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Simple Summary: In animal breeding, the different climatic conditions and production systems in
beef cattle can result in the genotype by environment interaction. These interactions also need to be
considered in genetic evaluations. In this study, five reaction norm models were tested on eleven
traits related to growth, reproduction, and visual score measured in Nellore cattle breeding programs
to check changes in the estimated genetic values of sires according to the selection environment.
Using the best fitted statistical model, the presence of genotype by environment interaction was
observed for some traits such as age at first calving, scrotal circumference, weaning to yearling weight
gain, and yearling weight. For these traits, it is possible to select the best sires to increase productivity
and reduce environmental sensitivity. Overall, the reaction norms trajectories for these traits seem to
be affected by a non-linear component, and selecting robust animals for these traits is an alternative
to increase production and reduce environmental sensitivity.

Abstract: The assessment of the presence of genotype by environment interaction (GxE) in beef cattle
is very important in tropical countries with diverse climatic conditions and production systems.
The present study aimed to assess the presence of GxE by using different reaction norm models for
eleven traits related to growth, reproduction, and visual score in Nellore cattle. We studied five
reaction norm models (RNM), fitting a linear model considering homoscedastic residual variance
(RNM_homo), and four models considering heteroskedasticity, being linear (RNM_hete), quadratic
(RNM_quad), linear spline (RNM_l-l), and quadratic spline (RNM_q-q). There was the presence
of GxE for age at first calving (AFC), scrotal circumference (SC), weaning to yearling weight gain
(WYG), and yearling weight (YW). The best models were RNM_l-l for YW and RNM_q-q for AFC, SC,
and WYG. The heritability estimates for RNM_l-l ranged from 0.07 to 0.20, 0.42 to 0.61, 0.24 to 0.42,
and 0.47 to 0.63 for AFC, SC, WYG, and YW, respectively. The heteroskedasticity in reaction norm
models improves the assessment of the presence of GxE for YW, WYG, AFC, and SC. Additionally,
the trajectories of reaction norms for these traits seem to be affected by a non-linear component,
and selecting robust animals for these traits is an alternative to increase production and reduce
environmental sensitivity.

Keywords: GxE; genotype by environment; reaction norm model; environmental sensitivity; robustness;
Nellore; cattle; spline
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1. Introduction

The main concern of modern breeding programs in the tropics is the selection and
mating of animals aiming to obtain progeny able to produce more efficiently under different
production systems. Improvements in animal performance are directly related to genetic
aspects and environmental conditions in which the animals are raised. Under tropical
production systems, Nellore cattle are raised mainly on pasture under a wide range of
climatic regions with seasonal variations in forage production and quality with differences
in supplementation strategy [1] and temperature variation [2]. Such heterogeneous en-
vironmental factors have been recognized to directly affect animal performance and can
provide a specific response from animals to changes in production systems [3–5].

The effect of genotype by environment interaction (GxE) has received special attention
from several studies regarding its effect on traits related to growth, reproduction, and
health [6–10]. These authors have pointed out the re-ranking of animals as the main
interaction effect of GxE in tropical production systems for traits with economic importance
in breeding programs. In Nellore cattle, dissecting the GxE interaction is commonly
assessed by reaction norm models [9,11,12]. The reaction norm model allows fitting the
phenotypic information as a function of a continuous environmental gradient by including
covariates, regulated by environmental and genetic factors, which are shared with the target
trait [13]. The reaction norm approach traditionally regresses the phenotypic value on the
environmental gradients, assuming linear trajectories partitioning the estimated breeding
value of animals into an independent component (intercept) and an environmental gradient
dependent component (slope) associated with environmental sensitivity [14–18]. However,
there is evidence that environmental sensitivity exhibits a non-linear trajectory across the
environmental gradient. The GxE interaction evaluation using reaction norm models that
contemplate the linear or non-linear trajectory is of utmost importance in finding the best
model that fits the data based on environmental gradients to provide a more accurate
genetic evaluation prediction [9].

The knowledge of the effects caused by GxE for traits of growth, reproduction, and
visual scores, in addition, to the identification of linearity or not of the reaction norms trajec-
tories, can be relevant to adjust strategies in breeding programs, considering the differences
between environmental conditions of production systems. Therefore, more robust animals,
i.e., slopes closer to zero and intercepts with high estimated breeding value (EBV) can be
selected for herds with variation in the production levels [19]. Hence, the objective was to
assess the presence of GxE by using different reaction norm models, contemplating linear
and non-linear reaction norm trajectories, for growth, reproduction, and visual score traits
evaluated in Nellore cattle taking into account goodness of fitting measures.

2. Material and Methods
2.1. Dataset Description

Approximately one million phenotypic records, collected from 1984 to 2016, from
animals raised in different commercial farms located in four regions of Brazil (Southeast,
Midwest, North, and Northeast) and Paraguay, were used in the present study. This
data comprises a subset of the Alliance Nellore dataset (www.gensys.com.br (accessed
on 24 September 2022)). The traits considered were birth to weaning weight gain (BWG),
conformation (WC), finishing precocity (WP), muscling (WM) at weaning, yearling weight
(YW), weaning to yearling weight gain (WYG), conformation (YC), finishing precocity (YP),
muscling (YM) at yearling, scrotal circumference (SC), and age at first calving (AFC), which
are part of the genetic evaluation of breeding programs.

Visual scores (WC, WP, WM, YC, YP, YM) were obtained from the evaluation of
animals belonging to the same contemporary group (CG), i.e., animals that have had an
equal opportunity to perform, by trained technicians. The technicians assess the scores of
the animals within the CG applying relative scores from 1 to 5 for each trait (conformation,
finishing precocity and muscling), where 1 means that the animal has low expression of the
trait and 5 means the animal has maximum expression of the trait. Initially, the technicians

www.gensys.com.br
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determine the extremes 1 and 5 and the average animal (3) within each CG. Next, each
animal is evaluated individually and scores are assigned.

When measuring the conformation, the technician observes the meat production
capacity in the carcass, imagining the slaughter at the time of evaluation, being observed
mainly through the animal length, depth, and thoracic arch. Precocity is observed as
the degree of finishing of the carcass, in which animals with good finishing precocity are
those with good chest opening, good rib depth, heavy groin, and are at the beginning of
subcutaneous fat deposition, especially at the base of the tail, combined with good body
development. In muscularity, the development of muscular mass is evaluated as a whole.

Summary statistics of the dataset used for each trait after data editing are shown in
Table 1. The data editing (removing the missing data and outliers) was carried out using R
software [20].

Table 1. Summary statistics of the dataset for each evaluated trait, considering the number of animals
(N), number of males and females, minimum (Min), maximum (Max), mean (or median), standard
deviation (sd), and the number of contemporary groups (CG).

