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Abstract

Viruses manipulate the cells they infect in order to replicate and spread. Due to strict size

restrictions, viral genomes have reduced genetic space; how the action of the limited num-

ber of viral proteins results in the cell reprogramming observed during the infection is a long-

standing question. Here, we explore the hypothesis that combinatorial interactions may

expand the functional landscape of the viral proteome. We show that the proteins encoded

by a plant-infecting DNA virus, the geminivirus tomato yellow leaf curl virus (TYLCV), physi-

cally associate with one another in an intricate network, as detected by a number of protein-

protein interaction techniques. Importantly, our results indicate that intra-viral protein-protein

interactions can modify the subcellular localization of the proteins involved. Using one partic-

ular pairwise interaction, that between the virus-encoded C2 and CP proteins, as proof-of-

concept, we demonstrate that the combination of viral proteins leads to novel transcriptional

effects on the host cell. Taken together, our results underscore the importance of studying

viral protein function in the context of the infection. We propose a model in which viral pro-

teins might have evolved to extensively interact with other elements within the viral prote-

ome, enlarging the potential functional landscape available to the pathogen.

Author summary

Viruses are obligate intracellular parasites that depend on the molecular machinery of

their host cell to complete their life cycle. For this purpose, viruses co-opt host processes,

modulating or redirecting them. Most viruses have small genomes, and hence limited
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coding capacity. During the viral invasion, virus-encoded proteins will be produced in

large amounts and coexist in the infected cell, which enables physical or functional inter-

actions among viral proteins, potentially expanding the virus-host functional interface by

increasing the number of potential targets in the host cell and/or synergistically modulat-

ing the cellular environment. Examples of interactions between viral proteins have been

recently documented for both animal and plant viruses; however, the hypothesis that viral

proteins might have a combinatorial effect, which would lead to the acquisition of novel

functions, lacks systematic experimental validation. Here, we use the geminivirus tomato

yellow leaf curl virus (TYLCV), a plant-infecting virus with reduced proteome and caus-

ing devastating diseases in crops, to test the idea that combinatorial interactions between

viral proteins exist and might underlie an expansion of the functional landscape of the

viral proteome. Our results indicate that viral proteins prevalently interact with one

another in the context of the infection, which can result in the acquisition of novel

functions.

Introduction

Viruses are intracellular parasites that need to subvert the host cell in order to enable their

own replication and ensure viral spread. For this purpose, viruses co-opt the cell molecular

machinery, modulating or redirecting its functions; as a result, infected cells undergo dramatic

molecular changes, including heavy transcriptional reprogramming, concomitant to the prolif-

eration of the virus.

Most viruses have small genomes, likely due to bottlenecks in encapsidation and/or within-

host transport, which imposes limitations in coding capacity: viral proteins frequently exhibit

small size, and their numbers per viral genome range from a few (<10) to a few dozen (Fig 1).

Viral proteins have evolved to be multifunctional, and have been suggested to target hubs in

the proteomes of their host cells [1–4], hence maximizing the impact of the viral-host protein-

protein interactions; nevertheless, how a limited repertoire of small viral proteins can lead to

the drastic cellular changes observed during the viral infection remains puzzling. Upon viral

invasion, virus-encoded proteins are produced in large amounts in the infected cells, where

they co-exist. Therefore, physical or functional interactions among viral proteins might have

evolved as a potential mechanism to expand the virus-host functional interface, increasing the

number of potential targets in the host cell and/or synergistically modulating the cellular envi-

ronment. Interestingly, examples of interactions between viral proteins have been recently

documented for both animal and plant viruses (e.g. [5–26]; see VirHostNet 2.0, http://

virhostnet.prabi.fr/ [27]); some of these interactions are proposed to contribute to viral

genome replication and virion assembly. However, the hypothesis that the combination of

individual virus-encoded proteins might result in the acquisition of novel functions still lacks

experimental support, and therefore the general biological relevance of these protein-protein

interactions remains unclear.

Here, we use the plant DNA virus tomato yellow leaf curl virus (TYLCV; Fam. Geminiviri-
dae) to test the idea that combinatorial interactions among viral proteins exist and may under-

lie an expansion of the functional landscape of the viral proteome. TYLCV is traditionally

believed to encode six proteins (C1/Rep, C2, C3, C4, V2, and CP), although additional open

reading frames (ORFs) have been recently described in its genome [28]. Local infection by

TYLCV in the experimental host Nicotiana benthamiana results in heavy transcriptional

reprogramming, with>11,000 differentially expressed genes (DEGs) detected at 6 days post-
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inoculation (dpi) [29]. Although a limited number of viral protein-protein interactions have

been described for this virus to date [30–35], the intra-viral interactome has not been systemat-

ically explored, and the functional impact of these interactions remains elusive. Our results

show that, strikingly, viral proteins form prevalent pairwise interactions in the context of the

viral infection, displaying a high degree of intra-viral connectivity, as demonstrated by an

array of protein-protein interaction techniques. As proof-of-concept for the idea that intra-

viral protein-protein interactions can expand the functional repertoire of individual viral pro-

teins, we focus on the pair formed by C2 and CP, since the presence of the latter is required

and sufficient to shift the subcellular localization of the former from the nucleoplasm to the

nucleolus, where the interaction occurs. Our data indicate that the combination of C2 and CP

Fig 1. Average number of virus-encoded proteins and their molecular weight. (A) Average numbers of virus-

encoded proteins (per virus) in animal and plant viruses. (B) Molecular weight of viral proteins from animal and plant

viruses. Sequences in (A and B) were downloaded from NCBI Virus, from complete RefSeq genome sequences of

viruses infecting Viridiplantae (green plants, taxid: 33090) or Metazoa (metazoans, taxid: 33208).

https://doi.org/10.1371/journal.ppat.1010909.g001
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results in drastic transcriptional reprogramming in the host plant, which goes beyond the sum

of the effects of each of the individual proteins, hence supporting the idea that combinatorial

interactions between viral proteins, physical and/or functional, can expand the functional rep-

ertoire of the viral proteome. The results obtained here might have important implications for

the study not only of plant-geminivirus interactions, but of viral infections in general.

