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Background: Epithelial-mesenchymal transition (EMT) is a critical process in

tumor invasion and metastasis. EMT has been shown to significantly influence

the invasion, metastasis, and poor prognosis in lung adenocarcinoma (LUAD).

This study aimed to develop a novel EMT-related prognostic model capable of

predicting overall survival (OS) in patients with LUAD.

Methods: A total of 283 LUAD patients from TCGA RNA-seq dataset were

assigned to a training cohort for model building, and 310 LUAD patients from

GEO RNA-seq dataset were assigned to a validation cohort. EMT genes were

acquired from MsigDB database and then prognosis-related EMT genes were

identified by univariate Cox regression. Lasso regression was then performed to

determine the genes and the corresponding variables to construct a prognosis

risk model from the training cohort. Furthermore, characteristics of the tumor

microenvironment (TME), mutation status and chemotherapy responses were

analyzed to assess the differences between the two risk groups based on the

prognostic model. In addition, RT-qPCR was employed to validate the

expression patterns of the 6 genes derived from the risk model.

Results: A six-gene EMT signature (PMEPA1, LOXL2, PLOD2, MMP14,

SPOCK1 and DCN) was successfully constructed and validated. The

signature assigned the LUAD patients into high-risk and low-risk groups. In

comparison with the low-risk group, patients in the high-risk group had a

significantly lower survival rate. ROC curves and calibration curves for the risk
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model demonstrated reliable stratification and predictive ability. The risk model

was robustly correlated with multiple TME characteristics. Besides, the data

showed that patients in the low-risk group had more immune activities, higher

stemness scores and cytolytic activity scores and higher TMB. In addition, RT-

qPCR results revealed that PMEPA1, LOXL2, PLOD2, MMP14, and SPOCK1 were

notably upregulated in LUAD tissues, while DCN was downregulated.

Conclusion:Our study successfully developed a novel EMT-related signature to

predict prognosis of LUAD patients and guide treatment strategies. The six

genes derived from the prediction signature might play a potential role in

antitumor immunity and serve as promising therapeutic targets in LUAD.

KEYWORDS

epithelial-mesenchymal transition, lung adenocarcinoma, prognosis, tumor immune
microenvironment, immunotherapy, chemotherapy

Introduction

Lung cancer is the leading cause of death from cancer

worldwide, which contributed to approximately 1,800,000 deaths

in 2020 (Sung et al., 2021). Themajority of the lung cancers are lung

adenocarcinoma (LUAD), which are highly invasive, with a rapid

metastatic spread, highlighting the systemic threat of the disease

(Devarakonda et al., 2015).

In the past two decades, there have been important advances

in characterization of mutational spectrum and molecular

subtypes of LUAD, which have led to development of targeted

therapies resulting in dramatically improved patient outcomes

(Rotow and Bivona, 2017). However, clinical application in

targeting RAS signaling or rescuing the tumor suppressor

TP53 gene, which have been recommended as LUAD

therapies, remains challenging (Kim et al., 2021). Besides,

treatment regimens that target epidermal growth factor

receptor (EGFR) and anaplastic lymphoma kinase have only

benefitted a small percentage of LUAD patients (Wang Q. et al.,

2020). Hence, there is an urgent need for identification of

prognostic biomarkers as well as effective drug targets.

Spread of cancer cells due to metastasis is the leading cause of

death in patients with primary lung cancer (Prateep et al., 2018).

Epithelial-mesenchymal transition (EMT) is an important

mechanism driving the tumor metastasis process, where epithelial

cells lose theirmorphology and subsequently change tomesenchymal

phenotypes, thereby acquiring features of mesenchymal cells such as

motility and invasiveness (Iwatsuki et al., 2010). Loss of E-cadherin is

a hallmark of EMT, which leads to decreased intercellular adhesion

and enhanced cell motility (Thiery et al., 2009). Previous data have

suggested that EMT is associated with neoplastic aggressiveness and

progression in various malignancies including LUAD.