Traits 1 N Female Male Min Mean Max sd CG

BWG 553,381 276,994 276,387 70 157.2 278 32.95 11,657
WC 553,381 276,994 276,387 1 3 a 5 - 11,657
WP 553,381 276,994 276,387 1 3 a 5 - 11,657
WM 553,381 276,994 276,387 1 3 a 5 - 11,657
YW 457,118 233,320 223,798 150 293 500 51.34 10,583

WYG 442,086 223,468 218,618 30 104.3 250 37.29 10,306
YC 529,673 270,252 259,421 1 3 a 5 - 7246
YP 529,673 270,252 259,421 1 3 a 5 - 7246
YM 529,673 270,252 259,421 1 3 a 5 - 7246
SC 444,675 - 444,675 15 26.7 45 3.83 10,099

AFC 140,162 140,162 - 544 1012 1220 132 3897
1 BWG: birth to weaning weight gain; WC: conformation at weaning; WM; muscling at weaning; WP: precocity at
weaning; YW: yearling weight; WYG: weaning to yearling weight gain; YC: conformation at yearling; YP: precocity
at yearling; YM: muscling at yearling; SC: scrotal circumference; AFC: age at first calving. a Median.

The CG’s composition for each trait is described in Table 2. Only data from CGs with
at least 20 animals were considered for the analyses. Birth year refers to the agricultural
year (from July to June) in which the animal was born. The birth season was separated
into two seasons, dry (autumn and winter), in which there is low rainfall, and rainy season
(spring and summer), in which there is greater precipitation and, consequently, better
pasture conditions. Besides considering CG as fixed effect, the model for weaning traits
included the covariate age of animal at recording (as linear effect) and age of dam at calving
(as linear and quadratic effects). For SC, the model included the covariate age of animal at
recording as linear effect and for YW, YC, YP, and YM as linear and quadratic effects. For
WYG, the model included the covariate period in days between weaning and yearling as
linear and quadratic effects.

2.2. Environment Descriptor

When studying the GxE through reaction norm models, it is necessary to consider a
continuous environmental descriptor in order to verify the animal response in each gradient.
One way to define the environment descriptor is to use CG solutions previously estimated,
once CG estimates reflect the environmental condition in which the contemporaries were
raised [21]. Therefore, the environmental gradients (EGs) which were used to describe the
level of production were based on CG solutions (obtained from model 1 or 2 described
below) from birth to weaning weight gain for the weaning traits, on CG solutions from
weaning to yearling weight gain for the visual score at yearling traits and WYG, and on CG
solutions from yearling weight for YW, AFC, and SC.
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Table 2. Variables included in the definition of contemporary groups.

Variable
Trait 1

BWG WC WP WM YW WYG YC YP YM SC AFC

Birth year X X X X X X X X X X X
Birth season X X X X X X X X X X X

Sex X X X X X X X X X
Farm at birth X X X X X X X X X

Farm at weaning X X X X X X X X
Weaning management group X X X X X X X X
Yearling management group X X X X X X X

Farm at yearling X X X X X X X
1 BWG: birth to weaning weight gain; WC: conformation at weaning; WP: precocity at weaning; WM: muscling at
weaning; YW: yearling weight; WYG: weaning to yearling weight gain; YC: conformation at yearling; YP: precocity
at yearling; YM: muscling at yearling; SC: scrotal circumference; AFC: age at first calving.

To estimate EGs, animal model 1 was used for weaning traits and animal model 2 for
yearling traits.

yw = Xwbw + Zwaw + Mwmw + Wwcw + ew (1)

yy = Xyby + Zyay + ey (2)

where: yw and yy are the vectors of observations for BWG and WYG (or YW), respectively;
bw and by are the vector of fixed effects (contemporary group and covariates) at weaning
and at yearling, respectively; aw and ay are the vectors of genetic additive effects; mw is a
vector of random maternal genetic effects; cw is a vector of random maternal permanent
environmental effects, ew and ey are the vectors of random residual effects; and Xw, Xy, Zw,
Zy, Mw and Ww are incidence matrices related to bw, by, aw, ay, mw and cw, respectively.

The following assumptions were made for animal model 1:

[a, m] ∼ N (0, A ⊗
[

σ2
a σam

σam σ2
m

]
) ; c ∼ N

(
0, Iσ2

c

)
; e ∼ N

(
0, Iσ2

e

)
(3)

where: A is the numerator relationship matrix between animals; I is the identity matrix; σ2
a

is the additive genetic variance, σ2
m is the maternal genetic variance; σ2

c is the maternal
permanent environmental variance, σ2

e is the residual variance and Aσam is the genetic
covariance between the additive genetic effect and the maternal genetic effect. For animal
model 2, the following assumptions were made: a ∼ N(0, Aσ2

a ); e ∼ N(0, Iσ2
e ). The

parameters of interest were estimated using the restricted maximum likelihood method
implemented in AIREMLF90 program [22].

The CG solutions were standardized for a mean 0 and variance 1. Only records
belonging to CG with standardized EG solutions between −3 and 3 sd were kept, in which
after filtering, the minimum, average, and maximum standardized EG values for BWG
and YW were equal to −3.0, 0.0, and 3.0 sd, and for WYG was equal to −2.77, 0.0, and
3.0 sd, corresponding to the respective effects of the CG solutions equal to 98.00, 152.75, and
207.36 kg for BWG, 168.52, 293.01 and 421.32 kg for YW, and 23.90, 104.27, and 191.11 kg for
WYG. For AFC and SC, the minimum, average, and maximum standardized EG values for
yearling weight were equal to −3.0, 0.0, and 3.0 sd and −2.5, 0.0, and 3.0 sd, respectively,
corresponding to CG solutions equal to 195.71, 274.35, and 363.82 kg for AFC and 191.35,
308.03, and 426.70 kg for SC.

2.3. Reaction Norm Models (RNM)

A total of five reaction norm models were tested for the traits evaluated, as in [9].
The first model (RNM_homo) assumes homogeneity of residual variance for all EGs,

as below:
yij = Xjβ +∅ÊGi + b0 j + b1 jÊGi + mj + eij (4)



Animals 2022, 12, 2613 5 of 24

where: yij is the phenotypic data of animal j in given environment i, β is the vector of fixed
effects and covariates; Xj is the incidence matrix related to β; ∅ is the overall linear fixed
regression coefficient of yij in ÊGi; ÊGi is the standardized EG solution of environment i,
estimated previously; b0 j is the random direct additive genetic effect or the intercept of
animal j for an average EG, b1 j is the coefficient of random regression or slope of the animal
j in the environment represented by ÊGi; mj is the maternal genetic effect (considered only
for the weaning traits), and eij is residual effects. An attempt was made to also consider the
maternal permanent environmental effect in the RNM for weaning traits, but the analyses
did not converge. However, it is important to mention that the additive genetic and residual
variances were little influenced by using a reduced model, without modeling the maternal
permanent environmental effect (Table S1). The following assumptions were assumed for
RNM_homo:[

b0 j, b1 j
]

∼ N(0, A ⊗
[

σ2
b0

σb0b1

σb0b1 σ2
b1

]
) , mj ∼ N

(
0, Aσ2

m

)
and eij ∼ N

(
0, Iσ2

e

)
, (5)

where: A is the relationship matrix based on pedigree information (⊗ is the Kronecker
product); σ2

b0
, σ2

b1
and σb0b1 are the variances of the intercept, the slope and their covariance,

respectively; σ2
m is the variance of the maternal genetic effect for weaning traits; I is an

identity matrix and σ2
e is the residual variance.

The second model (RNM_hete) differed in relation to RNM_homo by assuming that
the residual variance is heterogeneous across EGs, using a linear regression on ÊGi, with
the intercept and slope coefficients being modeled using the log–residual function [23].

