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SUMMARY
Amplification of MDM2 on supernumerary chromosomes is a commonmechanism of P53 inactivation across
tumors. Here, we investigated the impact of MDM2 overexpression on chromatin, gene expression, and
cellular phenotypes in liposarcoma. Three independent regulatory circuits predominate in aggressive, dedif-
ferentiated tumors. RUNX and AP-1 family transcription factors bind mesenchymal gene enhancers. P53 and
MDM2 co-occupy enhancers and promoters associated with P53 signaling. When highly expressed, MDM2
also binds thousands of P53-independent growth and stress response genes, whose promoters engage in
multi-way topological interactions. Overexpressed MDM2 concentrates within nuclear foci that co-localize
with PML and YY1 and could also contribute to P53-independent phenotypes associated with supraphysio-
logic MDM2. Importantly, we observe striking cell-to-cell variability in MDM2 copy number and expression in
tumors and models. Whereas liposarcoma cells are generally sensitive to MDM2 inhibitors and their combi-
nation with pro-apoptotic drugs, MDM2-high cells tolerate them andmay underlie the poor clinical efficacy of
these agents.
INTRODUCTION

The TP53 tumor suppressor is the most frequently inactivated

gene in human cancers.1 A substantial subset of tumors sup-

presses its function by overexpressing MDM2, an E3 ubiquitin

ligase that targets P53 for degradation.2,3MDM2 overexpression

is often mediated through massive gene amplification on super-

numerary rings, rods, and/or extrachromosomal DNA.4–7 In this

context, MDM2 is expressed at supraphysiologic levels many

times higher than in wild-type conditions.

The P53 transcription factor (TF) activates its gene targets in

response to genotoxicity and cell stress.8,9 MDM2 negatively

regulates P53 function by directing its degradation.10 Accord-

ingly, small molecules such as nutlins or HDM201 that abrogate

the physical interaction between these proteins reactivate P53
This is an open access article under the CC BY-N
and trigger apoptosis in tumor models.11 However, this model

is complicated by reports that MDM2 also localizes to chro-

matin with P53.12,13 Moreover, MDM2 has multiple additional

reported binding partners, many of which are transcriptional

regulators or nuclear proteins.13–18 Hence, the full scope of

MDM2 is likely to include functions in the nucleus and targets

other than P53. Furthermore, whether supraphysiologic

MDM2 protein levels confer entirely distinct activities remains

an open question.

P53 mediates its effects by binding to cognate motifs in pro-

moters and enhancers. In addition to its �20,000 genes, the hu-

man genome contains a much larger number of enhancers with

highly cell-type-specific activities.19 A major challenge in geno-

mics is connecting these distal elements to their target genes.

These targets may be predicted on the basis of linear proximity
Cell Genomics 3, 100321, July 12, 2023 ª 2023 The Author(s). 1
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along the DNA and coordinated activities, as well as physical

looping interactions.20–22

MDM2 is overexpressed in nearly half of all sarcomas, making

it an attractive therapeutic target.23–25 However, MDM2 inhibi-

tors have largely failed in the clinic, apparently due to either

dose-limiting toxicity or tumor cell resistance.26,27 Liposarcoma

is a compelling model for investigating MDM2 function and

refining therapeutic strategies given that MDM2 amplification is

a defining feature of this disease.25,28,29 It is the most common

soft-tissue sarcoma that can present as a well-differentiated tu-

mor (WDLPS) or as the much more aggressive dedifferentiated

liposarcoma (DDLPS).28,30 Unfortunately, non-surgical thera-

peutic options for this disease are extremely limited.28 While

DDLPS and WDLPS are histologically distinct, no recurrent mo-

lecular abnormality distinguishes the two subtypes.31,32 JUN

amplifications have been identified in a subset of dedifferenti-

ated tumors, but this feature is not consistently seen in

DDLPS.29,31,33 Epigenetically, KLF6 repression and concurrent

shifts in H3K9me3 have been associated with the dedifferenti-

ated state, but the underlying mechanism and significance

remain unclear.34

Here we present a systematic, functional genomic character-

ization of WDLPS and DDLPS tumors and models. We distin-

guish lineage-specific TF circuits from oncogenic programs,

and associate MDM2 amplification and overexpression with

primitive phenotypes in tumors and cell lines. When expressed

at supraphysiologic levels, MDM2 binds hundreds of P53 targets

and thousands of additional genes with physically intercon-

nected promoters and functions related to cellular proliferation

and stress. MDM2 expression levels vary markedly between

and within tumors and cell lines. Whereas cells with moderate

MDM2 expression are sensitive to MDM2 inhibitors and pro-

apoptotic agents, the highest MDM2 expressers resist these

agents and likely confound their clinical application.

RESULTS

Genomic and transcriptional profiles of liposarcoma
tumors and models
To investigate genetic and regulatory alterations that underlie the

major classes of liposarcoma, we assembled a clinical cohort of

primary WDLPS (n = 20) and DDLPS (n = 16) human tumors, and

normal adipose tissue (n = 15) (Figure 1A and Table S1). Speci-

mens were reviewed by board-certified pathologists to ensure

accurate histological subtyping and appropriate tissue integrity.

Whole-genome sequencing defined the genomic landscapes of

21 tumors (Tables S2 and S3). Transcriptional profiles were

generated by RNA sequencing (RNA-seq) for 36 samples

(Table S4). In addition to our clinical cohort, four liposarcoma

cell lines (LPS141, LPS853, T449, and T778) were profiled for

transcription (RNA-seq), TF binding, histonemodifications (chro-

matin immunoprecipitation sequencing [ChIP-seq]), and chro-

matin topology (HiChIP).

The genomic profiles of tumors revealed low somatic muta-

tional burden (average 1.8 per Mb) but extensive copy number

abnormalities (Figure 1B; Tables S2 and S3). Characteristic

amplification of MDM2 and CDK4 on the 12q13-15 locus was

observed in all WDLPS and DDLPS tumors (Figure 1B and
2 Cell Genomics 3, 100321, July 12, 2023
Table S2). Consistent with previous reports, we noted increased

genomic amplification centered on the 12q locus in DDLPS, and

one DDLPS tumor harboring a JUN amplification (1 out of 10 tu-

mors) (Figure 1B and Table S2).29,31,33,35,36 However, we did not

observe any consistent genomic alterations that distinguished

DDLPS from WDLPS.

The enhanced genomic complexity in DDLPS prompted us to

examine the 12q locus more closely. We found that MDM2

amplification levels were greater in DDLPS (average copy num-

ber = 10) compared with WDLPS tumors (average copy num-

ber = 7) as has been previously reported (Figures 1B, S1A, and

S1B; Table S2). This degree of progressive amplification was

not observed for other genes within the 12q amplicon, such as

CDK4 (DDLPS = 7, WDLPS = 7), which suggests a specific asso-

ciation between MDM2 copy number and DDLPS (Figures 1B,

S1C, and S1D; Table S2). Indeed, we confirmed higher MDM2

mRNA expression in dedifferentiated (mean transcripts per

million [tpm] 597) relative to well-differentiated tumors (mean

tpm 428) (Figures 1C and S1E; Table S4). The average MDM2

mRNA levels in the liposarcomas were �19-fold higher than

normal fat (mean tpm 25) (Figure S1E). Expanding this analysis

to additional tumors and controls in The Cancer Genome Atlas

(TCGA), we defined a distribution of ‘‘physiologic’’ MDM2

expression in normal tissues (normalized log2 expression

ranging from 9.44 to 13.22). We found that 88% of DDLPS tu-

mors exceeded the 95th percentile of expression in normal tis-

sues (Figure S1F). While these data support the notion that

MDM2 is expressed at supraphysiologic levels in liposarcoma,

the WDLPS tumors in our clinical cohort exhibit a surprising

range of MDM2 expression, with a subset harboring very high

levels comparable with the DDLPS tumors and others exhibiting

more moderate overexpression (Figure S1E).

A tumor maturity score inversely correlates with MDM2
expression
The range of MDM2 amplification and expression across tumors

prompted us to investigate whether it correlates with specific

transcriptional phenotypes. We observed that well-differentiated

tumors with high MDM2 levels had lower expression of adipo-

cytic lineage regulators (Figures S1G and S1H). We therefore

scored our clinical cohort based on a manually curated set of

30 genes with established roles in adipogenesis and/or specific

expression in mature adipocytes (Tables S1 and S5; Figure 1D).