Tumor microenvironment (TME) is comprised of stromal and

immune cells that secrete a variety of cytokines, chemokines and

growth factors, which have been shown to induce EMT in nearby

cancer cells through direct activation of various EMT-induced

transcription factors (EMT-TFs) or inhibition of expression of

effectormolecules that promotemesenchymal cell state (Gupta and

Massagué, 2006; Grivennikov et al., 2010). Besides, EMT has also

been reported to play a vital role in tumor malignancy, immune

regulation and initiation of therapeutic responses by inducing cell

phenotypic plasticity, inflammatory, and immunosuppressive

TME, leading to resistance to immunotherapy and

chemotherapy (Terry et al., 2017). In addition, EMT status was

associated with the activation of varied immune checkpoint

molecules (Datar and Schalper, 2016). Therefore, it is important

to understand the underlying mechanisms mediating the

interaction between EMT and TME. The development of an

EMT-related signature may contribute to the provision of

potential biomarkers for LUAD and help enhance the

understanding of the immunogenomic profile of LUAD.

In this study, we developed an EMT-related signature (ERGS)

related to prognosis based on The Cancer Genome Atlas (TCGA)

database which was validated by the Gene Expression Omnibus

(GEO) database. The results demonstrated that LUAD patients

with high-risk scores were strongly associated with shorter overall

survival (OS) compared with patients in the high low-risk score

group. We then explored the difference in immune infiltration and

mutation landscape between the two risk groups and analyzed

patients’ response to the immune checkpoint inhibitor (ICI)

therapy and chemotherapy. Together, the high-risk group was

more likely to experience immunosuppression, thus less likely to

benefit from either of the treatment options, which is consistent

with the EMT features. In a nutshell, our study highlights a

functional role of the ERGs and uncovers a potential prognostic

biomarker for individualized treatment of LUAD.

Methods

Collection of the clinical samples

A total of 10 pairs of LUAD tissues and adjacent non-tumor

tissues were collected from patients who received surgical
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resection at Shanxi Cancer Hospital (Shanxi, China) from

January to September 2021. The patients were not subjected

to any anti-cancer treatment before surgery. Tissue specimens

were frozen in liquid nitrogen within 30 min of resection and

stored at –80°C for analysis. Our study was approved by the ethics

committee of Shanxi Cancer Hospital (sxszl-F-375), and was

conducted in accordance with the principles of Declaration of

Helsinki.

Dataset acquisition and processing

The RNA-sequencing data and corresponding clinical

information of 341 samples in the TCGA-LUAD cohort were

obtained from the UCSC Cancer Genomics Browser database

(https://genome-cancer.ucsc.edu/) and used as the training

cohort, which included 283 tumor samples and 58 tumor-

adjacent tissue samples. Another 310 LUAD samples in the

GSE72094 from the GEO database (https://www.ncbi.nlm.nih.

gov/geo/) were used as an external validation cohort. Gene

expression profiles were all quantified with fragments per

kilobase of transcript per million mapped reads (FPKM) and

normalized using log2-based transformations. Because the data

from TCGA and GEO datasets are publicly available, there was

no requirement for institutional review board approval and

informed consent from the patients. EMT-related genes

(ERGs) from the gene set “HALLMARK_EPITHELIAL_

MESENCHYMAL_TRANSITION” were downloaded from

GSEA (https://www.gsea-msigdb.org/gsea/index.jsp) as shown

in Supplementary Table S1.

Identification of differentially expressed
ERGs

The “limma” package in R software was used to identify

differentially expressed genes (DEGs) between LUAD and

tumor-adjacent tissue samples, where |log2FC| > 0.32 and

FDR < 0.05 were set as filters. The Venn diagram was

generated using the “Venn Diagram” R package to identify

DEGs related to the EMT process. The DE-ERGs were

visualized as volcano plots and heat maps by “pheatmap” and

“ggplot2” R packages, respectively.

Construction and establishment of the
ERG prognostic signature

Univariate Cox regression analysis was employed to

determine the DE-ERGs associated with OS of the patients.