The third model (RNM_quad) also assumed heteroscedasticity, and considered a
polynomial quadratic regression to model the fixed curve and the reaction norm of the
random effects (additive genetic and residual) instead of linear regression, according to
the equation:

yij = Xjβ +∅1ÊGi +∅2ÊG 2
i + b0 j + b1 jÊGi + b2 jÊG 2

i + mj + eij, (6)

where: ∅2 is the quadratic fixed regression coefficient of yij on ÊGi; ÊG 2
i is ÊGi squared;

b2 j is the quadratic effect of the additive genetic effect of the reaction norm of animal j on
ÊGi expressed as a deviation from ∅2; the other terms were as described for RNM_homo.

The fourth model (RNM_l-l) also assumed heteroscedasticity, and used a linear–linear
spline function to model the genetic merit of animals across the EG, using the same knot in
the average EG (knot = 0) for all animals, according to the following equation:

yij = Xjβ +∅1ÊGi +∅∗
1 ÊG ∗

i + b0 j + b1j ÊGi + b∗1 jÊG ∗
i + mj + eij, (7)

where: ∅∗
1 is the difference of the regression coefficient between the first and the second

segments of the linear–linear spline function of yij on ÊG ∗
i , where ÊG ∗

i is equal to zero if
ÊGi is less than or equal to zero, if ÊGi is greater than zero, ÊG ∗

i is equal to ÊGi; b∗1 j is the
difference between the first and the second segments of the linear–linear spline function of
the random additive genetic effect of animal j on ÊG ∗

i expressed as a deviation from ∅∗
1 ;

the other terms were described previously.
The fifth model (RNM_q-q) is similar to RNM_l-l, but considering a quadratic–quadratic

spline function, according to the equation:

yij = Xjβ +∅1ÊGi +∅2ÊG 2
i +∅∗

2 ÊG 2∗
i + b0 j + b1j ÊGi + b2 jÊG 2

i + b∗2 jÊG 2∗
i + mj + eij, (8)

where: ∅∗
2 is the difference of the regression coefficient between the first and the second

segments of the quadratic–quadratic spline function of yij on ∅∗
2 ÊG 2∗

i , where ÊG 2∗
i is

equal to zero if ÊGi is less than or equal to zero, if ÊGi is greater than zero, ÊG 2∗
i is equal

to ÊG 2
i ; b∗2 j is the difference between the first and the second segments of the quadratic–
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quadratic spline function of the random additive genetic effect of animal j on ÊG ∗
i expressed

as a deviation from ∅∗
2 ; the other terms were described previously.

The models RNM_quad, RNM_l-l, and RNM_q-q were also tested considering homo-
geneity of residual variance, but the heteroscedastic models outperformed them (results not
shown). Because of this, was decided to keep only one homoscedastic model (RNM_homo).

In addition, as mentioned before, some analyses were performed considering different
maternal random effects to understand the influence of including or omitting these effects
in the animal model (Table S1).

2.4. Model Comparison

The models were compared based on the transformed values of AIC and Akaike
weight (AICw), in which the interpretation of the values becomes straightforward, as it
uses what would be the probability of choice of a model in relation to the other proposed
models [24]. In addition, the plausibility of the biological interpretation of the results
was verified, observing the trajectories of heritability estimates along the environmental
gradient and the correlations between intercept and slopes. The heritability estimates
were determined as the additive variance in each EG divided by the phenotypic variance
(additive plus residual variances) in each EG.

All sires with reaction norms further inspected have at least fifty offspring and among
these at least ten offspring in the low EG (−3 to −1) and ten in the high EG (1 to 3) or, for
AFC, five offspring in the low and five in the high EG.

Ten sires (top10) with the highest EBV in each environmental gradient (low, medium,
and high) were selected to have their reaction norm described along the environmental
gradient for YW, WYG, AFC, and SC. Additionally, forty sires with the highest EBV in
the medium environmental gradient were selected. Of these, the ten most robust sires
(top10 robust), i.e., with a slope closer to zero, were shown (Figures 5D–8D).

To assess the magnitude of GxE in different environments, Spearman correlations
were calculated to compare the sire’s classification in the model with the best fit.

2.5. Environmental Sensitivity

A plasticity scale was assumed based on the absolute individual value of the slope
(b1j ) and standard deviation of the population slope (σb1). The animals were classified as:

robust (
∣∣∣b1j

∣∣∣ < σb1), plastic (σb1 <
∣∣∣b1j

∣∣∣ < 2σb1), and extremely plastic (
∣∣∣b1j

∣∣∣ > 2σb1) [25].

3. Results
3.1. Reaction Norm Models

The slope/intercept ratios for slope and intercept variance estimates were low for
all weaning traits (Table 3) and for yearling visual scores (Table S2). In addition, it is
possible to note that for all weaning traits there is a low correlation between intercept and
slope, especially for heteroscedastic models, with the exception of RNM_l-l and RNM_q-
q, in which a high and negative correlation is observed between the first and second
slope, suggesting a difference in the pattern of sensitivity from the first to the second
segment (Table 3). According to model comparison criteria (AIC and AICw), for weaning
traits (Table 3) and yearling visual scores (Table S2), the linear models (RNM_homo and
RNM_hete) were the models that best fit the data.

For YW, WYG, SC, and AFC the slope/intercept ratio and the correlation between
slope and intercept were higher than for the other traits (Table 4). For these traits, it can
also be noted that there is a high and negative correlation between intercept and slope for
RNM_l-l and RNM_q-q, which suggests a difference in the pattern of sensitivity between
the first and second segments. The models that best fit the data according to AIC and AICw
were RNM_l-l for YW and RNM_q-q for WYG, AFC, and SC (Table 4), which suggests that
there is a non-linear component in the reaction norm for these traits.
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Table 3. Estimates of variance (diagonals), covariance (upper triangular; in italic), and correlation (lower triangular; in bold) among coefficients of reaction norm
models (RNM) for the additive genetic effect of weaning traits in Nellore cattle, with respective residual variance estimates, Akaike information criterion (AIC), and
AIC weight (AICw).

Trait 1 Model 2 Coefficient 3 b0 b1 b2 b3 σ2
m σ2

e
4 Np 5 AIC AICw

BWG

RNM_homo b0 (int) 55.67 −1.51
204.08 5 3,173,163.90 0.00b1 (slp) −0.29 0.47

maternal 113.94

RNM_hete b0 (int) 55.07 −0.18 5.32
6 3,173,157.20 0.00b1 (slp) −0.04 0.35 −0.01

maternal 114.05

RNM_quad b0 (int) 55.88 −0.94 −0.83 5.31

10 3173156.30 0.00
b1 (slp) −0.11 1.38 0.45 −0.02
b2 (qdr) −0.15 0.51 0.57 0.01
maternal 114.06

RNM_l-l b0 (int) 56.98 0.84 −3.75 5.30

10 3,173,160.00 0.00
b1 (slp1) 0.09 1.61 −1.58 −0.04
b2 (slp2) −0.21 −0.53 5.54 0.04
maternal 114.06

RNM_q-q b0 (int) 55.77 −1.95 −1.59 1.88 5.31

15 3,173,130.20 1.00
b1 (slp1) −0.14 3.37 1.48 −2.90 −0.06
b2 (qdr1) −0.19 0.73 1.23 −1.69 −0.02
b3 (qrd2) 0.13 −0.83 −0.80 3.66 0.06
maternal 114.00

WC

RNM_homo b0 (int) 0.1428 0.0044 0.7004 5 33,076.51 0.06
b1 (slp) 0.62 0.0004

maternal 0.2300

RNM_hete b0 (int) 0.1426 0.0013 −0.3559 6 33,070.84 0.94
b1 (slp) 0.30 0.0001 0.0107

maternal 0.2301

RNM_quad b0 (int) 0.1523 0.0031 −0.0078 −0.3649 10 33,257.81 0.00
b1 (slp) 0.09 0.0077 0.0007 0.0055
b2 (qdr) −0.38 0.15 0.0027 −0.0018
maternal 0.2304
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Table 3. Cont.