This ‘‘maturity’’ score was high across all normal fat samples and

consistently low across theDDLPS tumors. Thematurity score of

WDLPS tumors varied widely, consistent with a spectrum of adi-

pocytic differentiation (Figure 1D). In both WDLPS and DDLPS, it

correlated with adipocytic differentiation per histopathology and

expression of the master adipocytic regulators PPARG and

CEBPA (Figures 1E and S1I). The maturity scores also inversely

correlated with MDM2 expression across WDLPS and DDLPS

(Figure 1F). Repeating this analysis with an established adipo-

genesis signature (n = 200)37 confirmed a continuum of maturity

across liposarcoma tumors that inversely correlated with MDM2

expression (Figures S1J and S1K).

We used the maturity index as a framework to define addi-

tional transcriptional programs associated with liposarcoma

cell states by calculating the correlation between the maturity
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Figure 1. Liposarcoma maturity score anticorrelates with MDM2 levels

(A) Schematic of study design with indication of primary tumors and cell line models (left) and genome-wide assays (right).

(B) Plot depicts copy number alterations in normal fat (gray), WDLPS (red), and DDLPS (blue) samples from our clinical cohort. Vertical plot at left depicts the

average copy number across the genome, while the horizontal view expands the Chr12q locus that contains MDM2.

(legend continued on next page)
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score gene set and all other individual genes across our clinical

samples (Figure 2A and Table S6). We identified 1,065 genes

whose expression positively correlated (r R 0.5) with the matu-

rity score. As expected, they were enriched for adipogenesis-

related programs such as fatty acid metabolism, targets of the

master TF PPARG and oxidative phosphorylation. Genes that

negatively correlated with the maturity score (r % �0.5,

n = 1,298) were enriched for cell-cycle regulators, consistent

with the higher proliferative index reported for dedifferentiated

tumors.28 We also identified other expression programs that

negatively correlated with the maturity score, which could be

broadly classified into three functional groups: mesenchymal

lineage/skeletal system development, stress response (P53,

ER stress), and cellular biosynthetic processes (mRNA meta-

bolism, ribosome biogenesis, translation). Finally, we observed

an association between maturity and expression of genes en-

coded on the mitochondrial genome (Figure 2A).38 These signa-

tures suggest that primitive liposarcoma tumors with higher

MDM2 expression adopt a proliferative and biosynthetically

active mesenchymal cell state.

TF circuits reminiscent of an early mesenchymal
progenitor
We sought to define the TF networks that underlie the respective

gene expression programs in DDLPS. All four cell lines profiled

display primitive morphology and rapid growth in culture despite

T449 and T778 originating from WDLPS specimens. Transcrip-

tional analysis showed that programs defined in DDLPS tumors

are retained in the four cell lines, supporting their relevance as

dedifferentiated disease models (Figure 2A). We therefore

charted the regulatory landscape of the two DDLPS-derived

lines (LPS141 and LPS853) and four DDLPS tumors (DD10,

DD15, DD20, and DD31) by performing ChIP-seq for the

enhancer-associated chromatin modification H3 lysine 27 acet-

ylation (H3K27ac). We collated a set of 49,784 putative en-

hancers marked by H3K27ac in at least two samples (median

size 1.8 kb). Scanning the sequences of these putative DDLPS

enhancers revealed an over-representation of motifs recognized

by AP-1 factors (34%of enhancers), RUNX (30%) and ETS (41%)

family TFs, and P53 (8%) (Figure 2B and Table S7). Consistent

with the motif enrichments, AP-1 factors (Fos and Jun) and mul-

tiple ETS factors (ETS1) were highly expressed in both DDLPS

and WDLPS (Figure 2C), suggesting they represent common

regulatory TFs, while RUNX2 was selectively induced in

DDLPS (Figure 2D).

Established roles for JUN and RUNX2 in mesenchymal devel-

opment prompted us to map and relate their binding patterns to

enhancer circuits in DDLPS (Figure 3A).39–43 ChIP-seq profiles

revealed that both TFs preferentially bind to distal elements:

62% and 57% of JUN and RUNX2 target sites, respectively,

correspond to putative enhancers, while just 5% and 13%corre-
(C) Box plot shows distribution ofMDM2 expression in normal fat andWDLPS and

8.8e�5, NF vs. DDLPS = 5.5e�5.

(D) Waterfall plots show maturity scores for samples in the clinical cohort.

(E) Hematoxylin and eosin staining for representative well-differentiated (WD) a

expression of master adipocytic regulators PPARG and CEBPA (bottom).

(F) Scatterplots show correlation between MDM2 expression (y axis) and maturit
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spond to promoters. The two TFs co-occupy a majority of their

enhancer targets (70% of RUNX targets are also bound by

JUN), suggestive of shared distal regulatory functions in

DDLPS (Figure 3A).

To link the bound enhancers to likely gene targets, we evalu-

ated their physical interactions using H3K27ac HiChIP. This pro-

cedure maps chromatin loops by ligating sequence elements in

spatial proximity.44 The resulting data revealed physical loops

between enhancers and promoters (E-P), as well as enhancer-

enhancer (E-E) and promoter-promoter (P-P) loops, indicative

of potential regulatory relationships (Figure S2A). Genes whose

promoters engaged in physical interactions (E-P or P-P) had

higher expression in DDLPS relative to controls (Figure S2B).

Integration of the HiChIP and TF binding data revealed that

JUN- and RUNX2-bound elements loop to a largely overlapping

set of 2,051 target genes (2,304 JUN, 2,406 RUNX2,�87%over-

lap) (Figure 3B and Table S8). These target genes were highly

expressed in DDLPS and enriched for functions related to

mesenchymal development and early osteogenic differentiation

(Figures 3C and 3D; Table S9). Furthermore, we found that

RUNX2 expression levels correlated with these signatures

across the DDLPS tumors, consistent with direct regulatory

functions (Figures S2C and S2D).

The JUN and RUNX2 gene targets include the mesenchymal

lineage TF MSX2. MSX2 and another key mesenchymal TF

SOX9 are both preferentially expressed in DDLPS (Figure 2D).

JUN, RUNX2, MSX2, and SOX9 are all coordinately expressed

in an early developmental window that precedes specification

along either an osteogenic or chondrocytic lineage.45–47 The

expression and interactions among these TFs suggest that

DDLPS progenitors may emulate this primitive developmental

state. Indeed, histological analysis of DDLPS specimens

frequently reveals markers of bone differentiation, in addition

to the adipocytic features.48

Supraphysiologic MDM2 restrains tumor-suppressive
P53 circuits
We next investigated how this primitive developmental state is

corrupted by oncogenic transcriptional circuits in DDLPS. We

focused initially on the role of MDM2 in suppressing P53 tran-

scriptional programs. While MDM2 does not directly bind DNA,

it physically interacts with and degrades P53 through its E3 ubiq-

uitin ligase activity.49 We therefore mapped genomic occupancy

of both MDM2 and P53 in DDLPS cell lines by ChIP-seq

(Figures 3A and 3E–3J).

We identified 867 P53 sites and 1,651 MDM2-bound sites at

enhancers and promoters in both LPS141 and LPS853 cell

lines. P53 primarily bound distal enhancers, which could be

linked to putative target genes by the HiChIP data

(Figures 3A and 3E). These P53-bound target genes (n = 478)

were enriched for canonical P53 programs, including
DDLPS. One-tailed t test p values: DDLPS vs. WDLPS = 0.09, NF vs. WDLPS =

nd dedifferentiated (DD) tumors, ranked by maturity score (top) and showing

y score (x axis) for WDLPS and DDLPS tumors.
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Figure 2. Transcriptional programs and regulators in dedifferentiated sarcoma

(A) Heatmap depicts expression (blue heat) of differentially expressed genes (rows) across the clinical specimens and cell lines (columns). Genes are grouped into

coherent programs (black outlines) ordered by their correlation or anticorrelation with maturity scores. Mitochondrial genome encoded genes are grouped below.

Maturity score (gray heat) and MDM2 expression (red heat) are shown above for each sample.

(B) TF binding motifs that are over-represented in DDLPS enhancers marked by H3K27ac.

(C) Scatterplot depicts expression of TFs (points) in WDLPS (y axis) and DDLPS (x axis) tumors. Points along the diagonal represent factors shared between

histologies and include multiple AP1-JUN and ETS family members.