Results and discussion

Viral proteins form complexes in the host cell

In order to test whether virus (TYLCV)-encoded proteins associate with one another, we

employed a number of protein-protein interaction methods, namely yeast two-hybrid (Y2H),

and in planta co-immunoprecipitation (co-IP), bimolecular fluorescence complementation

(BiFC), and split-luciferase assays. Several viral protein-protein interactions were identified in

yeast (Figs 2A and S1) (Rep-Rep, Rep-C3, C2-C3, C2-C4, C3-C3, C3-C4, C3-CP, C3-V2,

C4-C3, V2-V2); of note, the C2-C2 self-interaction could not be evaluated, since full-length C2

fused to the GAL4 binding domain displays auto-activation (Fig 2A), as previously described

for other geminiviral C2 proteins [36–37]. Next, pairwise interactions between viral proteins

were tested by co-IP assays following transient expression of C-terminally tagged versions of

the viral proteins in N. benthamiana. The number of associations between viral proteins found

in co-IP, which detects both direct and indirect interactions, was higher (Figs 2B, S2 and S3).

The viral infection reshapes the cell environment where the viral proteins coexist: the pres-

ence/absence of host proteins, the activation of post-translational modification pathways, or

the presence of additional viral proteins might influence the outcome of the tested interactions.

Therefore, co-IP assays were performed both in the presence and absence of the virus. Most

reproducible interactions detected in the absence of the virus were maintained in the context

of the infection (Rep-Rep, C2-C2, C4-C2, C4-C3, C4-C4, C4-V2, CP-C2, V2-C2, V2-V2), and

additional interactions were detected in an infection-dependent manner (Rep-C2, Rep-C3,

Rep-C4, Rep-CP, Rep-V2, CP-Rep, C4-CP, CP-CP, CP-V2, V2-C3). Viral protein-protein

interactions were further tested in planta by BiFC and split-luciferase assays (Fig 2C and 2D).

In both assays, the viral proteins were fused to one half of the protein to be reconstituted upon

a positive interaction (nYFP and cYFP for YFP, or nLuc and cLuc for luciferase, respectively)

and transiently expressed in N. benthamiana leaves; for the BiFC experiments, n-YFP and c-

YFP were fused to the C-terminus of the viral proteins, while for split-luciferase experiments

nLuc was fused to the C-terminus and cLuc to the N-terminus of the viral protein. Interest-

ingly, BiFC indicates that most of the detected interactions occur in the nucleus, with different

distribution patterns, including localization in the nucleoplasm (e.g. Rep-C2), nucleolus (e.g.

C3-C3), or nuclear speckles (e.g. Rep-C3) (Figs 2C and S4; additional patterns of interactions

observed by BiFC can be found in S5 Fig). This nuclear prevalence of viral protein-protein

interactions correlates with the nucleus hosting most of the viral cycle, including replication,

transcription of viral genes, and encapsidation [38]. One notable exception is the interaction

between C4 and V2, which takes place in intracellular punctate structures outside of the

nucleus; this localization may be linked to the proposed role of these proteins in viral move-

ment [39]. All viral proteins were shown to interact with one another (including self-interac-

tions) at least in one direction by BiFC (Fig 2C). Similarly, all viral proteins displayed a

positive interaction with each of the viral proteins by split-luciferase assays, with three excep-

tions (Rep-CP, C4-CP, and V2-CP) (Fig 2D). The identification of positive interactions in

these reconstitution assays that were not detected as such by co-IP could be explained by the

potential weak or transient nature of these associations, which could be overcome by artificial

stabilization provided by the complementation of the split reporter.
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Fig 2. The proteins encoded by the plant DNA virus tomato yellow leaf curl virus (TYLCV) associate with one another in the plant cell. (A) Viral protein-

protein interactions detected in yeast two-hybrid. The minimal synthetic defined (SD) medium without leucine (Leu), tryptophan (Trp), histidine (His), and

adenine (Ade) was used to select positive interactions; SD without Leu and Trp was used to select co-transformants (S1 Fig). The interaction between the SV40

large T antigen (T) and the murine tumor suppressor p53 is a positive control. AD: activation domain; BD: binding domain. This experiment was repeated

twice with similar results. (B) Summary of viral protein-protein interactions detected by co-immunoprecipitation (co-IP) in the absence (-) or presence (+) of

TYLCV. These experiments were repeated at least three times; the colour scale represents the percentage of positive interaction results among all replicates,
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A summary of all detected pairwise interactions between viral proteins is shown in Fig 2E

and 2F; all viral proteins were found to interact with one another, including self-interactions,

by at least two independent methods. Importantly, some of these interactions could also be

detected in unbiased affinity purification followed by mass spectrometry (AP-MS) experi-

ments with C-terminal GFP-tagged versions of the viral proteins expressed in infected N.

benthamiana cells [40] when these datasets were re-analyzed to search for the viral proteins,

indicating that viral proteins physically associate with one another in the context of the infec-

tion in their native state (S1 Table).