Trait 1 Model 2 Coefficient 3 b0 b1 b2 b3 σ2
m σ2

e
4 Np 5 AIC AICw

RNM_l-l b0 (int) 0.1510 0.0121 −0.0177 −0.3657 10 33,159.66 0.00
b1 (slp1) 0.33 0.0091 −0.0123 0.0001
b2 (slp2) −0.28 −0.78 0.0273 0.0117
maternal 0.2302

RNM_q-q b0 (int) 0.1470 0.0081 −0.0011 −0.0059 −0.3640 15 33,210.89 0.00
b1 (slp1) 0.13 0.0253 0.0108 −0.0237 0.0029
b2 (qdr1) −0.04 0.86 0.0062 −0.0113 −0.0007
b3 (qrd2) −0.10 −0.93 −0.89 0.0259 0.0022
maternal 0.2303

WP

RNM_homo b0 (int) 0.2349 0.0026 0.7900 5 104,255.53 0.55
b1 (slp) 0.33 0.0003

maternal 0.2056

RNM_hete b0 (int) 0.2349 0.0014 −0.2359 6 104,255.91 0.45
b1 (slp) 0.17 0.0003 0.0049

maternal 0.2056

RNM_quad b0 (int) 0.2426 0.0006 −0.0076 −0.2381 10 104,425.75 0.00
b1 (slp) 0.01 0.0072 0.0009 0.0030
b2 (qdr) −0.29 0.19 0.0029 −0.0066
maternal 0.2065

RNM_l-l b0 (int) 0.2431 0.0113 −0.0199 −0.2358 10 104,334.27 0.00
b1 (slp1) 0.23 0.0097 −0.0148 0.0072
b2 (slp2) −0.22 −0.82 0.0337 −0.0118
maternal 0.2061

RNM_q-q b0 (int) 0.2391 −0.0006 −0.0044 0.0018 −0.2380

15 104,375.02 0.00
b1 (slp1) −0.01 0.0199 0.0092 −0.0192 0.0023
b2 (qdr1) −0.12 0.84 0.0060 −0.0102 −0.0063
b3 (qrd2) 0.02 −0.92 −0.89 0.0222 0.0037
maternal 0.2059

WM
RNM_homo b0 (int) 0.2078 0.0017 0.8269 5 128,693.45 0.73

b1 (slp) 0.12 0.0009
maternal 0.2506
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Table 3. Cont.

Trait 1 Model 2 Coefficient 3 b0 b1 b2 b3 σ2
m σ2

e
4 Np 5 AIC AICw

RNM_hete b0 (int) 0.2078 0.0013 -0.1902 6 128,695.39 0.27
b1 (slp) 0.10 0.0009 0.0011

maternal 0.2506

RNM_quad b0 (int) 0.2160 −0.0002 −0.0073 −0.1937 10 128,882.36 0.00
b1 (slp) −0.01 0.0074 0.0006 0.0023
b2 (qdr) −0.29 0.13 0.0029 −0.0051
maternal 0.2512

RNM_l-l b0 (int) 0.2160 0.0096 −0.0180 −0.1945 10 128,781.97 0.00
b1 (slp1) 0.20 0.0103 −0.0150 0.0015
b2 (slp2) −0.22 −0.83 0.0320 0.0005
maternal 0.2508

RNM_q-q b0 (int) 0.2119 −0.0015 −0.0054 0.0030 −0.1935

15
128,842.18

0.00
b1 (slp1) −0.02 0.0216 0.0099 −0.0208 0.0103
b2 (qdr1) −0.15 0.84 0.0065 −0.0110 0.0035
b3 (qrd2) 0.04 −0.92 −0.89 0.0238 −0.0119
maternal 0.2511

1 BWG: birth to weaning weight gain; WC: conformation at weaning; WP: finishing precocity at weaning; WM: muscling at weaning; 2 RNM_homo: linear homoscedastic; RNM_hete:
linear heteroscedastic; RNM_quad: quadratic heteroscedastic; RNM_l-l: spline linear–linear heteroscedastic; RNM_q-q: spline quadratic–quadratic heteroscedastic; 3 b0–b3 coefficients of
the RNM for the additive genetic random effect [int: intercept; slp: slope; qdr: quadratic; slp1(2): slope segment 1(2); qdr1(2): quadratic segment 1(2)] and maternal is the coefficients of
the RNM for the maternal genetic random effect; 4 residual variance (RNM_homo) or residual coefficients associated with parameters of heteroscedastic RNM that were modeled using a
log–residual function [23]; 5 number of estimated parameters.

Table 4. Estimates of variance (diagonals), covariance (upper triangular; in italic), and correlation (lower triangular; in bold) among coefficients of reaction norm
models (RNM) for the additive genetic effect of yearling and reproductive traits in Nellore cattle, with respective residual variance estimates, Akaike information
criterion (AIC), and AIC weight (AICw).

Traits 1 Model 2 Coefficient 3 b0 b1 b2 b3 σ2
e

4 Np 5 AIC AICw

YW

RNM_homo b0 (int) 350.81 56.63
361.68 4 4,164,832 0.00b1 (slp) 0.69 19.29

RNM_hete b0 (int) 336.55 23.99 5.92
5 4,164,587 0.00b1 (slp) 0.38 12.14 0.14
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Table 4. Cont.

Traits 1 Model 2 Coefficient 3 b0 b1 b2 b3 σ2
e

4 Np 5 AIC AICw

RNM_quad b0 (int) 336.43 22.33 −1.68 5.94
9 4,164,537 0.00b1 (slp) 0.31 15.23 0.03 0.15

b2 (qdr) −0.06 0.01 1.98 −0.03

RNM_l-l b0 (int) 343.00 30.15 −16.51 5.95
9 4,164,520 1.00b1 (slp1) 0.34 23.10 −13.08 0.19

b2 (slp2) −0.17 −0.52 26.99 −0.09

RNM_q-q b0 (int) 335.44 8.72 −10.35 18.07 5.94

14 4,164,531 0.00
b1 (slp1) 0.12 17.05 4.76 −6.06 0.23
b2 (qdr1) −0.25 0.52 4.97 −7.02 0.04
b3 (qrd2) 0.27 −0.41 −0.87 13.10 −0.13

WYG

RNM_homo b0 (int) 113.46 35.97
261.28 4 3,780,797 0.00b1 (slp) 0.89 14.49

RNM_hete b0 (int) 92.02 13.28 5.64
5 3,780,155 0.00b1 (slp) 0.59 5.49 0.15

RNM_quad b0 (int) 98.20 15.19 −5.09 5.65
9 3,779,938 0.00b1 (slp) 0.47 10.41 −1.80 0.17

b2 (qdr) −0.40 −0.44 1.63 −0.03

RNM_l-l b0 (int) 103.55 26.12 −20.92 5.66
9 3,779,976 0.00b1 (slp1) 0.56 20.68 −15.95 0.20

b2 (slp2) −0.46 −0.78 20.06 −0.09

RNM_q-q b0 (int) 97.78 8.25 −7.79 6.07 5.64

14 3,779,882 1.00
b1 (slp1) 0.21 15.09 8.03 −9.56 0.22
b2 (qdr1) −0.27 0.72 8.31 −10.29 0.03
b3 (qrd2) 0.17 −0.68 −0.98 13.24 −0.09

AFC

RNM_homo b0 (int) 3391.50 1873.80
3668.90 4 1,597,302 0.00b1 (slp) 1.00 1045.10

RNM_hete b0 (int) 828.06 309.89 8.65
5 1,593,825 0.00b1 (slp) 0.93 133.86 0.46
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Table 4. Cont.