The DE-ERGs most related to OS with a p < 0.05 were

further picked out for least absolute shrinkage and selector

operator (LASSO) Cox regression. The analysis narrowed

down the candidate DE-ERGs which were used to construct a

prognostic model. To find optimal penalization terms, a penalty

regularization parameter (λ) was determined by ten-fold cross

validation following the minimum criteria (i.e., the value of λ
corresponding to the lowest partial likelihood deviance). The risk

score of each patient was calculated based on the normalized

expression level of each gene in the prognostic signature and its

relevant regression coefficients. The formula of the model was:

Risk score = ∑(expression of signature genes × corresponding

coefficient). Based on the median of the risk score, LUAD

patients were assigned into high- or low-risk groups.

Evaluation and validation of the ERG
prognostic signature

To determine the potential value of the ERG prognostic

signature in predicting the prognosis in LUAD patients,

Kaplan-Meier survival curves were utilized to assess the

prognostic value in the high- and low-risk groups using the

“survminer” R package. The predictive ability of the ERG

prognostic signature was assessed using the AUC values of the

time-dependent receiver operating characteristic (ROC) curves

generated by the “pROC” package. To explore the distribution of

different risk groups, we performed t-SNE for cluster

visualization using the “Rtsne” R package. In addition,

univariate and multivariate Cox analyses were conducted to

determine whether the risk score was independent from other

clinicopathological characteristics (age, gender, T stage, N status

and smoking status). Thereafter, the ERG prognostic signature

was validated in an independent cohort obtained from the GEO

database.

Construction of the nomogram

Based on all independent prognostic factors determined by

the multivariate analysis, we established a nomogram to predict

1-, 3-, and 5-years OS of LUAD patients using the “rms” R

package. The concordance index (C-index) was calculated to

appraise the discriminative ability of the nomogram while the

calibration curve was performed to evaluate the accuracy of the

nomogram.

Mutation analysis

The “TCGAbiolinks” R package was used to download the

somatic mutation profiles based on the segment mean value log2

(copy-number/2) of LUAD patients from the TCGA cohort,

while the “maftools” package was employed for analysis and

visualization of the data. We then used Oncoplot to display the

top 20 genes with high mutation frequency in LUAD patient
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samples in high- and low-risk groups. Besides, the tumor

mutation burden (TMB) was calculated as the total number of

somatic, coding, indel mutations and base substitution for each

mega-base of the genome under analysis. The correlation

between TMB levels and risk score was analyzed using the

Spearman’s correlation. In addition, we assessed the effect of

the risk score combined with the TMB on the survival of LUAD

patients.

Analysis of tumor immune
microenvironment

To identify the immune infiltration characteristics in LUAD,

the 22 immune cells from each LUAD sample from the TCGA

cohort was quantified based on standardized gene expression

profile using the CIBERSORT algorithm. The “ESTIMATE” R

package was employed to compute the stromal score, immune

score, and estimate score. As a measure of inflammation, the

cytolytic activity (CYT) score was computed as the geometric

mean of the RPKM expression of granzyme A (GZMA) and

perforin-1 (PRF1) mRNA expression levels in the tumor tissues

(Wakiyama et al., 2018). We also computed mRNA stemness

index (mRNAsi) using the “TCGAbiolinks” R package based on

the mRNA levels obtained from one-class logistic regression

machine learning (OCLR) algorithm (Guo et al., 2021), where

a higher mRNAsi represents a greater tumor dedifferentiation

and higher cancer stem cell levels.

Assessment of immunotherapy response

Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm was employed to evaluate the likelihood of each

sample to respond to immunotherapy. TIDE algorithm is a

computational method used to model two primary

mechanisms of tumor immune evasion: the induction of

T cell dysfunction in tumors with high infiltration of cytotoxic

T lymphocytes (CTL) and prevention of T cell infiltration in

tumors with low CTL level. Immune checkpoint expression has a

significant impact on the immunotherapy treatment responses.