(D) Volcano plot depicts fold change and significance (p value% 0.05) of differential expression of TFs (points) betweenWDLPS andDDLPS. TFs referenced in the

text are highlighted.
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genotoxicity response, vascular endothelial growth factor

signaling, and cell cycle (Figure 3F; Tables S8, and S9). Inter-

estingly, these targets showed higher expression in DDLPS

relative to WDLPS or normal fat (Figure 3G). This increase

may reflect activation of P53 pathways by the proliferative state

and genomic instability associated with the more aggressive tu-

mors. We reasoned that it could point to a critical requirement

for MDM2 overexpression to hold these programs in check and

facilitate malignant progression.

As expected, MDM2 showed overlap with P53 (Figures 3A,

S3A, and S3B), most significantly at promoters, and associated

with 258 of 478 P53 target genes. To investigate the functional

impact of supraphysiologic MDM2 on P53 target genes and cir-

cuits we used the inhibitor HDM201, which disrupts the P53-

MDM2 interaction and is currently under clinical evaluation.50–52

We measured transcriptional changes over a short course of

treatment (2, 4, and 6 h) prior to cell death response (Figure S3C)

in the LPS141 cell line. We observed rapid upregulation of both
MDM2 and P53 protein levels at 2 h followed by a progressive in-

crease of MDM2 up to 6 h (Figures S3D and S3E). In contrast,

P53 protein reached maximum levels at 2 h followed by a slow

recovery to baseline (Figures S3D and S3E). The rapid increase

in P53 is presumably due to its release from MDM2-directed

degradation by HDM201. However, MDM2 is also an established

P53 target,53 resulting in positive feedback on its expression af-

ter the initial induction.

P53 circuit genes were strongly upregulated at early time

points (2 and 4 h) of drug treatment (Figure S3F), while JUN/

RUNX2 target genes were regulated to a lesser degree (Fig-

ure S3G). P53 occupancy at target promoters also increased

with HDM201 (Figure 3K, top). However, MDM2 occupancy

decreased, consistent with an essential role for the P53 interac-

tion in its recruitment (Figure 3L, top). These analyses show that

P53 targets are largely distinct from mesenchymal circuits in

DDLPS and support a direct role for MDM2 in their negative

regulation.
Cell Genomics 3, 100321, July 12, 2023 5
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Figure 3. TF circuits that govern dedifferentiated liposarcoma programs

(A) Heatmap depicts TF binding (color heat) and H3K27ac (grayscale) over candidate enhancers and promoters (rows) of the LPS141 liposarcoma line. Peaks are

binned into groups based on combinatorial TF binding, including JUN/RUNX peaks (n = 36,151), P53 peaks (n = 857), and MDM2 peaks without P53 (n = 1,544).

Bottom boxes show TF binding on a linearized track of the circular mitochondrial genome centered on the regulatory d loop (black box).

(B, E, and H) Schematics summarize characteristic binding and looping patterns for JUN (blue), RUNX2 (purple), P53 (green), and MDM2 (orange).

(C, F, and I) Bars highlight gene sets enriched among JUN/RUNX2 (blue), P53 (green), and MDM2 (orange) targets, as defined by combination of ChIP-seq and

HiChIP.

(D, G, and J) Box plots show expression of TF target genes (defined as in B, E, and H) in normal fat,WDLPS, and DDLPS samples. Two-tailed t test p values: (D) NF

vs. DDLPS = 0.017, WDLPS vs. DDLPS = 0.0016; (G) NF vs. DDLPS = 0.012, WDLPS vs. DDLPS = 0.002; (J) NF vs. DDLPS = 0.007, WDLPS vs. DDLPS = 0.002.

(legend continued on next page)
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Supraphysiologic MDM2 binds an expanded promoter
repertoire
The ChIP-seq profiles revealed that MDM2 has a much stronger

preference for promoters than the other TFs (1,045 bound pro-

moters; 606 enhancers) (Figures 3A, 3M, and 3N). Despite its

close association to P53 biology, most MDM2-bound genes in

DDLPS are not P53 targets (1,214 out of 1,473; Figures 3A and

3H; Table S8). These P53-independent, putative MDM2 target

genes are enriched for functions related to cell growth, biosyn-

thesis, and stress responses (Figure 3I and Table S9), and

include previously reported targets involved in serine meta-

bolism (PSPH, SLC1A4, and GSS).14,54 These genes and ontol-

ogies are also distinct from those observed for the JUN/

RUNX2 circuits (Figure 3C). P53-independent MDM2 targets

were expressed at higher levels in DDLPS compared with

WDLPS or normal fat (Figure 3J). In contrast to the robust induc-

tion of P53 targets, these genes were downregulated after 2 h of

HDM201 treatment (Figure S3H). Furthermore, ChIP-seq anal-

ysis indicated that MDM2 was retained at these promoters after

treatment, while P53 remained absent (Figures 3K and 3L). The

impact of MDM2 inhibitor treatment on the transcriptional cir-

cuits defined in our study was confirmed using an additional

MDM2 inhibitor, Nutlin-3a (Figures S3I–S3K), and by testing

MDM2 inhibition in the LPS853 cell line, which sustained P53 in-

duction across the HDM201 time course (Figure S4). These data

resolve a set of promoters bound by overexpressed MDM2 that

are independent of P53.

In addition to its nuclear genomic targets, the ChIP-seq data

reveal that MDM2 associates with the circular mitochondrial

genome, which is present at tens to hundreds of copies per

cell (Figure 3A).55 MDM2 specifically bound the regulatory

d loop, a non-coding region of the mitochondrial genome where

transcription and DNA replication originate (Figure 3A).56 In

contrast, none of the other TFs in our dataset interacted with

the mitochondrial genome (Figure 3A). Although prior studies

have localized MDM2 to the mitochondria,15,57,58 these interac-

tions with a key regulatory region of the mitochondrial genome

provide additional support for P53-independent localization

of MDM2.

MDM2 associates with topological promoter hubs
We observed that many P53-independent MDM2 target pro-

moters were clustered across gene-rich loci. Furthermore,

HiChIP data indicated that many of these promoters are con-

nected by promoter-promoter loops (Figure 3N), in some cases

forming interconnected hubs (Figures 4A–4C). We used our

HiChIP data to define a genome-wide set of 258 promoter-pro-

moter hubs (pp hubs), which involved an average of eight genes

each and spanned amedian distance of 200 kb (Figures S5A and
(K) Aggregate plots show a P53 binding signal at P53 (top) or MDM2 (bottom) tar

treatment.

(L) Aggregate plots show MDM2 binding signal at P53 (top) or MDM2 (bottom) tar

treatment.

(M) Bar plot shows the proportion of TF binding sites that coincide with putative

(N) Table depicts the degree of overlap between TF binding, per ChIP-seq, and site

promoter (P-P) loops, per HiChIP. Red heat represents the significance of overlap

genome-wide loop patterns as background.
S5B). The hub promoters are largely contained within the

euchromatic compartment and tend to connect highly

expressed genes (Figures S5C and S5D). Hub structure was

consistent across DDLPS cell lines and three tumors

(Figures 4A–4F and S5E–S5G). Promoter hubs appear to repre-

sent relatively constitutive structures, as they are evident in

published T cell HiChIP (Figures S5H–S5J) and multi-promoter

interactions have recently been reported in other cellular con-

texts.20,59–62 They may contribute to the coordinated regulation

of functionally related genes, as recently observed for physical

gene networks in Drosophila.60 Indeed, the expression of genes

within a given hub is highly correlated across RNA-seq profiles

for DDLPS samples in TCGA (n = 60) (Figures 4G and S5K).

P53-independent MDM2 target promoters are also highly

enriched for the binding motif of YY1, a TF implicated in looping

interactions (Figure 4H and Table S10).63,64 MDM2 contains a

central acidic domain reported to interact with YY1 and other

transcriptional regulators.13,16–18,65,66 ChIP-seq revealed striking

co-localization of YY1 with MDM2-bound promoters (89% of

MDM2 sites bound) (Figures 4I, 4J, S6A, and S6B). Given that

MDM2 lacks a DNA-binding domain, its association with pro-

moter hubs could reflect pleiotropic interactions with YY1 or

other regulators. Moreover, MDM2 occupancy at promoter

hubs was considerably more prominent in cell lines with very

highMDM2 levels (Figures S6C–S6E). This suggests that P53-in-

dependent MDM2 interactions and functions may be enhanced

in tumor cells with supraphysiologic expression. Although these

P53-independent interactions may facilitate a regulatory role of

MDM2 at promoter hubs, further study is needed to define the

direct transcriptional impact of MDM2 at these sites.

Heterogeneous MDM2 expression is associated with
resistance to targeted therapies
The association of MDM2 with highly interconnected genomic

targets prompted us to visualize its localization within nuclei.