As shown in Fig 2E and 2F, only certain pairwise viral protein-protein interactions could be

detected by all used approaches (Rep-Rep, Rep-C3, C2-C4, C3-C4, C3-V2, and V2-V2). The

differences in the detected outcomes when using different techniques might be due to specific

requirements of each of the assays (e.g. strength or stability of the interaction necessary for this

to be detected), or to the effect of the tags used (nature and position) on the interaction.

The viral coat protein is required and sufficient to modify the subcellular

localization of the virus-encoded C2 protein

Although the proteins encoded by TYLCV display specific localizations in the plant cell, all of

them, with the exception of C4 (at the plasma membrane and weakly in chloroplasts), can be

clear and consistently found in the nucleus (nucleoplasm and/or subnuclear compartments) in

basal conditions when expressed alone fused to GFP (Rep: nucleoplasm; C2: nucleoplasm; C3:

nucleoplasm, nucleolus, and nuclear speckles; CP: nucleolus and weakly in the nucleoplasm;

V2: Cajal body and weakly in the nucleoplasm–in addition to endoplasmic reticulum) (Fig

3A). Interestingly, in the presence of the virus, several viral proteins fused to GFP, namely C2,

C3, C4, and CP, experienced noticeable changes in their subcellular distribution (Fig 3A):

C2-GFP, which is excluded from the nucleolus in the absence of the virus, accumulates in this

compartment in infected cells; C3-GFP, on the contrary, is excluded from the nucleolus in the

presence of the virus; C4-GFP is depleted from the plasma membrane and accumulates in

chloroplasts; and CP-GFP re-localizes from the nucleolus to the nucleoplasm, where it accu-

mulates in unidentified structures. These changes had been previously reported for C4-GFP

and CP-GFP; while in the case of C4-GFP, Rep alone can trigger its re-localization from the

plasma membrane to chloroplasts [41], no individual protein was sufficient to modify the sub-

nuclear pattern of CP [31].

Using transient co-expression of C2-GFP and each viral protein fused to RFP at their C-ter-

minus in N. benthamiana leaves, we could determine that CP is sufficient to enable a strong

accumulation of C2 in the nucleolus, an effect that can also be triggered by an untagged ver-

sion of CP (Figs 3B and 3C; S6). Of note, C2 and CP have been shown to interact in the nucleo-

lus (Fig 2C). Curiously, only C2-GFP, but not GFP-C2, re-localizes to the nucleolus when in

with 1 = 100%. The original co-IP blots are shown in S2 Fig (in the absence of TYLCV) and S3 Fig (in the presence of TYLCV). An interaction between two

viral proteins was considered as positive if at least two replicates showed positive interactions either in the absence or presence of TYLCV. (C) Viral protein-

protein interactions detected by bimolecular fluorescence complementation (BiFC) in N. benthamiana leaves. nYFP: N-terminal half of the YFP; cYFP: C-

terminal half of the YFP. Images were taken at 2 days post-infiltration (dpi). Scale bar = 10 μm. This experiment was repeated at least four times; combination

with Hoechst staining and negative controls can be found in S4 Fig. Additional images are shown in S5 Fig. (D) Viral protein-protein interactions detected by

split-luciferase assay in N. benthamiana leaves. nLuc: N-terminal part of the luciferase protein; cLuc: C-terminal part of the luciferase protein. Images were

taken at 2 dpi. The colour scale represents the intensity of the interaction in counts per second (CPS). This experiment was repeated three times with similar

results. (E) Summary of the intra-viral protein-protein interactions identified in (A-D). Different colours represent different methods, as indicated; circle size

indicates the number of the methods in which a positive interaction was detected. (F) Network of intra-viral protein-protein interactions. The colored lines

indicate the positive interactions detected by Y2H, Co-IP, BiFC, split-luciferase assay, or AP-MS. See also S1–S5 Figs; S1 Table.

https://doi.org/10.1371/journal.ppat.1010909.g002
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Fig 3. CP is required and sufficient to change the subnuclear localization of C2. (A) Subcellular localization of the

TYLCV-encoded proteins fused to GFP at their C-terminus expressed alone (+EV; co-transformed with an empty

vector control) or in the context of the viral infection (+TYLCV; co-transformed with a TYLCV infectious clone) in N.

benthamiana leaves at 2 days post infiltration (dpi). Scale bar = 10 μm. EV: empty vector. (B) Subcellular localization

of C2-GFP co-expressed with each of the viral proteins fused to RFP in N. benthamiana leaves at 2 dpi. Scale

bar = 10 μm. AF: Autofluorescence. (C) Subcellular localization of C2-GFP or GFP-C2 when expressed alone (+EV) or

co-expressed with CP (+CP) in N. benthamiana leaves at 2 dpi. The accumulation of the CP transcript is shown in S6A

Fig. Scale bar = 10 μm. EV: empty vector. (D) Subcellular localization of C2-GFP when expressed alone (+EV) or in the

context of the infection by the WT TYLCV virus (+TYLCV) or mutated versions unable to produce CP

(+TYLCV-CPmut1; +TYLCV-CPmut2) in N. benthamiana leaves at 2 dpi. Scale bar = 10 μm. EV: empty vector. Viral

accumulation is shown in S6B Fig. For details on TYLCV-CPmut1 and TYLCV-CPmut2, see Materials and Methods.

In (B-D), the dashed circles mark the nucleolus. See also S6 Fig.

https://doi.org/10.1371/journal.ppat.1010909.g003
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the presence of CP, likely due to a positional effect of the GFP tag (Fig 3C). Although full func-

tionality of C2-GFP or GFP-C2 during the viral infection has not been demonstrated, C-termi-

nal GFP fusions have been used in functional studies with other geminiviral C2 proteins (e.g.