To further investigate the influence of the ERG scores on

immunotherapy, the differential expression of immune

checkpoint-related genes between the two ERG subgroups

were analyzed.

Estimation of chemotherapy response

We also predicted the chemotherapy response of each LUAD

patient based on information obtained from the Genomics of

Drug Sensitivity in Cancer (GDSC) database. Four common

chemotherapeutic agents (cisplatin, paclitaxel, gemcitabine,

and docetaxel) and two small molecule inhibitors targeting

EGFR (erlotinib and gefitinib) were selected and used at

default parameters, which are approved in the treatment of

LUAD cases. The prediction procedure was conducted using

the “pRRophetic” R package where sensitivity to the drug was

quantified by half-maximal inhibitory concentration (IC50)

predicted through ridge regression. A low IC50 indicates that

the patients are more sensitive to the drug.

Gene set enrichment analysis

For further exploration of differences in biological pathways

between high-risk and low-risk groups, GSEA was performed to

assess Gene Ontology (GO) and the Kyoto Encyclopedia of

Genes and Genomes (KEGG) using “clusterProfiler” R package.

Reverse transcription-quantitative PCR

RT-qPCR was employed to quantify the expression of genes

in ERGS in clinical specimens. We extracted total RNA from

the LUAD and adjacent non-tumor tissues using the TRIzol

reagent (Invitrogen, CA, United States). We synthesized cDNA

from the total mRNA using PrimeScriptTM RT Master Mix

(RR036B, Takara). Quantitative PCR was performed to analyze

the mRNA expression levels of the ERGs genes using GoTaq®
qPCR Master Mix (Promega, A6001). The RT-qPCR was

performed in ABI Vii7 Sequence detection system (ABI,

United States). We then compared the mRNA expression

levels of PMEPA1, LOXL2, PLOD2, MMP14, SPOCK1, and

DCN using the 2-ΔΔCT method. The primer sequences are

shown in Table 1.

TABLE 1 Primers used in RT-qPCR.

Gene Primer sequences (59-39)

PMEPA1 FORWARD CGTAGGTGAAAAGGCAGAACA

REVERSE GACACAGCTCAACAAAGAAACGT

LOXL2 FORWARD ACAGAATGTGAAGGAGACATCC

REVERSE TGATGTTGTTGGAGTAATCGGA

PLOD2 FORWARD GGATGCAGATGTTGTTTTGACA

REVERSE GCTTTCCATGACGAGTTACAAG

MMP14 FORWARD CAAGATTGATGCTGCTCTCTTC

REVERSE ACTTTGATGTTCTTGGGGTACT

SPOCK1 FORWARD CAGAAACTGGAATCCCAACAAG

REVERSE TTGCACTTGACCAAATTCGAAG

DCN FORWARD GACAACAACAAGCTTACCAGAG

REVERSE TGAAAAGACTCACACCCGAATA

GAPDH FORWARD TGACTTCAACAGCGACACCCA

REVERSE CACCCTGTTGCTGTAGCCAAA
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Immunohistochemical analysis

To further validate the expression f the signature genes, we

analyzed immunohistochemistry (IHC) staining data of ERG

proteins in lung cancer and normal lung tissues from the Human

Protein Atlas (HPA) online database (https://www.proteinatlas.

org/).

Statistical analysis

All statistical analyses and visualization were performed using

R version 4.1.3. Differences between two groups were compared via

the Wilcoxon rank-sum test or Kruskal-Wallis test in cases where

the data did not follow normal distribution and the variance was

unknown. The survival difference was evaluated using log-rank

tests. In addition, correlation analyses between two continuous

variables were evaluated by Spearman rank correlation test while

K-nearest neighbor (k-NN) imputation was performed to impute

themissingAUC values. A P value of less than 0.05 (two-sided) was

considered statistically significant.

Results

Patient characteristics

The flow chart of our study is shown in Figure 1. A total of

341 LUAD patients from the TCGA cohort were defined as a

training set, while 310 patients from the GSE72094 cohort

were used for external validation. The detailed clinical

information of these patients is as summarized in

Supplementary Table S2.