Traits 1 Model 2 Coefficient 3 b0 b1 b2 b3 σ2
e

4 Np 5 AIC AICw

RNM_quad b0 (int) 651.88 150.00 −107.08 8.84
9 1,592,165 0.00b1 (slp) 0.60 94.51 −31.44 0.56

b2 (qdr) −0.82 −0.64 25.86 −0.15

RNM_l-l b0 (int) 746.31 331.13 −354.60 8.88
9 1,592,410 0.00b1 (slp1) 0.89 187.18 −171.16 0.77

b2 (slp2) −0.89 −0.86 210.83 −0.52

RNM_q-q b0 (int) 631.40 178.12 −61.62 −46.08 8.82

14 1,592,007 1.00
b1 (slp1) 0.62 131.68 26.11 −59.51 0.54
b2 (qdr1) −0.30 0.28 67.02 −64.41 −0.17
b3 (qrd2) −0.20 −0.56 −0.85 86.62 0.02

SC

RNM_homo b0 (int) 3.03 0.23
3.78 4 2,059,717.9 0.00b1 (slp) 0.53 0.06

RNM_hete b0 (int) 3.02 0.17 1.33
5 2,059,691.4 0.00b1 (slp) 0.43 0.05 0.03

RNM_quad b0 (int) 3.06 0.15 −0.04 1.34
9 2,059,612.4 0.00b1 (slp) 0.26 0.11 0.02 0.02

b2 (qdr) −0.28 0.56 0.01 −0.02

RNM_l-l b0 (int) 3.07 0.20 −0.13 1.36
9 2,059,618.7 0.00b1 (slp1) 0.46 0.06 −0.01 0.07

b2 (slp2) −0.18 −0.07 0.18 −0.10

RNM_q-q b0 (int) 3.05 0.14 −0.06 0.04 1.34

14 2,059,596.1 1.00
b1 (slp1) 0.18 0.20 0.06 −0.08 −0.02
b2 (qdr1) −0.20 0.72 0.03 −0.04 −0.04
b3 (qrd2) 0.09 −0.78 −0.90 0.06 0.05

1 YW: yearling weight; WYG: weaning to yearling weight gain; AFC: age at first calving; SC: scrotal circumference; 2 RNM_homo: linear homoscedastic; RNM_hete: linear heteroscedastic;
RNM_quad: quadratic heteroscedastic; RNM_l-l: spline linear–linear heteroscedastic; RNM_q-q: spline quadratic–quadratic heteroscedastic; 3 b0–b3 coefficients of the RNM for the
additive genetic random effect [int: intercept; slp: slope; qdr: quadratic; slp1(2): slope segment 1(2); qdr1(2): quadratic segment 1(2)]; 4 residual variance (RNM_homo) or residual
coefficients associated with parameters of heteroscedastic RNM that were modeled using a log–residual function [23].; 5 number of estimated parameters.
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3.2. Heritability Estimates

Weaning traits (BWG, WC, WP, and WM) showed similar heritability estimates (h2)
for the different models between the intermediate gradients (−2 to 2 sd). However, a
tendency for the overestimation of heritability estimates in the extreme gradients was
observed for quadratic models. Furthermore, homoscedastic and linear heteroscedastic
models presented similar heritability estimates for weaning traits (Figure 1; Table S3).
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Figure 1. Heritability estimates (h2) for birth to weaning weight gain (A), conformation (B), finishing
precocity (C), and muscling (D) at weaning traits in Nellore cattle according to the environmental gra-
dient (standard deviation, sd), for different reaction norm models. RNM_homo: linear homoscedastic;
RNM_hete: linear heteroscedastic; RNM_quad: quadratic heteroscedastic; RNM_l-l: spline linear–
linear heteroscedastic; RNM_q-q: spline quadratic–quadratic heteroscedastic.

For WYG, there are differences between models in the heritability estimates, mainly at
the extreme gradients (Figure 2). For RNM_homo, the heritability estimates increased with
the increase in EGs and tended to be underestimated in poor gradients and overestimated in
better gradients when compared to models that assume heterogeneity of residual variance.
Quadratic models (RNM_quad and RMN_q-q) resulted in an overestimation of heritability
in extreme gradients for WYG. For YC, YP, and YM, similar heritability estimates were
observed for all models (Figure 2), and the same occurred for SC (Figure 3). For YW,
heritability estimates of different models followed a similar pattern as for WYG, where
quadratic models overestimated heritability in extreme environments and RNM_homo
underestimated heritability in poor gradients and overestimated it in better gradients
(Figure 3). The greatest discrepancies in heritability estimates between models were ob-
served for AFC (Figure 3). For this trait, RNM_homo overestimated heritability for better
environments and quadratic models (RNM_quad and RMN_q-q) overestimated heritability
for poor environments.
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Figure 2. Heritability estimates (h2) for weaning to yearling weight gain (A), conformation (B), finish-
ing precocity (C), and muscling (D) at yearling traits in Nellore cattle according to the environmental
gradient, for different reaction norm models. RNM_homo: linear homoscedastic; RNM_hete: linear
heteroscedastic; RNM_quad: quadratic heteroscedastic; RNM_l-l: spline linear–linear heteroscedastic;
RNM_q-q: spline quadratic–quadratic heteroscedastic.
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Figure 3. Heritability estimates (h2) for yearling weight (A), age at first calving (B) and scrotal
circumference (C) in Nellore cattle according to the environmental gradient, for different reaction
norm models. RNM_homo: linear homoscedastic; RNM_hete: linear heteroscedastic; RNM_quad:
quadratic heteroscedastic; RNM_l-l: spline linear–linear heteroscedastic; RNM_q-q: spline quadratic–
quadratic heteroscedastic.
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3.3. Environmental Sensitivity

Sires’ EBVs for medium and high EGs were highly correlated, even for traits with a
more pronounced GxE effect (WYG, YW, AFC, SC), but low correlations were observed
in contrasting EBVs for low with EBVs for medium and high EGs, especially for the traits
WYG and AFC (Figure 4). High correlations among EBVs for different EGs were observed
for the weaning and visual score traits (Figure S2).
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Figure 4. Estimates of Spearman correlation between sire’s EBVs for low, medium, and high gradients
along the environmental gradient for weaning to yearling weight gain (A), yearling weight (B), age
at first calving (C), and scrotal circumference (D).