Immunofluorescence (IF) imaging of liposarcoma cells revealed

concentration of MDM2 protein within discrete nuclear foci (Fig-

ure 5A). These foci were not co-occupied by P53 but rather co-

localized with promyelocytic leukemia protein (PML), a known

direct interactor of MDM2 (Figures 5B, 5C, and S7A–S7D).67,68

PML forms nuclear ‘‘PML bodies’’ that sequester client proteins,

includingMDM2, and have been associated with diverse nuclear

functions.68–70 PML bodies have also been reported to directly

contact transcriptionally active gene-dense loci, including the

histone H2B cluster that we identified as a promoter hub co-

bound by YY1 and MDM2 (Figures 4A and S6A).71–73 Indeed,

additional IF analyses of LPS lines revealed that the MDM2 foci

were surrounded by smaller YY1 puncta (Figures 5D–5G). These

data suggest a role for PML bodies in sequestering MDM2 when
get sites in LPS853 cells with no treatment (NT) or after 2 h or 24 h of HDM201

get sites in LPS853 cells with no treatment (NT) or after 2 h or 24 h of HDM201

enhancers or promoters.

s engaged in enhancer-enhancer (E-E), enhancer-promoter (E-P), or promoter-

between indicated TF and loop pattern calculatedwith Fisher’s exact test using
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Figure 4. Supraphysiologic MDM2 associates with promoter hubs

(A–C) Genomic tracks for three genomic regions with representative multi-way promoter hubs. Top tracks represent MDM2 binding intensity and called peaks

(orange), and H3K27ac intensity (gray) in LPS141 cells. Bottom tracks depict HiChIP promoter-promoter loops in LPS141 and LPS853 cells. Loop height is

proportional to the paired-end tag (PET) score. Genes are shown above.

(D–F) HiChIP promoter-promoter loops in two dedifferentiated tumors (DD10 and DD20) shown for the same loci.

(G) Box plots depict the correlation of the expression of promoter hub genes, comparedwith random gene sets in DDLPS tumors (n = 60) in the TCGA; two-tailed t

test p value = 4.173e�5.

(H) Transcription factor binding motifs that are over-represented in MDM2-bound hub promoters (top) or unbound hub promoters (bottom).

(I) Venn diagram depicting overlap between YY1- and MDM2-bound promoters.

(J) Genomic track for representative promoter hub in the LPS853 cell line. Tracks represent, from top to bottom, MDM2 binding intensity (orange), YY1 binding

intensity (yellow), and H3K27ac intensity (gray), and paired-end tag (PET) scores for promoter-promoter loops in H3K27ac HiChIP.
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it accumulates at high levels, potentially driving its association

with specific genomic loci and/or protecting the cell from exces-

sive MDM2 protein.74

The imaging studies also revealed striking cell-to-cell vari-

ability in MDM2 protein levels in cell lines and tumors, with fluo-

rescence signals across individual cells ranging over an order of

magnitude (Figures 6A, S8A, and S8B). To relate this protein-
8 Cell Genomics 3, 100321, July 12, 2023
level variability to genomic copy number, we combined IF with

fluorescence in situ hybridization (FISH) to quantify MDM2

protein and copy numbers in the same single cells. This

confirmed a correspondence between protein overexpression

and locus amplification levels (Figures 6B and 6C). Metaphase

spreads confirmed the presence of MDM2 gene copies on large

neochromosomes previously characterized in liposarcoma
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Figure 5. Supraphysiologic MDM2 localizes to nuclear foci

(A) IF images (Airyscan confocal, 633) for representative LPS853 cell show MDM2 (green), P53 (red), and DAPI (blue).

(B) IF images (confocal, 633) for representative LPS853 cell show MDM2 (green), PML (red), and DAPI (blue).

(C) Quantification of MDM2 and PML intensity profiles across white dashed line in (B) shows co-localization of MDM2 and PML.

(D and F) IF images (confocal, 633) for LPS853 cells show MDM2 (green), YY1 (red), and DAPI (blue).

(E and G) High-magnification images shown for white boxed regions in (D) and (F). Bottom plots show quantifications of MDM2 (green) and YY1 (red) intensities

across white dashed lines.
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(Figure S8C).5–7 The MDM2-containing neochromosomes were

asymmetrically distributed across single cells, similar to non-

Mendelian inheritance patterns associated with extrachromo-

somal DNAs75 and likely underlying the heterogeneous MDM2

protein levels in cell lines and tumors.

We hypothesized that variable MDM2 expression could

impact the response of individual cells to targeted therapies.

We therefore tested the sensitivity of liposarcoma cells to the

P53-competitive MDM2 inhibitor HDM201. The liposarcoma

cells were highly sensitive to submicromolar concentrations of

the inhibitor, which led to growth arrest and apoptosis by 24 h

of treatment (Figures S8D and S8E). To evaluate the relationship

between MDM2 levels and sensitivity, we treated cells with

HDM201 for 24 h and then readout MDM2 copy number using

FISH coupled to flow cytometry (Figures 6D–6G and S8F). The

surviving cells displayed a striking dose- and time-dependent

enrichment for the highest MDM2 copies (top 5%; Figures 6F–

6G and S8F).

We next evaluated whether the drug tolerance of the highest

MDM2 expressers was P53 dependent. To this effect, we estab-

lished a P53 knockout line from LPS853 using CRISPR-Cas9

(Figure S9A). This derivative maintains a range of MDM2 expres-

sion similar to that of a control line with a safe harbor guide RNA

or the parental line (Figures S8B, S9A, and S9B). We found that

the P53 knockout line was no longer sensitive to the MDM2 in-
hibitor HDM201 and did not display a shift in MDM2 copy num-

ber following treatment, consistent with the known mechanism

of action whereby the inhibitor functions by activating P53

(Figures S9C and 6H). We also considered the impact of

MDM2 overexpression on other therapeutic modalities. Here

we focused on the pro-apoptotic agent Navitoclax, which has

been proposed as a combination therapy with MDM2 inhibi-

tors.76We confirmed that Navitoclax induced cell death and syn-

ergized with HDM201 in LPS853 and LPS141 cell lines

(Figures S8G–S8I). In contrast to HDM201, Navitoclax induced

cell death in the P53 knockout line at an IC50 similar to that of

the control line (Figure S9D). Nonetheless, prolonged treatment

with Navitoclax enriched cells with high MDM2 copy numbers.

Remarkably, this bias toward high MDM2 copy number was

evident in both safe harbor and P53 knockout conditions, indi-

cating the highMDM2 can confer resistance to the pro-apoptotic

agent independent of P53 (Figure 6H).

These results indicate that cell-to-cell variability in MDM2

copy number and expression contributes to drug-resistant phe-

notypes in liposarcoma cells via P53-dependent as well as P53-

independent mechanisms.While our results highlight the highest

MDM2-expressing populations as drivers of drug-resistant phe-

notypes, remaining liposarcoma cells that also highly express

MDM2 may also at least in part share these functional pheno-

types. Regardless, our data strongly implicate supraphysiologic
Cell Genomics 3, 100321, July 12, 2023 9
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Figure 6. Heterogeneous distribution of MDM2 copy number and expression confound efficacy of targeted therapies

(A) Representative 253 confocal IF images show MDM2 (green) and DAPI (blue) in LPS853 cells and a DDLPS tumor.

(B) Representative maximum-projection 633 confocal z stacks show FISH for the MDM2 locus (gray), IF for MDM2 protein (green), and DAPI (blue).

(C) Scatterplot compares MDM2 FISH and MDM2 IF intensity across 115 single cells.

(D and E) Bar plots comparing counts of viable (D) and dead (E) LPS853 cells following 3 days of HDM201 treatment.

(legend continued on next page)

10 Cell Genomics 3, 100321, July 12, 2023

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
MDM2 expression as a mechanism underlying the poor clinical

efficacy of the targeted agents against these heterogeneous

tumors.

DISCUSSION

We have presented a systematic, functional genomic analysis of

liposarcoma, a common soft-tissue sarcoma defined by its over-

expression of theMDM2 oncogene.25,28 We define complemen-

tary gene-regulatory circuits that underlie the developmental

states and malignant phenotypes of well-differentiated and de-

differentiated tumors. We also document striking cell-to-cell

variability in MDM2 copy numbers and associate supraphysio-

logic MDM2 expression with non-canonical genomic targets,

nuclear structures, and resistance to targeted therapies. Our

findings have broad implications given that MDM2 amplification

is a defining feature of these sarcomas and given the high fre-

quency ofMDM2 amplification in brain, breast, lung, gastrointes-

tinal, and other tumors.

