virtual reality, the surgeon can outline key anatomical features on the screen
that can be superimposed onto endoscopic imaging to provide augmented reality viewing
(Figures 5 and 6). First developed in the 1980s for operative microscopes, augmented reality
provides personalized anatomical information. These systems can provide submillimeter
accuracy that is integrated into one image, reducing the need for surgeons to view sepa-
rate endoscopic and neuronavigation monitors [28]. Skull base anatomy presents many
challenges, including anatomical variants that can affect surgical orientation. Augmented
reality presents surgeons with an additional means of enhancing intraoperative orientation
and preventing neurovascular injury [29]. Although current systems are focused on incor-
porating preoperative imaging, the use of intraoperative imaging can provide augmented
reality with updated anatomical information in real-time [30].
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Figure 6. Augmented reality with live endoscopic video during ESBS to highlight the location of the
basilar and internal carotid arteries. Augmented reality with the Stryker Scopis navigation system
(Stryker Corporation, Kalamazoo, MI, USA). Reprinted/adapted with permission from Ref. [25].
2022, Stryker Corporation.

Several augmented reality training models have been specifically developed for
ESBS [31]. These training models allow trainees to gain exposure to a wide range of
skull base pathologies before experiencing surgery with real-life patients. Synthetic tissue
models, such as the UpSurgeOn system (UpSurgeOn SRL, Assago, Italy), incorporate
augmented reality to provide anatomical exploration that is not otherwise possible with
the unaided eye [32]. However, this technology is still in its infancy and requires thor-
ough investigation. Advancements in augmented reality, and its growing integration into
both neurosurgical training and practice, highlight the increasing importance of these
neuronavigation-based technologies.
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In ESBS, newer neuronavigation-compatible instruments have increased the utility of
these systems. The electronics required for neuronavigation are incorporated in the instru-
ment, which provides greater ergonomics and maneuverability for the surgeon compared
to traditional instruments requiring external adaptors. Neuronavigation-compatible instru-
ments also simplify the registration process. For example, malleable suction instruments
can be bent during surgery without requiring re-registration. Other available instruments
include drills and microdebriders.

However, neuronavigation has notable limitations. Optical image guidance is de-
pendent upon camera line-of-sight and requires the patient to be firmly secured during
surgery. Magnetic-based systems are prone to reduced accuracy from interference by exter-
nal electromagnetic radiation or ferromagnetic instruments. Registration occurring on the
face of the patient, as is typically carried out in ESBS, results in greater error at increased
depths during surgery [23]. These imprecisions can be further exacerbated by brain shift.
Re-registration at the site of interest is not without risk, with the potential for prolonged
operative time and increased risk of complications, such as cerebrospinal fluid leak and
impaired wound healing [33].

3.4. Robotics

Robotics have had limited use in skull base surgery relative to other surgical fields
due to the anatomical constraints of the skull base and its narrow operative corridors.
Developed primarily for general surgery, the larger footprint of robotic systems in the
operating room, and the larger size of their instruments, has limited their endonasal use.
Nevertheless, systems such as the da Vinci robot (Intuitive Surgical Inc., Sunnyvale, CA,
USA), have been investigated in skull base surgery [34,35]. The incorporation of robotics has
the potential to address the limitations of endoscopy—2D monocular vision, often requiring
two co-surgeons—by providing 3D HD vision, requiring one surgeon, reducing the effects
of physiological tremor, and increasing dexterity [36]. Robotic systems in conjunction with
ESBS have been demonstrated to be feasible [37]. They continue to be investigated for
improving access to skull base pathologies through combined approaches, such as the
transoral (robotic)-transsphenoidal (endoscopic endonasal) approach.

Robotic endoscope holders are also available, which can be adjusted either directly or
with a joystick. New systems continue to be investigated preclinically and demonstrate
significant progress over earlier models [38]. Notably, these systems offer articulation of the
endoscope and improved ergonomics [39]. They can also reduce surgeon fatigue, improve
concentration on tissue manipulation, and increase image stability without requiring a
second surgeon [40]. The advantages of robotic systems have the potential to further
improve the practice of ESBS and its outcomes for patients.

However, robotics in ESBS remain a relatively new development due to their large
size relative to the skull base, lack of haptic feedback, and lack of integration with other
visualization systems. These systems may also disrupt the surgical collaboration inherent
to four-handed, two-surgeon approaches. Currently, the published literature is limited to
preclinical studies. Increased research on the utility of these promising systems is required,
especially in the clinical context [41].