[42–45]). Local infection assays with two TYLCV mutant viruses unable to express CP,

TYLCV-CPmut1 and TYLCV-CPmut2, in which early stop codons are introduced and alter-

native transcriptional initiation sites have been removed (for details, see Materials and Meth-

ods), demonstrate that the presence of CP is not only sufficient, but also required for the re-

localization of C2-GFP into the nucleolus in infected cells (Fig 3D). These mutants accumulate

to wild type-like levels in the transiently transformed leaves (S6B Fig).

Since, in the absence of the virus, C2-GFP appears evenly distributed in the nucleoplasm

and is excluded from the nucleolus, but it gains strong nucleolar accumulation in the presence

of the virus, we reasoned that C2 might perform additional functions in the context of the

infection, and decided to use the C2-CP interaction as a proof-of-concept for the idea that

viral proteins might have combinatorial functions.

The C2/CP module specifically reshapes the host transcriptome

With the purpose of assessing if the functional landscape of C2 might be expanded when in

the presence of CP, and considering that the C2 protein from geminiviruses has been previ-

ously described to impact host gene expression [46–51], we decided to investigate the tran-

scriptional changes triggered by C2 in the presence or absence of CP as a readout for the

activity of the former. To this aim, we transiently expressed C2, CP, or C2+CP in N. benthami-
ana leaves and determined the resulting changes in the plant transcriptome by RNA sequenc-

ing (RNA-seq). As shown in Fig 4A, C2 alone caused the differential expression of 211 genes

(139 up-regulated, 71 down-regulated), while expression of CP did not significantly affect the

plant transcriptional landscape; simultaneous expression of C2 and CP resulted in a moderate

increase in the number of differentially expressed genes (DEGs) to 263 (72 up-regulated, 191

down-regulated) (Figs 4A, S7A and S7B; S2 Table; validation of the RNA-seq results by RT-

qPCR is presented in S7C Fig.). Strikingly, however, the identity and behavior of DEGs was

dramatically changed by the presence of CP (Fig 4B and 4C), indicating that C2 and CP have a

synergistic effect on the host transcriptome. Functional enrichment analysis unveiled that

addition of CP indeed shifted the functional gene ontology (GO) categories transcriptionally

reprogrammed by C2, and that certain categories appear as statistically over-represented in the

subset of down-regulated genes only when both viral proteins are simultaneously expressed

(Fig 4D and 4E; S3 Table).

To investigate the relevance of the re-localization of C2 to the nucleolus (Fig 3B and 3C) for

this effect, we selected DEGs specifically affected by the co-expression of C2 and CP, and tested

the ability of C2-GFP (which re-localizes to the nucleolus in the presence of CP) or GFP-C2

(which does not re-localize to the nucleolus in the presence of CP) to affect their transcript

accumulation when transiently co-expressed with CP in N. benthamiana leaves, as measured

by RT-qPCR. As shown in Fig 5, only C2+CP and C2-GFP+CP, but not GFP-C2+CP, affect

the expression of the selected genes compared with C2, C2-GFP, or GFP-C2, respectively. This

result suggests that the modification in subnuclear localization of C2 mediated by CP is likely

required for the impact of the combination of these proteins on host gene expression.

Next, we investigated the contribution of C2 and CP to the virus-induced transcriptional

reprogramming in the context of the viral infection. We reasoned that, if C2 and CP together

affect the transcriptional landscape of the host in a different manner than C2 or CP alone, then

the transcriptional changes triggered by mutated versions of the virus unable to produce either

C2 or CP should present overlapping differences compared to the changes triggered by the
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wild-type (WT) virus. Following this rationale, we compared the transcriptome of N.

benthamiana leaves infected with the WT virus or mutated versions unable to produce C2

(TYLCV-C2mut) or CP (TYLCV-CPmut1), with respect to the empty vector (EV) control (Fig

6A) or to the WT virus (Fig 6B). As expected, both point mutants were unable to establish a

full systemic infection, indicating that the corresponding viral proteins are most likely not pro-

duced from the mutated genes (S8A and S8B Fig). Of note, although the CP null mutant

(TYLCV-CPmut1) accumulated to lower levels in these assays, no significant changes in the

accumulation of viral transcripts were detected among these viral variants in local infection

Fig 4. C2 and CP functionally interact in planta and modify the transcriptome of N. benthamiana in an interdependent manner. (A) Number of

differentially expressed genes (DEGs) upon expression of C2, CP, or C2+CP in N. benthamiana leaves. UR: up-regulated; DR: down-regulated; ND: not

detected; EV: empty vector. Full lists can be found in S2 Table. (B) Venn diagram of DEGs upon expression of C2 or C2+CP in N. benthamiana. UR: up-

regulated; DR: down-regulated; EV: empty vector. (C) Heatmap with hierarchical clustering from samples in (A). The colour scale indicates the Z-score. EV:

empty vector. (D) Functional enrichment analysis of up-regulated (UR) or down-regulated (DR) genes in the indicated samples. Gene Ontology (GO)

categories from the Biological Process ontology enriched with a p-value<0.01 (up to top 10) are shown; functional enrichment was performed using the

orthologues in Arabidopsis thaliana. “C2+CP vs. EV (only)” denotes the subset of genes that are down-regulated in this sample only, and not in the samples

expressing the viral proteins separately. The colour scale indicates the -log10 (p-value), showing the significance of GO term enrichment. EV: empty vector. For

a full list, see S3 Table. (E) Venn diagram of the GO terms (Biological Process ontology) over-represented in the subsets of down-regulated genes (p-

value<0.01) in the different samples. DR: down-regulated; EV: empty vector. For a full list, see S3 Table. See also S7 Fig; S2 and S3 Tables.