The developmental state and cell of origin of liposarcoma are

not well understood.32,77 While these tumors typically present

with primitive mesenchymal and/or adipocytic features, they

can also exhibit bone and muscle differentiation.48 Technical

challenges include the lack of culture models that recapitulate

well-differentiated liposarcomas and difficulties associated

with molecular characterization of adipocytic tissues. Genome

sequencing studies in primary tumors have tied the various his-

tologies to a shared precursor cell but do not shed light on the

underlying developmental programs.32 Our definition of the

gene-regulatory circuits and identification of RUNX2, JUN,

MSX2, and SOX9 as key TF drivers demonstrate strong parallels

between primitive DDLPS tumors and a specific mesenchymal

progenitor population.45,47 This progenitor, which coordinately

expresses all four TFs, has bipotent potential for bone and carti-

lage differentiation. We suggest that DDLPS progenitors adopt a

closely related state that may be less constrained in its develop-

mental potential. Indeed, we note that the adipocytic signature is

subdued in the most primitive DDLPS tumors and is comple-

mented by signatures of skeletal system and muscle develop-

ment. The exact developmental state and potency of the cells

that fuel these tumors is an important question with clinical impli-

cations, given the poor prognosis of sarcomas with primitive

stem-like features.

Amplification and overexpression of theMDM2 oncogene is a

defining feature of liposarcomas that is also pervasive in brain,

breast, lung, and stomach carcinomas.1,25,28 The amplicons

includeMDM2 andCDK431 and are typically contained on super-

numerary ring or rod chromosomes, which harbor very high copy

numbers.4–7 A compelling question is why MDM2 is so highly

amplified in DDLPS and these other tumors. One likely explana-
(F) Histograms of MDM2 FISH intensity in LPS853 cells following 3 days of HDM20

of the DMSO control. All drug-treated comparisons with the DMSO control displ

(G) Histograms of MDM2 FISH intensity in LPS853 cells following a time course

represents the top 5% of the DMSO control. All drug-treated comparisons with

(H) Violin plots show distribution of MDM2 FISH for safe harbor and P53 knocko

vitoclax or 300 nM HDM201 as single agents or in combination (n = 30,000 cells p

control. All comparisons marked as significant displayed two-tailed t test p value
tion relates to the inter-relationship between MDM2 and P53.

MDM2 oncogenicity is explained by its ability to degrade and

thereby abrogate the tumor-suppressive functions of P53. Yet

MDM2 is itself a P53 target,53 which creates a feedback loop

that was clearly evident in our MDM2 perturbations. While this

feedback loop may be important for P53 sensing in normal cells,

a corollary is that low-level MDM2 amplification may be insuffi-

cient to check P53 activity, as the inherent feedback may simply

revert MDM2 levels to their physiologic norm. As such, effective

P53 inactivation may require locus amplification to levels that are

refractory to feedback control. Furthermore, the most highly

MDM2-amplified tumors in our cohort also exhibit signatures

of proliferation, DNA damage, and P53 signaling. Thus, the

very high copy numbers in these and other tumors could reflect

a stringent requirement to offset a robust P53 response to DNA

damage and unchecked proliferation in aggressively malignant

cells.

One consequence of the supraphysiologic MDM2 protein

levels, which are many-fold greater than normal cells, is its phys-

ical association with thousands of additional promoters. These

promoters, which are distinct from canonical P53-dependent

MDM2 targets, tend to be highly active, bound by YY1, and

structurally arranged into interactive hubs. Further insight comes

from imaging studies showing that supraphysiologicMDM2 con-

centrates in PML bodies within nuclei. PML bodies have been

implicated in the sequestration and degradation of diverse nu-

clear proteins, including MDM2. Their reported association

with transcriptionally active gene-dense loci may explain

MDM2’s context-specific interaction with active promoter

hubs.73 We note that MDM2 contains, in addition to its E3 ubiq-

uitin ligase functionality, an RNA-binding domain and two intrin-

sically disordered domains that may promote its association with

hubs and nuclear bodies.49 These physical interactions may

impact protein degradation within the nuclear bodies and/or per-

turb the regulation of critical hub genes, with potential impact on

cellular fitness and stress responses. Indeed, P53-independent

MDM2 functions and PML bodies have both been linked to

nutrient sensing and stress responses.14,54,66

The imaging studies also revealed remarkable variability in

MDM2 expression across individual cells in liposarcoma lines

and tumors, potentially explaining ongoing clinical challenges.

Despite some in vitro efficacy, HDM201 and other inhibitors of

the P53-MDM2 interaction have lacked clinical efficacy.26,27

Our data suggest that this failuremay be due toMDM2-high cells

in the populations, which readily tolerate the targeted agents.

Although the addition of pro-apoptotic agents, such as Navito-

clax, showed synergy in our models, population heterogeneity

enabled high expressers to evade both modalities. This ability

to rapidly respond to therapeutic or other stresses appears to

be a feature of the neo-chromosomal amplifications whose
1 treatment (n = 30,000 cells per condition). Dashed line represents the top 5%

ayed two-tailed t test p values < 2.2e�16.

of 300 nM HDM201 treatment (n = 35,000 cells per condition). Dashed line

the DMSO control displayed two-tailed t test p values < 2.2e�16.

ut LPS853 cells following 3 days treatment with DMSO (control), 100 nM Na-

er condition). Dashed lines represent the top 5% and bottom 5% of the DMSO

s < 2.2e�16.
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asymmetric segregation during mitosis may result in highly vari-

able copy numbers and protein levels across the population.

Resistance to MDM2 inhibitors may simply reflect the capacity

of MDM2 to outcompete the small molecule. However, our

observation that MDM2-high cells also evade other modalities

suggests that supernumerary ring or rod chromosomes contain-

ing MDM2 may confer a range of adaptive cell phenotypes.

Furthermore, our finding that the resistance of MDM2-high cells

to pro-apoptotic agents is retained in P53 knockout cells high-

lights the potential of supraphysiologic MDM2 to alter pheno-

types independent of its canonical P53 target. Our study high-

lights an urgent need for new therapeutic strategies that

exploit vulnerabilities of MDM2 overexpressers, moderate the

adaptability of tumors driven by extrachromosomal amplifica-

tions, or target intrinsic states that are more constant across

the malignant populations.

Limitations of the study
Normal fat, well-differentiated, and dedifferentiated liposar-

coma tumors derived in this study were collected from a single

institute where patients are administered preoperative irradia-

tion. Additionally, liposarcomas of the extremities or of myxoid

or pleomorphic histology were excluded from this study. Alter-

native cohorts of liposarcoma from other institutions may reveal

further insights into liposarcoma biology. We were limited by

technical challenges involving processing of well-differentiated

tumors and focused our epigenomic and topological analysis

on dedifferentiated samples. Therefore, while we define tran-

scriptional circuits in dedifferentiated tumors, it is unclear to

what degree these exist in the well-differentiated histology

and how they impact the spectrum of maturity that we

observed across our cohort. Additional limitations are associ-

ated with analysis of bulk datasets, which can be confounded

by normal or inflammatory cells that can mask transcriptional

circuits specific to tumor cells. Furthermore, all drug results

are based on models that cannot fully recapitulate the complex

biology of primary tumors.
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Rambow, F., Bonneil, E., Sabourdy, F., Vincent, C., et al. (2016). Chro-

matin-bound MDM2 regulates serine metabolism and redox homeosta-

sis independently of p53. Mol. Cell 62, 890–902. https://doi.org/10.

1016/j.molcel.2016.04.033.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human tumor specimens
All samples were acquired from patients at the Massachusetts General Hospital who had signed written informed consent to provide

their cells and tissue collectionwas given ethical approval by the Institutional ReviewBoard protocol #03–344.When available, paired

dedifferentiated and well-differentiated tumor samples were acquired from the same bulk tumor. All tumors originated in the

abdomen or retroperitoneum. All specimens underwent review by three independent pathologists to ensure accurate diagnosis, his-

tological subtype and appropriate tissue integrity for downstream analysis. For a subset of these patients, normal fat was taken sub-

cutaneously. Both normal and tumor tissue was snap frozen. Slides for hematoxylin and eosin staining were cut from blocks of frozen

tissue sections. A summary of the tissue (normal and tumor) samples is provided in Table S1. Our clinical cohort included 44 tumors

and 19 normal subcutaneous fat samples.