3.5. Intraoperative Imaging
3.5.1. Real-Time Fluorescence Agents

Fluorescence agents have been used in ESBS to aid in the visualization of blood vessels
and tumors [42]. These agents work through a mechanism involving electron excitation
through the absorption of higher-energy light and the subsequent emission of lower-energy
light as the electron returns to its ground state. Fluorescence agents can demarcate tumors
from healthy tissue to aid in greater tumor resection [43].
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Indocyanine green (ICG) is a fluorophore that binds to plasma proteins in the in-
travascular space and has a very favorable safety profile [44]. Being contained within the
intravascular space, ICG has been used to visualize and avoid damage to blood vessels
during surgery. ICG has been also studied in a variety of tumors, most notably pituitary
adenoma. Fluorescence intensity measured within one minute of ICG infusion can differen-
tiate healthy tissue compared to the pituitary adenoma. Other techniques have also been
developed, such as second-window ICG, where high-dose ICG infusion 24 h before surgery
can concentrate fluorescence within the pituitary adenoma [45].

5-aminolevulinic acid (5-ALA) is a fluorophore acting through the porphyrin synthesis
pathway that is approved for intraoperative visualization of high-grade glioma [46]. 5-ALA
has been studied in ESBS for multiple conditions, though results suggest limited utility in
specific tumor types [47]. This agent can enhance the detection of tumor tissue otherwise
difficult to visualize due to its location near the optic canal. Compared to a microscope,
the proximity of an endoscope to the tissue can improve fluorescent signal detection for
deeply located pathologies. Future knowledge about the properties and lesion-specific
pharmacokinetics of 5-ALA can improve its use in ESBS [48].

On Target Laboratories (OTL)-38 is a fluorophore that targets folate receptor alpha [49].
This agent has been promising in detecting folate receptor-overexpressing tumors. In one
prospective study, OTL-38 intraoperatively demonstrated high sensitivity and specificity
in detecting non-functioning pituitary adenomas [50]. Evaluation of tumor resection
margins revealed improved resection with OTL-38 compared to unaided visual inspection.
However, one major limitation of OTL-38 is the lack of known folate receptor expression
levels preoperatively, which may reduce sensitivity and increase the occurrence of false
negative results [51]. These agents, and additional fluorophores such as sodium fluorescein,
continue to be researched to improve visualization and patient outcomes in ESBS.

3.5.2. Ultrasonography

Ultrasonography is based on the reverse piezoelectric effect, where an electrical cur-
rent causes vibration of a crystal lattice, producing high-frequency sound waves that are
reflected to a transducer to recreate an image [52].

Ultrasonography has not yet gained wide adoption in ESBS. Ultrasound probes have
been assessed in pituitary tumor resection, with limited ability to evaluate skull base
anatomical structures [53]. The recent development of smaller-sized probes with improved
resolution may increase the utility of this technique in ESBS. One retrospective study
found increased extent of resection and fewer complications for patients who underwent
ultrasound-guided pituitary adenoma resection compared to traditional surgery [54]. How-
ever, the published experience is limited, and prospective studies remain to be reported.

Color Doppler ultrasonography, which labels fluid velocity with color, can identify
vascular structures in the skull base, such as the internal carotid artery (Figure 7). New
improvements in probe portability and resolution have led to the color Doppler microvas-
cular probe. Compared to traditional Doppler probes, color Doppler microvascular probes
have shown greater promise in identifying key vascular structures during ESBS [55]. How-
ever, image resolution and accurate structure identification are limited. The development
of ultrasound contrast agents may further improve ultrasonography in ESBS. Contrast-
enhanced ultrasonography has been reported for a variety of skull base pathologies [56].
This technique resulted in successful visualization of lesion tissue and high- and low- flow
blood vessels compared to traditional ultrasonography. However, these contrast agents
have not been tested using an endoscopic approach.
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Doppler ultrasonography showing a pituitary tumor and the cavernous segment of the ICA after
tumor resection. Reprinted/adapted with permission from Ref. [57]. 2022, Fujifilm Corporation.