https://doi.org/10.1371/journal.ppat.1010909.g004
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assays (S6B and S8C–S8F Fig). Importantly, and despite the fact that expression of CP alone

did not result in detectable transcriptional changes (Fig 4A), mutation of CP in the viral

genome led to the differential expression of 3,256 genes when compared to the WT infection,

supporting the notion that CP modulates host gene expression in combination, physical or

functional, with other viral proteins; remarkably, 2,591 of these DEGs (79.5%) overlapped with

those caused by the loss of C2 (Figs 6C, 6D and S8G; S2 Table; validation of the RNA-seq

results is presented in S8H Fig), indicating that C2 and CP cooperatively mediate changes in

host gene expression during the infection. Functional categories over-represented among the

up-regulated genes in the presence of the WT virus appear as down-regulated in the subset of

DEGs commonly triggered by the C2- and CP-deficient viruses compared to the WT version

(Figs 6E and S9; S4 and S5 Tables), suggesting that the C2/CP module is responsible for the

transcriptional changes of genes associated to these GO terms. A complete overview of the

functional enrichment in the different subsets of DEGs can be found in S9 Fig and S5 Table.

Taken together, our results demonstrate that TYLCV proteins form an intricate network of

interactions that potentially vastly increase the complexity of the virus-host interface, and that

viral proteins can have additional effects on the host cell when in combination. Given that

intra-viral protein-protein interactions have been reported for viruses belonging to indepen-

dently evolved families and infecting hosts belonging to different kingdoms of life, we propose

that this might be an evolutionary strategy of viruses to expand their functional repertoire

Fig 5. Expression of selected DEGs upon transient expression of C2, C2-GFP, or GFP-C2 in the presence and absence of CP in N. benthamiana leaves.

Gene expression was measured by RT-qPCR. The samples expressing CP or empty vector (EV) are used as control. Expression values are the mean of at least

three biological replicates. Error bars represent SD. Asterisks indicate a statistically significant difference (�: p<0.05, ��: p<0.01) according to a two-tailed

comparison t-test. NbACT2 was used as the normalizer.

https://doi.org/10.1371/journal.ppat.1010909.g005

PLOS PATHOGENS Interactions between viral proteins expand the potential functional landscape of the viral proteome

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010909 October 18, 2022 10 / 21

https://doi.org/10.1371/journal.ppat.1010909.g005
https://doi.org/10.1371/journal.ppat.1010909


while maintaining small genomes, which would call for a reconsideration of our approaches to

the study of viral protein function and virus-host interactions.

Materials and methods

Plant material

Nicotiana benthamiana plants were grown in a controlled growth chamber in long-day condi-

tions (16 h light/8 h dark) at 25˚C.

Fig 6. C2 and CP functionally interact in planta in the context of the viral infection. (A, B) Number of differentially expressed genes (DEGs) upon infection

by TYLCV WT or C2-null or CP-null mutant variants (TYLCV-C2mut and TYLCV-CPmut1, respectively) in N. benthamiana leaves compared to the empty

vector control (A), or to TYLCV WT (B). UR: up-regulated; DR: down-regulated; EV: empty vector. Full lists can be found in S2 Table. (C) Venn diagrams of

DEGs upon infection by TYLCV C2-null and TYLCV CP-null mutants (TYLCV-C2mut and TYLCV-CPmut1, respectively) compared to TYLCV WT. UR:

up-regulated; DR: down-regulated. (D) Heatmap with hierarchical clustering from (A). The colour scale indicates the Z-score. (E) Functional enrichment

analysis of the subsets of up-regulated (UR) or down-regulated (DR) genes in the indicated samples. Gene Ontology (GO) categories from the Biological

Process ontology enriched with a p-value<0.01 (up to top 10) are shown; functional enrichment was performed using the orthologues in A. thaliana. The

colour scale indicates the -log10 (p-value), showing the significance of GO term enrichment. For a full list, see S4 Table. See also S8 and S9 Figs; S2 and S4

Tables.

https://doi.org/10.1371/journal.ppat.1010909.g006
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Bacterial strains and growth conditions

Escherichia coli strain DH5α was used for general cloning and subcloning procedures; strain

DB3.1 was used to amplify Gateway-compatible empty vectors.

For in planta expression, Agrobacterium tumefaciens strain GV3101 harbouring the corre-

sponding binary vectors were liquid-cultured in LB medium (1% tryptone, 0.5% yeast extract,

and 1% NaCl) with the appropriate antibiotics at 28˚C overnight.

Plasmids and cloning

Open reading frames (ORFs, corresponding to Rep, C2, C3, C4, V2, and CP) from TYLCV

(GenBank accession number AJ489258) were cloned in pENTR/D-TOPO (Thermo Scientific)

with or without stop codon, to enable N- or C-terminal protein fusions, respectively [40]. The

binary constructs to express viral proteins without tag, tagged with C-ter GFP, N-ter GFP, C-

ter FLAG, or C-ter RFP, were generated by Gateway-cloning (LR reaction, Thermo Scientific)

the TYLCV ORFs from pENTR/D-TOPO into pGWB2 [52], pGWB5 [52], pGWB6 [52],

pGWB511 [53], and pGWB554 [53], respectively, with the exception of the construct to

express C4-RFP, which was generated by Gateway-cloning the C4 ORF into pB7RWG2.0 [54].