Because of the evidence of a non-linear component affecting the reaction norms
and the overestimation of heritability for quadratic models (RNM_quad and RNM_q-
q) in the extreme environments, it was decided to use results from RNM_l-l to further
inspect the reaction norms of the top10 sires for WYG, YW, AFC, and SC (Figures 5–8,
respectively). It is possible to observe that there is a re-ranking of the top10 sires along
the environmental gradients when selecting the top10 sires in the low (−3), medium (0),
or high (+3) environmental gradients. The strategy of selecting sires tacking into account
their EBVs for the average environment and also the variation of their EBVs between
EGs (top10 robust sires) resulted in lower reranking, in comparison with selection for
target environments (Figures 5–8). As no evidence of GxE was found for weaning traits
and yearling visual scores, the reaction norms for all sires in all models are presented as
Supplementary Material (Figure S3–S13), as well top 10 corresponding figures for these
traits (Figure S14–S20).
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Figure 8. Estimated breeding values (EBV) reaction norms for scrotal circumference (SC) of Nellore
cattle sires classified as top 10 for low (A), medium (B), and high environmental gradient (C), and
top 10 robust (D) considering the reaction norm models (RNM) fitted with spline linear–linear
heteroscedastic (RNM_l-l).
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The percentage of robust, plastic, and extremely plastic animals for YW, WYG, SC,
and AFC are shown in Figure 9. For all traits, there was a predominance of robust animals
according to the adopted criterium. AFC presented the highest proportion of plastic and
extremely plastic animals among the studied traits.
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Figure 9. Percentage of animals with different genotypes (robust, plastic, and extremely plastic), for
yearling weight (YW), weaning to yearling weight gain (WYG), scrotal circumference (SC) and age
at first calving (AFC), considering the reaction norm models (RNM) fitted with spline linear–linear
heteroscedastic (RNM_l-l).

4. Discussion

The identification of the presence of GxE can be performed by using multi-trait or
reaction norms models [26]. In this study, five reaction norm models were evaluated for
eleven traits (BWG, WC, WP, WM, YW, WYG, YC, YP, YM, SC, and AFC) in Nellore cattle
raised under pasture conditions. The models were compared by the goodness of fitting
considering the AIC and residual variance. Heritability estimates, reaction norms of EBVs,
and environmental sensitivity were also analyzed.

4.1. Reaction Norm Models

For weaning traits and visual scores at yearling, the linear reaction norm models
presented the best fit, suggesting that the animals present a single pattern of sensitivity
along the environmental gradient. Ambrosini et al. [27], also observed that for weaning
weight in Nellore cattle, the homoscedastic model outperformed the heteroscedastic model.
However, as can be seen in the Table S1, the animal model surpassed the reaction norm
models for WC, WP, and WM according to the AIC criteria, suggesting that there is no
presence of GxE for these traits.

For YW, WYG, AFC, and SC, all heteroscedastic models outperformed the homoscedas-
tic models, showing that heterogeneity of variances in different environments can be indica-
tive of the presence of GxE [28]. Residual heterogeneity in the evaluation of GxE should be
considered in the genetic evaluation of these traits in Nellore cattle to improve the partition
of phenotypic variance in genetic and environmental components, enabling an increase
in the response to selection [29]. For YW, AFC, and SC, Chiaia et al. [3] also found the
superiority of the heteroscedastic model when compared with the homoscedastic.

For YW, the RNM_l-l model had the best fit and the RNM_q-q model had the best
fit for WYG, SC, and AFC, suggesting that animal sensitivity will depend on the level
of the environmental gradient, since some animals may be less sensitive to variation in
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more severe environmental gradients and more sensitive to variation in less challenging
environmental gradients and vice versa [9].

According to Streit et al. [30], including residual variance heterogeneity in the model
is important for obtaining unbiased genetic parameters. For YW, WYG, AFC, and SC,
regardless of the model order in this study, heteroskedastic models were superior to ho-
moscedastic models, mainly for AFC, where the genetic variance was highly overestimated
as the environmental gradient improved in the homoscedastic model.

According to Meyer [31], choosing the best model is a compromise between what
we might want to capture and the amount of information available in the data. Although
quadratic models (RNM_quad e RNM_q-q) presented a better fit for the majority of the
traits most affected by GxE (WYG, AFC, and SC), they tended to overestimate heritabil-
ity for extreme environmental gradients. For this reason, RNM_l-l seems to be a good
alternative model for a compromise between the goodness of fit and the plausibility of
heritability estimates.

4.2. Heritability Estimates

Results obtained in this study illustrated that the heritability estimates varied along the
environmental gradient (Figures 1–3), due to variation in additive genetic and residual vari-
ance (for heteroscedastic models) as a function of the environmental gradient. Heritability
estimates varying along EGs were also observed by Ambrosini et al. [32], Chiaia et al. [3],
and Ribeiro et al. [33] for YW in Nellore cattle; by Chiaia et al. [3], Lemos et al. [34],
and Mota et al. [12] for SC in Nellore cattle; by Chiaia et al. [3], Lemos et al. [34], and
Araujo Neto et al. [4] for AFC in Nellore cattle; by Carvalheiro et al. [9] for adjusted weight
gain from weaning to yearling in Nellore cattle; by Cardoso and Tempelman [35] for post-
weaning weight gain in Hereford cattle; by Macneil, Cardoso, and Hay [36] for preweaning
gain in Hereford cattle; and by Ambrosini et al. [27] for weaning weight in Nellore cattle.

In general, in low environmental conditions, there was an overestimation of the genetic
variance for RNM_quad (Figures 1–3). Trying to overcome this, an RNM_q-q was modeled
as spline functions tend to be more robust against problems related to “end-of-range”
estimates [37]. Nevertheless, the quadratic spline also overestimated heritability in extreme
environments, which may be related to the low number of phenotypes observed in these
environments (Figure S1), impairing the estimates at the extremes [37,38].

Heritability estimates for weaning traits and yearling visual scores, considering reac-
tion norm models in the intermediate gradients (−2 to 2), were very similar to heritability
estimates using the animal model (Figure 2 and Table S3), being another evidence of the
lack of GxE for these traits. In addition, visual scores are attributed to CG, which may have
impaired the estimation of GxE for those traits. Considering only the additive genetic effect
in the reaction norm for weaning traits and yearling visual scores, heritability estimates
were close to those found by Vargas et al. [39] using an animal model and a subset of the
data used in the present study.

For weaning traits, it should be noted that the direct heritability estimates do not differ
when using the complete model or the model with the exclusion of maternal permanent
environment effect (Table S1). The maternal genetic variance absorbs maternal permanent
environment variance, making this parameter overestimated, but the direct heritability
estimate is not affected by the exclusion of this parameter.

Heritability estimates for SC had very similar trajectories for all models along the
environmental gradient, indicating a higher opportunity for response to selection in better
environments. This, however, would not necessarily result in a better-correlated response
to sexual precocity, as there is evidence in the literature that SC is not a good indicator of
sexual precocity in better environments [3].