3.5.3. Computed Tomography and Magnetic Resonance Imaging

Imaging modalities, such as computer tomography (CT) and magnetic resonance
imaging (MRI), have enhanced the study and diagnosis of skull base conditions. CT uses
X-rays and a mathematical process termed reconstruction to transform three-dimensional
structures into two-dimensional cross-sectional images. MRI is based on nuclear magnetic
resonance, primarily of hydrogen atoms, in an applied magnetic field that is detected and
reconstructed into cross-sectional images without the use of ionizing radiation [58].

These imaging modalities have been used during surgery to assess skull base anatomy.
Intraoperative CT and MRI have been used to evaluate residual tumor tissue, leading to
improved extent of resection and progression-free survival [59]. Currently, intraoperative
CT may be performed using mobile units, while intraoperative MRI requires designated
imaging suites. One advantage of intraoperative imaging is the possibility of performing
neuronavigation system re-registration during surgery, which is particularly useful in open
cranial surgery where significant brain shift can occur. Re-registration provides updated
imaging information to the surgeon and can identify intraoperative changes to anatomical
structure [23]. However, intraoperative imaging has its limitations in ESBS. CT causes
exposure to ionizing radiation, which limits its use in certain patient populations, including
children and pregnant women [60]. MRI is time-consuming compared to other imaging
modalities and can prolong surgery duration by up to 40 min [61].

3.6. Neuroanatomy

The evolution of ESBS has required revisiting known anatomical structures through
the perspective of endoscopic endonasal approaches [62]. New endoscopic approaches
have invited a fundamental reevaluation of skull base anatomy and established procedures.
Improved anatomical knowledge has informed surgical techniques and made endoscopic
approaches a first-line choice for certain conditions, such as craniopharyngiomas [63].
Detailed descriptions of the microsurgical anatomy of the skull base, and the common sites
of its pathologies, have enabled surgeons to appropriately plan and perform ESBS.

One example of the reevaluation of the microsurgical neuroanatomy is the cavernous
sinus (Figure 8). The division of the cavernous sinus and middle fossa into triangles has
been traditionally used for transcranial open approaches, however, this technique is not
adequate for endoscopic endonasal approaches. Recently, a 360-degree division of potential



Brain Sci. 2022, 12, 1337 10 of 15

spaces of tumor extension was described to provide anatomical guidance for surgical
approach selection [62].
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Figure 8. The cavernous sinus spaces and the cavernous segment of the internal carotid artery (ICA)
from imaging, microsurgical transcranial and endoscopic endonasal perspectives. (a) Angiogram,
lateral view of the ICA. (b) CT angiogram, lateral view of the ICA. The relationship of the ICA
with the sphenoid bone is observed. (c) Cadaveric dissection demonstrating a superolateral view of
the middle fossa and ICA via a transcranial approach. (d) Cadaveric dissection demonstrating an
endoscopic endonasal view of the relationship of the cavernous ICA with the nerves on the lateral
wall of the cavernous sinus. Reprinted/adapted with permission from Ref. [18]. 2022, Erion Junior
de Andrade, M.D., M.Sc.

Detailed descriptions of the skull base are especially important for areas with complex
anatomy and multiple available approaches. The anterior, middle, and posterior cranial
fossa can be accessed from the front of the skull near the eye (transorbital), from the sides
of the skull base (transpterygoid), from the back of the skull base (transcondylar), via
the region near the pituitary gland (parasellar), and near where the spinal cord exits the
cranium (clival and petroclival) [62–69]. Knowledge of neuroanatomy continues to grow
with the development of expanded endoscopic approaches that encompass greater areas
of the skull base [70]. The increasing application of endoscopic approaches in pediatric
surgery has further refined the current understanding of skull base development [71]. The
knowledge of surgical micro-neuroanatomy should be used in combination with available
technology as the mainstay of any surgical procedure.

3.7. The Exoscope

In addition to the endoscope, work has been performed to develop the exoscope:
a telescopic intraoperative visualization device with HD video resolution [72] (Figure 9,
Video S1). Unlike the endoscope, the exoscope is positioned outside the body of the patient.
It provides greater magnification, generates a wider focal distance, incorporates image
enhancement, and provides 3D visualization. These features can improve anatomical
visualization, increase surgeon comfort with better ergonomics, and facilitate teaching [73].