Identification of differentially expressed
ERGs

Through the differential gene screening analysis, we

retrieved 149 differentially expressed ERGs, which

included 83 downregulated and 66 upregulated genes as

shown in Figure 2A. The expression of the ERGs in LUAD

samples and normal samples was displayed in a heat map

(Figure 2B).

FIGURE 1
The flow chart of our study.

Frontiers in Genetics frontiersin.org05

Li et al. 10.3389/fgene.2022.1008416

https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1008416


Construction and assessment of ERGs

To establish a prognostic model, Cox regression and LASSO

regression were performed in the training set. First, we employed

univariate Cox proportional hazard regression to identify

prognosis-related genes from 149 DE-ERGs. Using a p

value <0.05, 6 prognosis-related genes were identified

(Figure 3A) (Supplementary Table S3). The 6 prognosis-related

genes were further included in LASSO Cox regression based on the

optimal value of λ to eliminate overfit genes and narrow down the

range of model genes (Figures 3B,C) (Supplementary Table S4).

After the LASSO regression analysis, 6 ERGs were used to

construct the prognostic model consisting of PMEPA1, LOXL2,

PLOD2, MMP14, SPOCK1 and DCN genes (Figure 3D).

According to the coefficients and standardized expression of the

six genes, the risk score of each LUAD patient from the TCGA

dataset was calculated as follows: Risk Score = (−0.282*DCN) +

(0.105*LOXL2) + (0.041*MMP14) + (0.071*PLOD2) +

(0.149*PMEPA1) + (0.03*SPOCK1) (Supplementary Table S5).

Taking the median risk score of 0.104 as cut-off, the patients were

divided into high- (N = 142) and low-risk groups (N = 141). The

t-SNE analysis revealed that the patients in different risk groups

were distributed in two directions (Figure 4A). We defined the risk

scores rank distribution, survival status and expression patterns of

the 6 ERGs in LUAD patients (Figure 4B). Besides, the Kaplan-

Meier survival analysis demonstrated that patients in the high-risk

group had significantly poorer OS compared to those in the low-

risk group (p < 0.001) (Figure 4C). In addition, as depicted in

Figure 4D, the AUC value of the ROC curves for 1-year, 3-year, and

5-year OS was 0.685, 0.705 and 0.620, respectively, in the TCGA

cohort.

Validation of the prognostic signature

Using the same formula and the cut-off value described

above, patients in the GSE72094 cohort (N = 310) were

stratified into the high-risk group (N = 118) and low-risk

group (N = 192). Likewise, t-SNE analysis in the

GSE72094 cohort confirmed that the patients in different risk

groups were distributed into two directions (Figure 5A). The risk

scores rank distribution, survival status and expression patterns

of the 6 ERGs in the LUAD patients were shown in Figure 5B. In

line with the results from the TCGA dataset, patients in the high-

risk group showed significantly worse OS as opposed to those in

the low-risk group (p = 0.00048; Figure 5C). ROC analysis

demonstrated that the ERGs exhibited precise predictive

capacity. AUCs at 1-, 3- and 5-year OS was 0.621, 0.670, and

0.878, respectively (Figure 5D). Together, these results indicated

that the established prognostic model was capable of universal

application.

Construction and evaluation of the
nomogram

To further evaluate the effect of the ERGs in predicting

prognosis, we employed univariate and multivariate Cox

regression analyses. Results from the univariate Cox regression

analysis showed that T, N, stage and risk score were all

significantly associated with OS, while the multivariate Cox

regression analysis indicated that N stage and risk score were

correlated with OS in patients with LUAD (HR:1.681, 95% CI

(1.226–2.307), p < 0.001; HR: 1.302, 95% CI (0.936–1.811), p <

FIGURE 2
Analysis of differentially expressed ERGs. (A) Volcano plot showing the downregulated and upregulated ERGs. (B) Heatmap of the differentially
expressed ERGs in LUAD.
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0.001) (Figure 6A). Moreover, the regression analyses in the

GSE72094 indicated that the pathological stage and risk score

were independent prognostic factors for OS (Figure 6B). These

data demonstrated that the signature was an independent risk

factor for survival in patients with LUAD.