For biomolecular fluorescence complementation assays (BiFC), the TYLCV ORFs were Gate-

way-cloned into pGTQL1211YN and pGTQL1221YC [55]. For yeast two-hybrid assays (Y2H),

pGBKT7 and pGADT7 (Clontech) were digested with EcoRI and PstI or EcoRI and BamHI,

respectively, and the PCR-amplified Rep, C2, C3, C4, V2, and CP ORFs were in-fused to the

C-terminus of the GAL4 DNA-binding domain (in pGBKT7) and the C-terminus of GAL4

activation domain (in pGADT7) with ClonExpress II One Step Cloning Kit (Vazyme). The

binary constructs for split-luciferase complementation imaging assay were generated by Gate-

way cloning the TYLCV ORFs into pGWB-nLuc and pGWB-cLuc [56–57].

The TYLCV infectious clone has been previously described [58]. Using the wild-type (WT)

infectious clone as template, the TYLCV C2 null mutant (TYLCV-C2mut), carrying a C-to-G

mutation in the 14th nucleotide of the C2 ORF, was generated, converting the fifth codon

(encoding a serine) to a stop codon, with the QuickChange Lightning Site-Directed Mutagene-

sis Kit (Agilent Technologies, Cat #210518). Similarly, the TYLCV CP null mutant 1

(TYLCV-CPmut1), carrying a C-to-A mutation in the fourth nucleotide of the CP ORF, was

generated, converting the second codon (encoding a serine) to a stop codon. The TYLCV-CP-

mut2 infectious clone, containing two premature stop codons in positions 2 and 15 and in

which the nine potential alternative starting sites (ATG) have been removed, was synthesized.

In both cases, the mutations in the CP ORF do not affect the overlapping V2 ORF.

All primers and plasmids used for cloning are summarized in S6 and S7 Tables,

respectively.

Agrobacterium-mediated transient gene expression in N. benthamiana
Transient expression assays were performed as previously described [40] with minor modifica-

tions. In brief, all binary plasmids were transformed into A. tumefaciens strain GV3101; A.

tumefaciens clones carrying the constructs of interest were liquid-cultured in LB with the

appropriate antibiotics at 28˚C overnight. Bacterial cultures were collected by centrifugation at

4,000 x g for 10 min and resuspended in the infiltration buffer (10 mM MgCl2, 10 mM MES

pH 5.6, 150 μM acetosyringone) to an OD600 = 0.2–0.5. Next, bacterial suspensions were incu-

bated at room temperature in the dark for 2–4 hours before infiltration into the abaxial side of

4-week-old N. benthamiana leaves with a 1 mL needleless syringe. For experiments that

required co-infiltration, the A. tumefaciens suspensions carrying different constructs were

mixed at 1:1 ratio before infiltration.
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Protein extraction and immunoprecipitation assays

Fully expanded young leaves of 4-week-old N. benthamiana plants were co-infiltrated with A.

tumefaciens carrying constructs to express Rep-, C2-, C3-, C4-, CP-, and V2-FLAG, with Rep-,

C2-, C3-, C4-, CP-, or V2-GFP. To analyze these protein-protein interactions in the context of

the viral infection, A. tumefaciens carrying the infectious TYLCV clone were co-infiltrated in

the respective experiments. Two days after infiltration, 0.7–1 g of infiltrated N. benthamiana
leaves were harvested. Protein extraction, co-immunoprecipitation (co-IP), and western blot

were performed as previously described [59]. For western blot, the following primary and sec-

ondary antibodies were used at the indicated dilutions: mouse anti-green fluorescent protein

(GFP) (M0802-3a, Abiocode, Agoura Hills, CA, USA) (1:10,000), rabbit polyclonal anti-FLAG

epitope (FLAG) (F7425, Sigma, St. Louis, MO, USA) (1:10,000), goat polyclonal anti-mouse

coupled to horseradish peroxidase (A2554, Sigma, St. Louis, MO, USA) (1:15,000), and goat

polyclonal anti-rabbit coupled to horseradish peroxidase (A0545, Sigma, St. Louis, MO, USA)

(1:15,000).

Bimolecular Fluorescence Complementation (BiFC)

Fully expanded young leaves of 4-week-old N. benthamiana plants were co-infiltrated with A.

tumefaciens clones carrying the appropriate BiFC plasmids using a 1 mL needleless syringe

and imaged two days post-infiltration with a Leica TCS SMD confocal microscope (Leica

Microsystems) using the preset settings for YFP (Ex: 514 nm, Em: 525–575 nm). For nuclei

staining, leaves were infiltrated with 5 μg/mL Hoechst 33258 (Sigma) solution and incubated

in the dark for 30–60 minutes before observation by using the corresponding preset settings

(Ex: 355 nm, Em: 430–480 nm).

Yeast two-hybrid

pGBKT7- and pGADT7-based constructs were co-transformed into the Y2HGold yeast strain

(Clontech) using Yeastmaker Yeast Transformation System 2 (Clontech) according to the

manufacturer’s instructions. The co-transformants were selected on minimal synthetic defined

(SD) media without leucine and tryptophan; interactions were tested on SD media without

leucine, tryptophan, histidine, and adenine. pGADT7-T (expressing the SV40 large T-antigen)

and pGBKT7-p53 (expressing murine p53) constructs were used as positive control; empty

vectors were used as negative control.

Split-luciferase complementation imaging assay

A. tumefaciens strains carrying the appropriate plasmids were agroinfiltrated into 4-week-old

N. benthamiana plants using a 1 mL needleless syringe. Two days post-infiltration, the same

leaves were infiltrated with 1 mM D-luciferin solution and kept in the dark for 5 min before

imaging. The luminescence images were captured using a CCD camera (NightShade LB 985,

Berthold). For a full protocol, see [57].

Visualization of protein subcellular localization

For subcellular localization, plant tissues expressing GFP- or RFP-fused proteins were imaged

with a Leica TCS SP8 confocal microscope (Leica Microsystems) using the preset settings for

GFP (Ex: 488 nm, Em: 500–550 nm) or RFP (Ex: 561 nm, Em: 580–630 nm).