Exoscopy is a relatively new development in skull base surgery and further study
is required to understand its strengths and limitations. Identified limitations include
tissue differentiation, specifically bleeding tissue, the loss of stereoscopy, and the need
for improved integration with existing technologies, such as fluorescence agents and
endoscopy [74]. Endoscopes used with exoscopes have been reported to improve the
visualization of operative blind spots. The exo-endoscopic approach can provide not
only a wider field of view, but also better instrument positioning and improved viewing
perspective for shared observation by operating room personnel [75]. Continued operative
experience with the exo-endoscopic approach can further advance the complementary use
of these technologies in ESBS [76].
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4. Future Innovations

The current state of visualization in ESBS demonstrates significant technological
progress over time. Exciting advancements await following the refinement of existing
technologies and the development of novel ones. Improved light sources with lower
energy utilization and heat generation can limit thermal tissue damage. A reduced risk
of tissue damage would permit increased illuminance and/or a shorter working distance,
which would increase image brightness and resolution to improve surgical precision.
Image resolution can be further enhanced with improved light sensors incorporated into
endoscopes. Three-dimensional endoscopy can redefine the operative experience by more
accurately recreating skull base anatomy for the surgeon [77].

Fluorescence agent guidance in ESBS represents a promising avenue for improving
tumor extent of resection. However, the current published literature is largely limited to
descriptive studies, such as case series. A greater number of studies with large sample sizes
and standardized protocols would increase the level of evidence evaluating the strengths
and limitations of fluorescence agents in ESBS [78]. Multi-institutional collaboration can
significantly support this goal by facilitating large-sample trials. Research on the concurrent
use of multiple highly sensitive and specific fluorophores (e.g., one targeting a specific brain
tumor and one identifying blood vessels) may address the limitations of single-fluorophore
protocols. Continued advances may lead to streamlined endoscopes that can concurrently
detect multiple fluorophores in real-time. Beyond fluorescence, refined contrast agents for
contrast-enhanced ultrasonography microprobes can improve endoscopic identification of
critical vascular structures to reduce complications [79]. Prospective, large-sample trials
would increase the level of evidence assessing the utility of novel contrast agents in ESBS.

Improved spatial resolution and image acquisition time for intraoperative CT or MRI
can provide more imaging data and address brain shift for neuronavigation systems [80].
The site-specific registration at the site of resection and streamlined intraoperative re-
registration can enhance neuronavigation accuracy [81]. Augmented reality neuronav-
igation represents a novel avenue for providing accurate knowledge of patient-specific
anatomy. Advancements in the incorporation of intraoperative imaging can facilitate
real-time updated augmented reality, which would be especially useful for eloquent brain
regions. Improved image processing and data storage can attenuate the computational
demands of these computer-generated methods [82]. Beyond the operating room, these
systems can provide trainees with simulation opportunities and additional anatomical
guidance during surgery. Increasing trainee access to cadaveric dissections through dedi-
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cated dissection laboratories and published atlases can expand the collective knowledge of
skull base anatomy. The refinement of new technologies, such as the exoscope, and their
incorporation with the endoscope can further improve field visualization to promote safe
ESBS for patients [83].

5. Conclusions

Skull base surgery has experienced significant progress in surgical technology (e.g.,
reconstruction materials, light sources, microscopy, endoscopy) over the past two centuries.
These advances have been facilitated by improved visualization techniques, enabling
modern ESBS. Current state-of-the-art endoscopy uses ultra-HD/4K image resolution and
3D vision. Fluorescence agents such as ICG, 5-ALA, and OTL-38 have shown initial success
in identifying residual tumor tissue to improve extent of resection. Contrast-enhanced
ultrasonography has the potential to help identify important vascular structures; however,
there is a need to evaluate this technology in ESBS in large-sample studies with standardized
protocols. Neuronavigation systems today offer electromagnetic tracking, which includes
specialized instruments that are more maneuverable and are not limited by line-of-sight,
unlike optical image guidance. Advancements in virtual reality and augmented reality
provide surgeons with more patient-specific anatomical information when planning and
performing surgery. These systems have begun to shape surgical education by providing
trainees with part-task training, and their exact role in education remains to be defined.
The exoscope serves as an additional resource for enhancing intraoperative visualization
with a wider focal distance, 3D vision, and improved instrument positioning.

These visualization techniques have increased the use and safety of modern ESBS.
With numerous existing and developing tools, sometimes with overlapping capabilities, the
skull base surgeon must have a deep understanding of the strengths and limitations of each
visualization technique, and their judicious use can continue to improve patient outcomes.
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