In general, the environmental variation affects heritability estimates as a consequence
of the GxE, and the understanding of the behavior of heritability estimates along the EGs is
of great importance, because there may be a greater genetic gain for each environment.
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4.3. Environmental Sensitivity

No difference was found between the environmental gradients when observing the
genetic correlation between them (all traits >0.8), suggesting that there is no difference in
the phenotypes of this population due to the environmental gradient. However, this can
happen because it is a parameter of the entire population studied, in which many animals
do not have enough information to estimate the EBV in several environmental gradients.
However, when the Spearman correlation between a sire’s EBV is observed for YW, WYG,
AFC, and SC (Figure 4), we can identify GxE in the studied gradients [40,41]. For visual
score traits, this high correlation can be explained by the fact that the animals are evaluated
within each CG, reducing the difference between each group.

Correlation estimates between the intercept and the slope(s) for the traits most affected
by GxE were of medium to low magnitude, suggesting that animals are reclassified in
different environments and that it is possible to carry out a combined selection in order
to increase performance and reduce sensitivity [42,43]. However, even if the correlation
between the intercept and the slope was high, the re-ranking of animals can still occur,
as long as the EG interval is large enough and the slope variance is significantly different
from zero because of the different trajectories of animal performance along the EGs are
not parallel [44]. For YW (Table 3), WYG (Table 2), AFC (Table 3), and SC (Table 3), the
correlations between intercept and slope were higher for the homoscedastic model and
lower for the heteroscedastic models. Furthermore, it can be noted that the correlation
between intercept and slope of the second segment for YW, WYG, AFC, and SC (Table 4)
decreased compared with the correlation between intercept and slope of the first segment.

When a plastic animal is selected in the most favorable environment, its performance
changes along the environmental gradient, as seen in Figures 5–8, for YW, WYG, AFC, and
SC. Consequently, an animal with lower EBV will be used in a medium or low environment,
which would result in lower genetic gains. When trying to get around this, the selection
of sires that will be parents in the next generation should consider a sire’s EBV for the
environment in which its offspring will be raised.

Even though the re-ranking of sires among environmental gradients was expressive
for some traits, most sires were classified as robust for YW, WYG, AFC, and SC (Figure 9),
following the criteria adopted by Santana Jr et al. [25]. This highlights that observing the
absolute value of the slope in relation to its standard deviation may not be an efficient
criterion for identifying robust animals.

Mota et al. [5] suggested that selection is most effective when selecting the animal
based on its EBV in the environment in which its progeny will be raised. Nevertheless,
environmental conditions can vary substantially within a farm in different years, due to the
seasonality of rainfall and, consequently, pasture conditions and differences in management.
To overcome this, selection based on reaction norms becomes an important alternative
for beef cattle breeding programs in the tropics, allowing joint selection for increased
productivity and reduced sensitivity.