Cell lines and cell culture
All studies on human cell lines were given ethical approval by the Institutional Review Board protocol #21–394. All liposarcoma cell

lines used in this study (LPS141, LPS853, T449 and T778) were gifts from Dr. Adrian Marino-Enriquez. All liposarcoma cell lines were

maintained in RPMI-1640 medium (Gibco, ThermoFisher Scientific) supplemented with 15% FBS, 1% glutaMaX (Gibco), and

1,000 Units/mL Penicillin and 1 mg/mL Streptomycin (Gibco). HCT116 and U-2 OS cell lines were purchased from ATCC.

HCT116 and U-2 OS cells were maintained in McCoy’s 5A medium (Gibco, ThermoFisher Scientific) with 10% FBS, 1% glutaMaX

(Gibco), 1,000 Units/mL Penicillin and 1 mg/mL Streptomycin (Gibco). All cell lines were regularly screened for mycoplasma.

METHOD DETAILS

RNA-sequencing
For tumors and subcutaneous fat, tissue was dissociated using a blade homogenizer and whole RNA was extracted using the

QIAGEN RNeasy lipid kit according to the manufacturer’s protocol. For cell lines, whole RNA was extracted using the QIAGEN

RNeasy kit according to the manufacturer’s protocol. For RNA-seq library preparation, Poly(A)+ RNA was enriched using magnetic

oligo(dT)-beads (Invitrogen 61011) and then ligated to RNA adaptors for sequencing. RNA-seqwas performedwith aminimumof two

biological replicates per liposarcoma cancer line and in singlicate for tumor and normal fat samples. Libraries were sequenced as

75-base paired-end reads on an Illumina NextSeq500 instrument.

ChIP-sequencing
ChIPseq was performed to generate chromatin state maps (H3K27ac) and binding profiles for transcription factors (P53, MDM2,

RUNX2, JUN and YY1). ChIP-seq was performed as described previously unless otherwise specified.90 In brief, crosslinked cells

were lysed and DNA was sheared on the Covaris E220 (Fill level 5, Duty Cycle 5, PIP 140, Cycles/burst 200, Time 22–26 min) to be-

tween 200 and 2,000 base pair fragments using a covaris water bath sonicator. Antibodies were as follows: H3K27ac (Active Motif

#39133), P53 (Cell Signaling #48818), MDM2 (abcam ab226939), JUN (cell signaling 9165S), RUNX2 (cell signaling 12556S), and

YY1(cell signaling 63227S). ChIP DNA was used to generate sequencing libraries by end repair (End-It DNA repair kit, Biosearch

Technologies ER0720), 30 A base overhang addition via Klenow fragment (NEB M0212L), and ligation of barcoded sequencing

adapters. Barcoded fragments were amplified via PCR (KAPA HiFi MM, Roche 07958935001). ChIP-seq was performed with a min-

imum of two biological replicates per liposarcoma cancer line and in singlicate for DDLPS samples. Libraries were sequenced as

75-base paired-end reads on an Illumina NextSeq500 instrument.

For the HDM201 time course, Drosophila chromatin (Active Motif #53083) and antibody (Active Motif #61686) were spiked-in to

samples immediately preceding IP. For transcription factor ChIPs 20mg of spike-in chromatin was added per 25mg of input chromatin.

For H3K27ac ChIPs, 50mg of spike-in chromatin was added per 25mg of input chromatin. For all conditions, 2mL of spike-in antibody

was added per IP.

HiChIP
HiChIPwas performed as previously described91 with the exception that an H3K27ac antibodywas used for the immunoprecipitation

(Active Motif #39133). In brief, crosslinked chromatin was digested with MboI. Overhangs were filled in andmarked with Biotin-dATP

(ThermoFisher 19524016) and ends were ligated. Chromatin was then sheared on the Covaris E220 and ChIP was performed over-

night for H3K27ac marked chromatin. Resulting DNA was purified using the Zymo clean and concentrate kit (DCC-100), bound to

Streptavidin M280 beads (Invitrogen 11205D), and tagmented. Libraries were amplified using the Nextera DNA Library Prep kit (Illu-

mina). HiChIP was performed with a minimum of two biological replicates per liposarcoma cancer line and in singlicate for DDLPS

tumors. Libraries were sequenced on a Novaseq S1 (200 cycle kit).

Western blotting
Cells were washed two times with 1x PBS and scraped on ice in RIPA buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5% sodium

deoxycholate, 1% NP-40, 0.1% SDS) supplemented with fresh protease (HALT, Thermofisher) and phosphatase inhibitors
Cell Genomics 3, 100321, July 12, 2023 e3
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(Thermofisher). Protein was quantified and normalized using the BCA Protein Assay kit (Thermo #23227) according to the manufac-

turer’s protocol. Western blotting was performed according to standard protocols.

Drug treatments
HDM201 drug concentrations were optimized for each cell line in order to achieve comparable activation of P53, determined bywest-

ern blot. LPS141 were treated with 100nM HDM201 and LPS853 were treated with 300nM HDM201. For Nutlin-3a treatments

LPS141 cells were dosed with 1mM drug. Cells were plated and the following day normal growth media was removed and replaced

with drug-containing media. Cells were not passaged while on the drug and drug-containing media was changed at least every 2–

3 days. For short time courses (2, 4, 6, and 24 h) drug or DMSO containing media was added at staggered timepoints and all plates

were harvested at one endpoint. Each treatment was performed across at least two biological replicates.

Dose-response curves
Cells were seeded in 96 well plates at the following densities: LPS53 = 500 cells/well, LPS141 = 750, T449 = 1000 cells/well,

T778 = 250 cells/well. The following day regular growth media was replaced with drug-containing media. The optimal dose range

for HDM201, or Navitoclax was determined for each cell line and was tested across 10 half-log doses. For synergy analysis,

HDM201 andNavitoclax were tested as single agents and in combination across a 5 (HDM201) x 4 (Navitoclax) dose responsematrix.

Each plate included 0.1% DMSO as a negative control for growth inhibition. Drug media was changed 48 h after initial treatment.

Plates were incubated in drug at 37�C for a total of 96 h and lysed by adding 20mL Cell Titer-Glo reagent (Promega, Cat. No.

G7570) to 100mL cell media. Luminescence wasmeasured using a Synergy HTX Platereader (BioTek) or GloMax explorer (Promega)

and growth inhibition was calculated relative to DMSO treated wells. All experiments were performed in biological duplicates and

within a given experiment at least 4 technical replicates were tested per condition.

Drug synergy analysis
Drug synergy scores were generated and plotted using the SynergyFinder package 1.6.1.89 Zero interaction potency (ZIP) scores

were calculated without baseline correction and using default parameters with the exception that Emin was specified as 0 and

Emax as 100. Synergy scores represent the percent growth inhibition induced by a drug combination which exceeded the expected

growth inhibition. Expected growth inhibition was calculated based on the effect of each drug as a single agent.

Flow cytometry
For annexin V/PI staining,�13 106 cells were trypsinized andwashedwith PBS. Cells were stained using the DeadCell Apoptosis Kit

(Alexa-fluor 499-AnnexinV/Propidium Iodide) (Invitrogen #V13241) according tomanufacturer instructions. Cells were analyzed using

a Sony SH880S cell sorter. Cell viability status was analyzed using FlowJo v10.8.0 software. Gates were determined using an un-

stained control. Experiments were performed with at least two biological replicates.

For MDM2 flow-FISH, drug treated cells were trypsinized to create a single cell suspension, washed in PBS and fixed 12min in 4%

formaldehyde (Life Technologies, #28908) at room temperature. Cells were washed twice in PBS. Approximately 1 million cells were

permeabilized for 10 min in 0.05% Tween 20 at room temperature and washed once in 2X SCC. Pelleted cells were resuspended in

10mL MDM2 FISH probes (Empire Genomics, MDM2-20-OR) diluted (1:5) in hybridization buffer (Empire Genomics). DNA was de-

natured at 80C for 3 min, and probes were hybridized overnight at 37C. Cells were washed quickly with 0.4X SCC, resuspended

in 2X SCC and incubated 5 min at 37C to remove non-specific probe. Cells were pelleted, resuspended in PBS +2% FBS and

analyzed using a Sony SH880S cell sorter.