We then developed a nomogram premised on the results from

the multivariate Cox regression including the N stage and risk score,

to predict 1-year, 3-year and 5-year OS, which contributed to

defining higher risk scores (range 0–100 points) for the worse OS

(Figure 6C). Each variable was allocated a score on the point scale.

After summing up the points, the estimation of the survival likelihood

was achieved by drawing a vertical line between the total points axis

and the survival probability axes. Consistent with our previous

findings, the nomogram illustrated the risk score as the prevailing

contribution to prognosis compared with conventional clinical

characteristics. In addition, the C-index was 0.715,896 and the

calibration curves demonstrated that the predicted survival

probability were highly consistent with the actual one (Keynesian

cross) for 1-, 3-, and 5-year OS, which showed that this nomogram

had great prediction performance (Figure 6D).

Gene set enrichment analyses

To evaluate the potential mechanisms of the ERGs in the high

and low risk groups, we performed GSEA to identify GO terms

and KEGG pathways in the TCGA cohort (p < 0.05). The GO

analysis showed that the most concentrated biological processes

in the high-risk group included cell aggregation, detection of

chemical stimulus involved in sensory perception of bitter,

detection of chemical stimulus involved in sensory perception

of taste, immature T cell proliferation, and tertiary alcohol

metabolic process (Figure 7A), while the most enriched

biological processes in the low-risk group were cytoplasmic

translation, formation of cytoplasmic translation initiation

complex, negative regulation of chromatin silencing,

ribosomal small subunit assembly and SRP-dependent co-

translational protein targeting to membrane (Figure 7B). On

the other hand, the KEGG analysis showed that the genes in the

high-risk group were mainly enriched in pathways such as

chemical carcinogenesis-DNA adducts, drug metabolism-

cytochrome P450, glutathione metabolism, metabolism of

FIGURE 3
Construction of the ERG prognostic signature. (A) The forest plots illustrate univariate Cox analysis of the six genes significantly associated with
OS. (B) Ten-time cross-validation for tuning parameter selection in the LASSO model. (C) LASSO coefficient profiles of the six ERGs significantly
associated with OS. (D) The expression level of the 6 genes identified by Lasso regression analysis.
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xenobiotics by cytochrome P450 as well as protein digestion and

absorption (Figure 7C). The genes in the low-risk group were

mainly enriched in aminoacyl-tRNA biosynthesis, citrate cycle

(TCA cycle), proximal tubule bicarbonate reclamation, ribosome

biogenesis in eukaryotes and RNA degradation (Figure 7D).

Moreover, most of the GO terms and KEGG pathways

enriched in our analysis were closely associated with the

occurrence and development of LUAD, which indicated that

the ERGsmay play a key role in cancer development and revealed

potential pathways that could serve as therapeutic targets

in LUAD.

Analysis of the mutational landscape
based on ERGS

In further characterize the high- and low-risk groups at

the genomic level, the mutation status of both groups was

analyzed. Results showed that missense mutations were the

most prevalent of all mutation types followed by nonsense and

frameshift deletions in both groups. The main variant was

single nucleotide polymorphism (SNP), in which the single-

nucleotide variant (SNV) with T>G was the most frequent

(Figure 8A,B). The top 20 most common mutated genes in the

high- and low-risk groups ranked based on percentages are

shown in Figures 8C,D. In the low-risk group, 86.93% of the

samples carried mutations. The top 10 mutated genes were

TTN, CSMD3, MUC16, LRP18, RYR2, USH2A, TP53, FLG,

ZFHX4, and ZNF536. The mutation frequency was higher in

the high-risk group (94.74%) compared with the low-risk

group. The top 10 factors linked to mutations were TTN,

MUC16, RYR2, CSMD3, TP53, USH2A, ZFHX4, LRP1B,

KRAS, and FLG. Subsequently, the relationship between the

TMB and the risk score was examined. It was found that the

risk score was positively correlated with TMB (R = 0.14, p <
0.05, Figure 8E), suggesting that the risk score could be an