Confocal imaging for co-localization of C2-GFP and TYLCV proteins fused to RFP was

performed on a Leica TCS SP8 point scanning confocal microscope using the pre-set
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sequential scan settings for GFP (Ex:488 nm, Em:500–550 nm) and RFP (Ex:561 nm, Em:600–

650 nm).

TYLCV infection

For TYLCV local infection assays, fully expanded young leaves of 4-week-old N. benthamiana
plants were infiltrated with A. tumefaciens carrying the TYLCV infectious clone (WT or

mutants). Samples were collected at 2.5 days post-inoculation (dpi) to detect viral

accumulation.

For TYLCV systemic infection assays, A. tumefaciens clones carrying the TYLCV infectious

clones (WT or mutants) were syringe-inoculated in the stem of 2-week-old N. benthamiana
plants. Leaf discs from the three youngest apical leaves were harvested at 21 dpi to detect viral

accumulation.

Determination of viral accumulation by quantitative PCR (qPCR)

To determine viral accumulation, total DNA was extracted from N. benthamiana leaves using

the CTAB method [60]. The DNA from local infection assays was treated with DpnI at 37˚C

for 1 hour prior to further analysis. Quantitative PCR (qPCR) was performed with primers to

amplify Rep [31]. The qPCR reaction was performed with Hieff qPCR SYBR Green Master

Mix (Yeasen), with the following program: 3 min at 95˚C, and 40 cycles consisting of 15 s at

95˚C, 30 s at 60˚C. As internal reference for DNA detection, the 25S ribosomal DNA interspa-
cer (ITS) was used [61]. qPCR was performed in a BioRad CFX96 real-time system as

described previously [31]. The primers used are described in S8 Table.

Reverse transcription quantitative PCR (RT-qPCR)

RNA was extracted using the Plant RNA kit (OMEGA Bio-Tek); cDNA was prepared using

the iScript gDNA Clear cDNA Synthesis Kit (Bio-Rad) according to the manufacturer’s

instructions. The qPCR reaction was performed with Hieff qPCR SYBR Green Master Mix

(Yeasen), with the following program: 3 min at 95˚C, and 40 cycles consisting of 15 s at 95˚C,

30 s at 60˚C. Elongation factor-1 alpha (NbEF1α) [62] or Actin2 (NbACT2) [63] were used as

reference genes, as indicated. The primers used are described in S8 Table.

RNAseq and analysis

Transcriptome sequencing in N. benthamiana was performed as previously described [29].

Four biological replicates were used per sample. The paired-end reads were cleaned by Trimi-

momatic [64] (version 0.36). Clean read pairs were retained for further analysis after trimming

the adapter sequence, removing low quality bases, and filtering short reads. The N. benthami-
ana draft genome sequence (v1.0.1) [65] was downloaded from the Sol Genomics Network

(https://solgenomics.net/ftp/genomes/Nicotiana_benthamiana/assemblies/). Clean reads were

mapped to the genome sequence by HISAT [66] (version 2.1.0) with default parameters. The

number of reads that were mapped to each N. benthamiana gene was calculated with the

htseq-count script in HTSeq [65]. Differentially expressed genes (DEGs) with at least 1.5 fold

change in expression and a FDR < 0.05 between control and experiment samples were identi-

fied by using EdgeR [67].

The heatmap with hierarchical clustering was drawn by R package pheatmap. Venn dia-

grams were drawn by Venny (http://bioinformatics.psb.ugent.be/webtools/Venn/) and modi-

fied in Adobe Illustrator. The Arabidopsis thaliana homologous genes of the DEGs identified
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in N. benthamiana were used for Gene Ontology (GO) term enrichment analysis in AgriGO

v2.0 [68].

Supporting information

S1 Fig. Yeast two-hybrid co-transformation control. The minimal synthetic defined (SD)

medium without leucine (Leu) and tryptophan (Trp) was used to select co-transformants.

(TIF)

S2 Fig. Representative co-immunoprecipitation (co-IP) assays. (A-F) Co-immunoprecipita-

tion (co-IP) assays of Rep-, C2-, C3-, C4-, CP- and V2-FLAG with Rep- (A), C2- (B), C3- (C),

C4- (D), CP- (E) or V2-GFP (F) following transient expression in N. benthamiana leaves. IB:

immunoblotting, IP: immunoprecipitation, CBB: Coomassie brilliant blue. Molecular weight

of Rep-, C2-, C3-, C4-, CP-, and V2-GFP is 65, 42, 43, 38, 57, and 40 kDa, respectively; molecu-

lar weight of Rep-, C2-, C3-, C4-, CP-, and V2-FLAG are 41, 15, 16, 11, 30, and 14 kDa, respec-

tively. Asterisks indicate the expected band for each protein. (G) Summary table containing

the results of all co-IP replicates performed in the absence of the virus. Column headings indi-

cate the viral protein used as bait; row headings indicate prey proteins.

(TIF)

S3 Fig. Representative co-immunoprecipitation (co-IP) assays in the presence of the virus.

(A-F) Representative co-immunoprecipitation (co-IP) assays of Rep-, C2-, C3-, C4-, CP- and

V2-FLAG with Rep- (A), C2- (B), C3- (C), C4- (D), CP- (E) or V2-GFP (F) following transient

expression in N. benthamiana leaves in the presence of the virus. IB: immunoblotting, IP:

immunoprecipitation, CBB: Coomassie brilliant blue. Molecular weight of Rep-, C2-, C3-, C4-

, CP- and V2-GFP is 65, 42, 43, 38, 57, and 40 kDa, respectively; molecular weight of Rep-, C2-

, C3-, C4-, CP- and V2-FLAG are 41, 15, 16, 11, 30, and 14 kDa, respectively. Asterisks indicate

the expected band for each protein. (G) Summary table containing the results of all co-IP repli-

cates performed in the presence of the virus. Column headings indicate the viral protein used

as bait; row headings indicate prey proteins.