5. Conclusions

In Nellore cattle, it is not necessary to consider the presence of GxE in genetic evalu-
ations for BWG and visual score traits (at weaning and yearling). On the other hand, for
YW, WYG, SC, and AFC, accounting for GxE is important. Considering heteroskedasticity
in reaction norm models improves the assessment of GxE for YW, WYG, AFC, and SC. In
addition, the reaction norms for these traits seem to be affected by a non-linear component.
The RMN_q-q model (best model according to the AIC criteria for WYG, AFC, and SC)
overestimated the variances in the low environmental gradient. Therefore, among the
tested models, RM_l-l seems the best option for genetic evaluation of YW, WYG, AFC, and
SC in Nellore cattle. Furthermore, selecting robust animals for these traits is an alternative
for increasing production and reducing environmental sensitivity.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ani12192613/s1, Table S1: variance estimates and heritability for weaning and yearling traits
in Nellore cattle according to the animal model used; Table S2: estimates of variance (diagonals),
covariance (upper triangular; in italic), and correlation (lower triangular; in bold) among coefficients
of reaction norm models (RNM) for the additive genetic effect of yearling visual score traits in Nellore
cattle, with respective residual variance estimates, Akaike information criterion (AIC) and AIC weight
(AICw); Table S3: average (minimum and maximum) heritability estimates for weaning, yearling,
and reproductive traits in Nellore cattle for different reaction norm models; Figure S1: number of phe-
notypes by environmental gradients for birth to weaning weight gain (A), weaning to yearling weight
gain (B), weaning to yearling weight gain used for yearling visual scores (C), yearling weight (D),
yearling weight used for age at first calving (E), and yearling weight used for scrotal circumference (F);
Figure S2: estimates of Spearman correlation between sire’s EBVs for low, medium, and high gradi-
ents along the environmental gradient for birth to weaning weight gain (A), conformation at weaning
(B), finishing precocity at weaning (C), muscling ate weaning (D), conformation at yearling (E), finish-
ing precocity at yearling (F), and muscling at yearling (G); Figure S3: estimated breeding values (EBV)
as function of environmental gradient of sires with at least 50 progenies (n = 355) for yearling weight
(YW) in Nellore cattle by using different reaction norm models. RNM_homo (A): linear homoscedas-
tic; RNM_hete (B): linear heteroscedastic; RNM_quad (C): quadratic heteroscedastic; RNM_l-l (D):
spline linear–linear heteroscedastic; RNM_q-q (E): spline quadratic–quadratic heteroscedastic. EBV
reaction norms (F) of three selected sires (differentiated by color) for models RNM_homo (solid line),
RNM_hete (two dash line), RNM_quad (dotted curve), RNM_l-l (long dash curve), and RNM_q-q
(dot dash curve); Figure S4: estimated breeding values (EBV) as function of environmental gradient
sires with at least 50 progenies (n = 380) for weaning to yearling weight gain (WYG) in Nellore cattle
by using different reaction norm models. RNM_homo (A): linear homoscedastic; RNM_hete (B):
linear heteroscedastic; RNM_quad (C): quadratic heteroscedastic; RNM_l-l (D): spline linear–linear
heteroscedastic; RNM_q-q (E): spline quadratic–quadratic heteroscedastic. EBV reaction norms (F)
of three selected sires (differentiated by color) for models RNM_homo (solid line), RNM_hete (two
dash line), RNM_quad (dotted curve), RNM_l-l (long dash curve), and RNM_q-q (dot dash curve);
Figure S5: estimated breeding values (EBV) as function of environmental gradient of sires with at least
50 progenies (n = 94) for age at first calving (AFC) in Nellore cattle by using different reaction norm
models. RNM_homo (A): linear homoscedastic; RNM_hete (B): linear heteroscedastic; RNM_quad
(C): quadratic heteroscedastic; RNM_l-l (D): spline linear–linear heteroscedastic; RNM_q-q (E): spline
quadratic–quadratic heteroscedastic. EBV reaction norms (F) of three selected sires (differentiated by
color) for models RNM_homo (solid line), RNM_hete (two dash line), RNM_quad (dotted curve),
RNM_l-l (long dash curve), and RNM_q-q (dot dash curve); Figure S6: estimated breeding values
(EBV) as function of environmental gradient of sires with at least 50 progenies (n = 191) for scrotal
circumference (SC) in Nellore cattle by using different reaction norm models. RNM_homo (A): linear
homoscedastic; RNM_hete (B): linear heteroscedastic; RNM_quad (C): quadratic heteroscedastic;
RNM_l-l (D): spline linear–linear heteroscedastic; RNM_q-q (E): spline quadratic–quadratic het-
eroscedastic. EBV reaction norms (F) of three selected sires (differentiated by color) for models
RNM_homo (solid line), RNM_hete (two dash line), RNM_quad (dotted curve), RNM_l-l (long dash
curve), and RNM_q-q (dot dash curve); Figure S7: estimated breeding values (EBV) as function of
environmental gradient of sires with at least 50 progenies (n = 724) for birth to weaning weight gain
(BWG) in Nellore cattle by using different reaction norm models. RNM_homo (A): linear homoscedas-
tic; RNM_hete (B): linear heteroscedastic; RNM_quad (C): quadratic heteroscedastic; RNM_l-l (D):
spline linear–linear heteroscedastic; RNM_q-q (E): spline quadratic–quadratic heteroscedastic. EBV
reaction norms (F) of three selected sires (differentiated by color) for models RNM_homo (solid line),
RNM_hete (two dash line), RNM_quad (dotted curve), RNM_l-l (long dash curve), and RNM_q-q
(dot dash curve); Figure S8: estimated breeding values (EBV) as function of environmental gradient
of sires with at least 50 progenies (n = 724) for conformation at weaning (WC) in Nellore cattle
by using different reaction norm models. RNM_homo (A): linear homoscedastic; RNM_hete (B):
linear heteroscedastic; RNM_quad (C): quadratic heteroscedastic; RNM_l-l (D): spline linear–linear
heteroscedastic; RNM_q-q (E): spline quadratic–quadratic heteroscedastic. EBV reaction norms
(F) of three selected sires (differentiated by color) for models RNM_homo (solid line), RNM_hete
(two dash line), RNM_quad (dotted curve), RNM_l-l (long dash curve), and RNM_q-q (dot dash
curve); Figure S9: estimated breeding values (EBV) as function of environmental gradient of sires
with at least 50 progenies (n = 724) for precocity at weaning (WP) in Nellore cattle by using different
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reaction norm models. RNM_homo (A): linear homoscedastic; RNM_hete (B): linear heteroscedastic;
RNM_quad (C): quadratic heteroscedastic; RNM_l-l (D): spline linear–linear heteroscedastic; RNM_q-
q (E): spline quadratic–quadratic heteroscedastic. EBV reaction norms (F) of three selected sires
(differentiated by color) for models RNM_homo (solid line), RNM_hete (two dash line), RNM_quad
(dotted curve), RNM_l-l (long dash curve), and RNM_q-q (dot dash curve); Figure S10: estimated
breeding values (EBV) as function of environmental gradient of sires with at least 50 progenies
(n = 724) for muscling at weaning (WM) in Nellore cattle by using different reaction norm mod-
els. RNM_homo (A): linear homoscedastic; RNM_hete (B): linear heteroscedastic; RNM_quad (C):
quadratic heteroscedastic; RNM_l-l (D): spline linear–linear heteroscedastic; RNM_q-q (E): spline
quadratic–quadratic heteroscedastic. EBV reaction norms (F) of three selected sires (differentiated by
color) for models RNM_homo (solid line), RNM_hete (two dash line), RNM_quad (dotted curve),
RNM_l-l (long dash curve), and RNM_q-q (dot dash curve); Figure S11: estimated breeding values
(EBV) as function of environmental gradient of sires with at least 50 progenies (n = 557) for confor-
mation at yearling (YC) in Nellore cattle by using different reaction norm models. RNM_homo (A):
linear homoscedastic; RNM_hete (B): linear heteroscedastic; RNM_quad (C): quadratic heteroscedas-
tic; RNM_l-l (D): spline linear–linear heteroscedastic; RNM_q-q (E): spline quadratic–quadratic
heteroscedastic. EBV reaction norms (F) of three selected sires (differentiated by color) for models
RNM_homo (solid line), RNM_hete (two dash line), RNM_quad (dotted curve), RNM_l-l (long dash
curve), and RNM_q-q (dot dash curve); Figure S12: estimated breeding values (EBV) as function of
environmental gradient of sires with at least 50 progenies (n = 557) for precocity at yearling (YP)
in Nellore cattle by using different reaction norm models. RNM_homo (A): linear homoscedastic;
RNM_hete (B): linear heteroscedastic; RNM_quad (C): quadratic heteroscedastic; RNM_l-l (D): spline
linear–linear heteroscedastic; RNM_q-q (E): spline quadratic–quadratic heteroscedastic. EBV reac-
tion norms (F) of three selected sires (differentiated by color) for models RNM_homo (solid line),
RNM_hete (two dash line), RNM_quad (dotted curve), RNM_l-l (long dash curve), and RNM_q-q
(dot dash curve); Figure S13: estimated breeding values (EBV) as function of environmental gra-
dient of sires with at least 50 progenies (n = 557) for muscling at yearling (YM) in Nellore cattle
by using different reaction norm models. RNM_homo (A): linear homoscedastic; RNM_hete (B):
linear heteroscedastic; RNM_quad (C): quadratic heteroscedastic; RNM_l-l (D): spline linear–linear
heteroscedastic; RNM_q-q (E): spline quadratic–quadratic heteroscedastic. EBV reaction norms (F)
of three selected sires (differentiated by color) for models RNM_homo (solid line), RNM_hete (two
dash line), RNM_quad (dotted curve), RNM_l-l (long dash curve), and RNM_q-q (dot dash curve);
Figure S14: estimated breeding values (EBV) reaction norms for birth to weaning weight gain (BWG)
of Nellore cattle sires classified as top 10 for low (A), medium (B), and high environmental gradient
(C), and top 10 robust (D) considering the reaction norm models (RNM) fitted with spline linear–
linear heteroscedastic (RNM_l-l); Figure S15: estimated breeding values (EBV) reaction norms for
conformation at weaning (WC) of Nellore cattle sires classified as top 10 for low (A), medium (B), and
high environmental gradient (C), and top 10 robust (D) considering the reaction norm models (RNM)
linear heteroscedastic (RNM_hete); Figure S16: estimated breeding values (EBV) reaction norms for
precocity at weaning (WP) of Nellore cattle sires classified as top 10 for low (A), medium (B), high
environmental gradient (C), and top 10 robust (D) considering the reaction norm models (RNM)
linear homoscedastic (RNM_homo); Figure S17: estimated breeding values (EBV) reaction norms
for muscling at weaning (WM) of Nellore cattle sires classified as top 10 for low (A), medium (B),
high environmental gradient (C), and top 10 robust (D) considering the reaction norm models (RNM)
linear homoscedastic (RNM_homo); Figure S18: estimated breeding values (EBV) reaction norms for
conformation at yearling (YC) of Nellore cattle sires classified as top 10 for low (A), medium (B),
high environmental gradient (C), and top 10 robust (D) considering the reaction norm models (RNM)
linear heteroscedastic (RNM_hete); Figure S19: estimated breeding values (EBV) reaction norms for
precocity at yearling (YP) of Nellore cattle sires classified as top 10 for low (A), medium (B), high
environmental gradient (C), and top 10 robust (D) considering the reaction norm models (RNM)
linear heteroscedastic (RNM_hete); Figure S20: estimated breeding values (EBV) reaction norms for
muscling at yearling (YM) of Nellore cattle sires classified as top 10 for low (A), medium (B), high
environmental gradient (C), and top 10 robust (D) considering the reaction norm models (RNM)
linear heteroscedastic (RNM_hete).
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