Immunofluorescence staining and imaging
For immunocytochemistry cells bound to #1.5 glass coverslips were washed once in PBS and fixed 10 min in 4% formaldehyde (Life

Technologies, #28908) at room temperature. Cells were washed three times in PBS and permeabilized with 0.1% Triton X-100 for

5 min at room temperature. Following three PBS washes, coverslips were blocked with 10% normal goat serum (Life Technologies,

#50062Z) in PBS for 45 min at room temperature. Primary antibodies were diluted in 10% normal goat serum (1:2000 for MDM2 (Ab-

cam, ab226939), 1:500 for p53 (cell signaling, 48818), 1:500 for YY1 (Santa Cruz, sc-7341), and 1:50 for PML (Santa Cruz, sc-966))

and incubated overnight at 4C in 10% normal goat serum. Coverslips were washed three times in PBS, then secondary antibodies

were added at 1:500 dilution for 1 h at room temperature. Coverslips were washed two times in PBS before Hoechst or DAPI

(1:10,000) in PBS was added for 5 min at room temperature. Coverslips were mounted on microscope slides using

VECTASHIELD (Vector Labs, #H-1000-10), then sealed with nail polish.

For immunohistochemistry of primary tumors, snap frozen samples were post-fixed in 4% formaldehyde (Life Technologies,

#28908) at 4�C and then cryoprotected in sucrose solution prior to re-freezing. 10mm sections were prepared on a cryostat and

then permeabilized, blocked and stained as above. Sections were mounted with Fluoromount G (Invitrogen, #00495802).

All coverslips were imaged on a Zeiss LSM980 confocal microscope. Concentration of MDM2 in nuclear foci (Figure 5A) was

imaged in a single z-plane using a 633 oil objective with Airyscan SR-4Y sampling settings. Post image processing was performed

using Airyscan joint deconvolution. Co-stains of MDM2 with PML or YY1 (Figures 5B–5G and S6A–S6D) were imaged in a single

z-plane using a 633 oil objective with confocal settings. MDM2 heterogeneity (Figures 6A, 6B, S7A, and S7B) was imaged in a single
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z-plane using a 253 oil objective with confocal settings. Imageswere processed using cellprofiler software (v4.2.1).88 For a given cell,

masks were generated for each channel to define the nuclear area (Hoechst or DAPI), and area occupied by each protein and fluo-

rescent intensity wasmeasured. The counts for each cell and channel were then plotted using R (v4.1.0). Representative images in all

panels were generated using FIJI87 version 2.0.0-rc-43/1.5h.

Dual MDM2 Immunofluorescence-FISH
Cells were plated on coverslips and processed for MDM2 immunofluorescence as above. Following secondary antibody incubation,

coverslips were washed three times in PBS +0.05% tween 20. Then coverslips were fixed for 20 min in 300mM disuccinimidyl glu-

tarate (Pierce #20513) at room temperature, washed once in PBS, and equilibrated briefly in 2x SCC buffer. MDM2 FISH probes (Em-

pire Genomics, MDM2-20-OR) were diluted (1:5) in hybridization buffer (Empire Genomics). Coverslips were placed on top of 10mL of

diluted probe spotted on a slide. Samples were sealed with rubber cement and denatured at 80C for 20 min and then hybridized at

37C overnight in a humid and dark chamber. Sampleswerewashed oncewith 0.4x SCCand then twicewith 2x SCC+0.1% tween 20.

Samples were incubated for 10 min in DAPI (1:2000) diluted in 2x SCC at room temperature. Samples were briefly washed with PBS

and mounted on microscope slides using SlowFade Gold Antifade Mountant (Invitrogen, #S36936), then sealed with nail polish.

Coverslips were imaged on a Zeiss LSM980 confocal microscope using a 633 oil objective with confocal settings. Multi-channel

Z-stacks were acquired at 0.3 mm spacing. Approximately 35 z-slices were taken per field. Images were processed using FIJI87

version 2.0.0-rc-43/1.5h. The intensity for each channel was summed across the entire z stack. For a given field, nuclear masks

were created by thresholding the DAPI signal using the MaxEntropy model. Then fluorescent intensity for MDM2 IF and FISH signal

wasmeasured for each nucleus. Paired IF and FISH intensities for each cell were plotted in R. Representative images were generated

using FIJI87 version 2.0.0-rc-43/1.5h.

Metaphase spreads
Cells were treated with 0.1 mg/mL KaryoMAX colcemid solution () for 5 h and trypsinized to create a single cell suspension. Cells were

resuspended in prewarmed (37C) 75mM potassium chloride for 15 min. Three drops of fresh fixative solution (3:1 methanol/glacial

acetic acid) were added with gentle mixing. Cells were pelleted and resuspended in 5mL of fixative solution and stored overnight at

4C. The following day cells were washed 3 times with fresh fixative solution. All but 200mL of fixative solution was removed after final

wash. 10mL of cell suspension was dropped on slides that were pre-incubated in HCl for 5 h and rinsed with distilled water. Slides

containing cells were exposed to steam for 30 s, dried, and processed for FISH. Slides were equilibrated briefly in 2x SCC buffer.

MDM2 FISH probes (Empire Genomics, MDM2-20-OR) and control Chromosome 12 probes (Empire Genomics, CHR12-10-GR)

diluted 1:5 in hybridization buffer (Empire Genomics) (1mL MDM2 probe, 1mL Chr12 probe, 8mL hybridization buffer). 10mL of diluted

probe were spotted on a slide. Samples were sealed with rubber cement using a coverslip and denatured at 80C for 3 min and then

hybridized at 37C overnight in a humid and dark chamber. Slides were washed once with 0.4x SCC and then twice with 2x

SCC +0.1% tween 20. Slides were incubated for 10 min in DAPI (1:2000) diluted in 2x SCC at room temperature. Slides were briefly

washed with PBS and coverslips were mounted using SlowFade Gold AntifadeMountant (Invitrogen, #S36936), then sealed with nail

polish. Slides were imaged on a Zeiss LSM980 confocal microscope using a 633 oil objective with confocal settings.

Generation of LPS853 P53 knockout cell line
TP53 knockout experiments utilized pXPR_044, all-in-one CRISPR-Cas9 vector carryingmCherry and sgRNA (gift from JohnDoench

and Dave Root, Broad GPP). The following CRISPR sgRNAs were cloned into the vector: safe harbor 50-GGCTAAATTCCTCT

TATTCA-30; TP53 start site 50-TCGACGCTAGGATCTGACTG-30. LPS853 cells were transfected with 3 mg/mL of lentivirus plasmid

and 5 mL/mL of TransIT-LT1 reagent (MirusBio, MIR2300). The following day cells were selected using fluorescent activated cell sort-

ing (Sony SH800). Gating strategy first involved selecting the live population with forward and side scatter. Untreated cells were used

to set the mCherry threshold gate. Cells expressing the highest mCherry (top 50%) were selected. Genomic DNA was isolated and

the TP53 start site was amplified using the following primer set: F 50-CCCAACCCTTGTCCTTACCA-30; R 50-CAACATG
CAAAGCCCTGTCT-30. CRISPR-mediated disruption of this amplified region was confirmed via sanger sequencing using the

TIDE tool.92

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-sequencing analysis
RNA-seq data weremapped to the GRCh38 reference genome using STAR aligner (v2.6.0c).78 Expression was quantified using the –

quantMode option and Basic twopassMode in STAR, and counts table was generated in R selecting the column representing the

positive-strand counts. Differential expression was calculated using the Bioconductor82 package DESeq2 v(1.32.0).93 In the case

of HDM201 treated samples, the 0h time point was used as a reference and contrasts were generated to the samples corresponding

to 2h, 4h and 6h of HDM201 treatment. Differentially expressed genes (adjusted p value<0.05) were separated into up- and down-

regulated. Genes from each category were further divided in three clusters based on the time-point when they showed their earliest

differential expression. Expression heatmaps were calculated using the Fold-change values extracted from DESeq2, and were

plotted using the ComplexHeatmap package in R.
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Tumor count matrices were subjected to TPM normalization, in which all exons for each gene were combined to determine the

gene length. Expression heat maps were plotted with the ComplexHeatmaps R package using a row-normalized TPM expression

matrix.

TPMmatrices were used to calculate maturity scores for tumors and cell lines using GSVA (v1.40.1)94 with default settings. Genes

listed in Table S5 or the hallmark adipogenesis geneset from GSEA37 were used to generate maturity scores. Genes sets associated

with maturity were defined by calculating mean Pearson correlations for each gene included in Table S5, a mean correlation value

R0.5 defined positively correlated genes and a mean correlation value % �0.5 defined negatively correlated genes.

Gene set enrichment for all gene sets was performed using the web-based metascape portal95 using ‘‘express analysis’’ settings.