(TIF)

S4 Fig. Viral protein-protein interactions detected by bimolecular fluorescence comple-

mentation (BiFC) in N. benthamiana leaves combined with Hoechst staining (A) and nega-

tive controls (B). nYFP: N-terminal half of the YFP; cYFP: C-terminal half of the YFP; BF:

bright field. Images were taken at 2 days post-infiltration (dpi). Scale bar = 10 μm in (A) or

50 μm in (B). This experiment was repeated at least four times with similar results.

(TIF)

S5 Fig. Additional BiFC images. nYFP: N-terminal half of the YFP; cYFP: C-terminal half of

the YFP. Images were taken at 2 days post-infiltration (dpi). Scale bar = 10 μm. This experi-

ment was repeated at least four times with similar results.

(TIF)

S6 Fig. Accumulation of the CP transcript and viral accumulation in the samples from Fig

3C and 3D, respectively. (A) Accumulation of the CP transcript (from Fig 3C), measured by

RT-qPCR. NbEF1α was used as the normalizer. Values represent the mean of three plants.

Error bars represent SD. (B) Accumulation of viral DNA in samples from Fig 3D. ITS was

used as the normalizer. Values represent the mean of three plants. Error bars represent SD.

(TIF)
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S7 Fig. Validation of the expression of plant and viral genes in the samples used for RNA-

seq (Fig 4). (A-B) C2 and CP transcript accumulation, measured by RT-qPCR. Expression val-

ues are relative to NbACT2. Results are the mean of four biological replicates. Error bars repre-

sent SD. (C) Comparison of the accumulation of transcripts of selected DEGs in the RNA-seq

data and as measured by RT-qPCR. Expression values are the mean of log2 FC, relative to EV,

from four biological replicates. NbACT2 was used as the normalizer. FC: fold change; EV:

empty vector. (D) Expression of selected DEGs upon expression of C2, C2-GFP, GFP-C2 in

the presence and absence of CP in N. benthamiana leaves. Samples expressing CP or empty

vector (EV) are used as control. Expression values are the mean of at least three biological rep-

licates. Error bars represent SD. Asterisks indicate a statistically significant difference (�:

p<0.05) according to a two-tailed comparison t-test. NbACT2 was used as the normalizer.

(TIF)

S8 Fig. Validation of the expression of plant and viral genes in the samples used for RNA-

seq (Fig 6). (A) Symptoms in N. benthamiana plants inoculated with TYLCV WT or C2-/CP-

null mutants (TYLCV-C2mut and TYLCV-CPmut1, respectively), or inoculated with empty

vector (EV) as negative control. Pictures were taken at 21 days post-inoculation (dpi). Scale

bar: 10 cm. (B) Viral DNA accumulation in systemic infections in N. benthamiana plants mea-

sured by qPCR. Values are the mean of three independent biological replicates. Error bars rep-

resent SD. Samples were taken at 21 dpi. ITS was used as the normalizer. (C) Viral DNA

accumulation in N. benthamiana leaves infiltrated with TYLCV WT or C2-/CP-null mutants

(TYLCV-C2mut and TYLCV-CPmut1, respectively), or transformed with empty vector (EV)

as negative control. Samples were taken at 2.5 days post-inoculation (dpi). ITS was used as the

normalizer. Values represent the mean of six plants. Error bars represent SD. (D-E) C2 and

CP transcript accumulation. Expression values are relative to NbACT2. Results are the mean of

four biological replicates. Error bars represent SD. (F) Expression of TYLCV genes in the dif-

ferent samples as detected by RNA-seq. RPKM: reads per kilobase of transcript per million

mapped reads. (G) Venn diagram of the subsets of up- and down-regulated genes in the sam-

ples infected with TYLCV WT or C2-/CP-null mutants (TYLCV-C2mut and TYLCV-CP-

mut1) compared to the empty vector control (EV). UR: up-regulated; DR: down-regulated.

(H) Expression of selected DEGs. Expression values are the mean of log2 FC, relative to sam-

ples inoculated with the EV, from four biological replicates. NbACT2 was used as the normal-

izer. FC: fold change; EV: empty vector.

(TIF)

S9 Fig. Functional enrichment analysis of the subsets of up-regulated (UR) or down-regu-

lated (DR) genes in Fig 6A. Gene Ontology (GO) categories from the Biological Process

ontology enriched with a p-value<0.01 (up to top 10) are shown; functional enrichment analy-

sis was performed using the orthologues in A. thaliana. The colour scale indicates the -log10

(p-value), showing the significance of GO term enrichment. For a full list, see S5 Table.

(TIF)

S1 Table. AP-MS/MS data, related to Fig 2.

(XLSX)

S2 Table. DEGs in RNA-seq experiments, related to Fig 4 and 6.

(XLSX)

S3 Table. Functional enrichment analysis, related to Fig 4.

(XLSX)
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S4 Table. Functional enrichment analysis, related to Fig 6.

(XLSX)

S5 Table. Functional enrichment analysis, related to S9 Fig.

(XLSX)

S6 Table. Primers used for cloning in this work.

(XLSX)

S7 Table. Plasmids used in this work.

(XLSX)

S8 Table. Primers used for qPCR and RT-qPCR in this work.

(XLSX)
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