ChIP-sequencing analysis
ChIP-Seq data were mapped to the GRCh38 reference genome using STAR aligner (v2.6.0c),78 including parameters –alignIntron-

Max 1 –alignEndsType EndToEnd to make it compatible with genome mapping. Tag directories of the mapped reads were created

using homer (v4.11.1 using hg38 v6.4). Peaks were called with the findPeaks function of homer using the histone style parameters for

H3k27ac ChIP-seq, and the factor style parameters for MDM2, P53, Jun, RUNX and YY1 ChIP-seqs.

Samples that contained spike-ins (SI) weremapped to the dm6 reference genome assembly. The number ofmapped SI readswere

used to create normalization factors (NF):

NF = SImax =SIi

WhereSImax represents themaximumnumber of tags across samples, andSIi is the number of tags for a given sample. Sampleswere

normalized using Spike In normalization factor when available, and using RPGC normalization otherwise for downstream analyses.

For all mitochondrial-related analyses, the ChIP-seq libraries were processed as mentioned above, with the exception of using a

mito masked GRCh38 genome assembly for mapping the libraries. In this assembly, the genomic regions that are highly similar to

mtDNA sequences are masked.

H3K27ac peakswere used to define active enhancers in dedifferentiated liposarcoma cells.WemergedH3K27ac peaks from 8 cell

lines and 4 dedifferentiated tumors using mergePeaks in homer,83 and selected H3K27ac merged peaks that were supported by

peaks from at least two samples. H3K27ac regions that overlapped promoters were excluded from further enhancer analysis. The

set of promoter regions was defined using the 500bp window upstream of Transcription Start Sites in NCBI’s RefSeq GRCh38

assembly.

In order to assess the binding dynamics of the transcription factors in our study, TF peaks fromChIP replicates weremerged into an

aggregated list of peaks for each cell line. To study the DDLPS programs and create the genomic circuitry, we defined a consensus

set of peaks that were present in both DDLPS cell lines (LPS141 and LPS853) for all TFs analyzed.We used bedtools85 (v2.29.0) func-

tions computeMatrix and plotHeatmap to generate binding heatmaps of the transcription factors. TF binding sites were divided into

promoter and enhancer regions.We defined three different types of binding sites. P53 sites were defined by P53 binding.MDM2 sites

were defined using MDM2-binding sites that were not co-occupied by P53. Finally, Jun and Runx sites were defined using genomic

locations that are bound by either of these two factors, and are not co-bound by MDM2 or P53.

For each cell line (HCT116, U-2 OS, LPS141 and LPS853) we obtained a set of peaks that was present in twoChIP replicates, these

peak sets were used to study the dynamics of MDM2 and P53 binding sites in supraphysiologic levels of MDM2. The resulting peak

files were overlapped with promoters/enhancers lists to determine the proportion of MDM2 and P53 peaks that bind regulatory re-

gions, and how these proportions change between samples with wildtype and supraphysiologic MDM2 levels.

Genomic regions underlying peak binding sites were extracted and subjected to motif enrichment analysis. This analysis was per-

formed using the Homer function findMotifsGenome.pl, using hg38 genome (v6.4) and using the ‘‘knownmotifs’’ database to extract

TF footprints. A random background was used, by setting the -size option to 200bp, 500bp and 1.5kb when analyzing TF peaks, pro-

moters or H3K27ac as input sequences, respectively. Significant enriched motifs (p value%0.01) were ordered by the transcription

factor family. Enrichment metrics presented in Figures 2B and 4H correspond to themotif that is represented in the highest percent of

target sequences per TF family.

SNP analysis from ChIP inputs
Mapped bam files were query sorted using samtools and HTSlib.84,86 The insert size field and mate coordinates were filled in the

query-sorted bam files using samtools fixmate. These bam files were then sorted by coordinate. Finally, duplicates were marked us-

ing the markdup option of samtools.

SNPs were called using the call option of bcftools with the option -m, to allow for rare-variant calling, and the output was set to vcf.

We kept variants that fulfill the following criteria: (1) covered at least 5 times, (2) have a mapping quality score above 39, (3) Have an

SNP calling quality score above 19.

Copy number variant analysis
Whole cell extract libraries weremapped to the hg38 genome using Bowtie2.We used the option "–very-sensitive" to obtain the high-

est possible number of uniquelymapped reads. The output sam fileswere then converted to bamfiles and sorted using Samtools. For

Copy Number Variant (CNV) calls, we used the Epianalysis software (in preparation). First, the genome was binned into 5kb regions.
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Then, the number of uniquely mapped reads was measured in each bin. The bin coverage was corrected using mapping quality

scores as previously described.96 Finally, the CNAnorm97 package was used to identify underlying ploidy in the binned genome,

generating a correction factor corresponding to the FC relative to a diploid coverage. These values were plotted as line plots using

ggplot2.

HiChIP analysis
Data were quality and adapter trimmed using seqPrep98 and mapped to the reference genome (hg38) using Bowtie2.99,81 Contact

matrices were created with juicebox79 as previously described.91 Chromatin loops were called with hichipper,80 using H3k27ac

peaks and hg38 promoters as the predefined peak set to call anchors as in.91 For each pair of potential anchors, hichipper counts

the number of read pairs that support their interaction and uses the mango background correction model to estimate the probability

of two regions interacting given their genomic distance. We filtered out contacts with an adjusted p value higher than 0.05, and only

contacts with at least 10 Paired-End Tags (PETs) were considered for further analyses.

We classified loops in three separate categories depending on the genomic regions where the loop anchors mapped, termed

enhancer-enhancer (E-E), enhancer-promoter (E-P), and promoter-promoter (P-P) loops. Each loop type represented a different

genomic feature, and contributed to chromatin structure and/or gene regulation. We used bedtools tomap transcription factor peaks

to regulatory loops. We tested the proportion of loop types associated with each factor, and compared them to the overall proportion

of E-E, E-P and P-P loops. We used a Fisher exact test (two-tailed) to determine whether a loop type is significantly associated with

any of the TFs tested.

Integrating the HiChIP topology maps with transcription factor binding sites allowed us to map the circuitry associated with each

TF. We associated the peaks defined above (section transcription factor circuitry analysis) with the topology maps from HiChIP, and

defined a set of target genes associated with each of the transcription factors by connecting the TF binding sites to the gene pro-

moters, using E-P and P-P loops. We defined three different types of transcriptional regulatory circuits. P53 circuits were defined

by P53 binding. MDM2 circuits were defined using MDM2-binding sites that were not co-occupied by P53. Finally, Jun and Runx

circuits were defined using genomic locations that are bound by either of these two factors, and are not co-bound by MDM2 or

P53. In order to isolate the peaks associated with the genes in each regulatory circuit, we used bedtools to extract the peaks that

looped to the promoters of the genes of interest. Such peak lists were used for further genomic analysis such as metagene plots

across drug treatment samples.

We defined a promoter-promoter hub (pp hub) as a set of 4 or more interconnected HiChIP loops whose anchors span promoter

regions. For this study, we defined pp hubs in LPS141 and LPS853 liposarcoma cell lines separately, and overlapped them to create a

common list of pp hubs. We visualized pp hubs defined in cell lines in H3K27ac HiChIP datasets of three LPS tumors. We also mined

12 existing H3K27ac datasets20 of normal tissue and processed them in HiC-Pro81 and hichipper,80 using the list of hg38 promoters

as the set of reference peaks to calculate the anchors.

The integrative visualization of genomics data was done using the Sushi R package.100 To visualize the topology networks in pro-

moter-promoter hubs, we used cytoscape (v3.8.2).101 We transformed anchors into nodes and created edges between them if they

were connected by a loop in the HiChIP data. We added properties to nodes and edges, including gene names and promoter co-

ordinates in nodes, and PET score in the edges. These properties allowed us to filter hubs by PET score or number of anchors.

Hub gene correlation in TCGA datasets
We further tested the significance of the pp hubs by correlating the expression of genes belonging to these hubs in TCGA datasets.

We extracted a log-transformed and normalized expression matrix from the TCGA (https://pancanatlas.xenahubs.net) and sub-

sampled a matrix that contained the DDLPS samples. We calculated expression correlation only in hubs that spanned at least three

expressed genes. For each hub, we calculated the Pearson correlation between every two genes in the hub, and obtained the mean

of the absolute value of all pairwise correlations for a given hub. For each pairwise correlation we selected a pair of genes that were

separated by the same genomic distance to be used as a control. The two correlation distributions were compared using a two-tailed

t-test in R.
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