FIGURE 4
Analysis of the prognostic model in the training set. (A) t-SNE was used to evaluate whether the samples could be grouped correctly based on
the ERGs risk score. (B) Heatmap showing the expression of six crucial genes in high- and low-risk groups and the distribution of risk scores and
survival status of the LUAD patients with increasing risk score. (C) KM survival analysis between the high- and low-risk groups. (D)ROC curves analysis
of the ERGs on OS at 1 year, 3 years, and 5 years.
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accurate indicator of the characteristics and performance of

TMB in tumors. Further analysis revealed that the TMB status

did not affect the survival outcome predicted using the risk

score. The KM curve showed that the survival outcome was

different between the subgroups (high-risk and high TMB vs.

high-risk and low TMB, low-risk and high TMB vs. low-risk

and low TMB, p = 0.018; Figure 8F). The low-risk and low

TMB subgroup showed the highest overall survival rate,

whereas the high TMB and high-risk group had the lowest

survival rate.

Evaluation of immune infiltration status

The CIBERSORT tool was utilized to calculate the

infiltration degree of 22 immune cells (Figure 9A). Results

showed that the resting memory CD4 T cells, gamma delta

T cells, monocytes, resting mast cells, and resting dendritic cells

were higher in low-risk group compared with the high-risk

group. On the contrary, the high-risk group had high

proportions of activated memory CD4 T cells, resting NK

cells, M0 macrophages, activated mast cells and neutrophils

compared with the low-risk group. Subsequently, we explored

the relationship between immune cells and the risk score. It was

found that the risk score was positively associated with the level

of activated memory CD4 T cells, M0 macrophages, activated

dendritic cells, activated mast cells, and resting NK cells (p <
0.05, Supplementary Figure S1A–E), however, it was negatively

correlated with the level of T cells CD4 memory resting,

macrophages M2, eosinophils, mast cells resting, and

dendritic cells resting (p < 0.05, Supplementary Figure

S1F–J). Having identified the effects of ERGs on the

regulation of TME remodeling, we further investigated

whether ERGs expression levels were correlated with the

abundance of immune cells. It was identified that these six

prognostic genes were differentially correlated with immune

cell infiltration (Supplementary Figure S2). Furthermore, the

estimate score, immune core, and stromal score were higher in

FIGURE 5
Analysis of the prognostic model in the test set. (A) t-SNE was used to evaluate whether the samples could be grouped correctly based on the
ERGs risk score. (B)Heatmap showing the expression of six crucial genes in high- and low-risk groups and the distribution of risk scores and survival
status of the LUAD patients with increasing risk score. (C) KM survival analysis between the high- and low-risk groups. (D) ROC curves analysis of the
ERGs on OS at 1 year, 3 years, and 5 years.
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the low-risk group compared with the high-risk group (p <
0.001, Figures 9B–D), suggesting that the infiltration levels of

immune and stromal cells were higher in the low-risk group. In

comparison, the high-risk group had low CYT score (p < 0.05)

and high mRNAsi score (p < 0.001, Figures 9E,F). This

demonstrated that patients in the high-risk group had lower

antitumor immunity and higher neoplastic stemness.

Consequently, tumor cells in these patients had stronger

self-renewal, differentiation, and proliferation ability, which

may explain their worse OS(Wang et al., 2021b).

Assessment of chemotherapy efficacy

In subsequent analyses, we further explored the association

between the ERGS and efficacy of chemotherapy in LUAD.

Results showed that patients in the low-risk group had

significantly lower IC50 values and were more sensitive to

paclitaxel (p < 0.0001), docetaxel (p < 0.0001), and

gemcitabine (p < 0.05) compared with those in the low-risk

group, which suggested that the constructed model could

effectively predict efficacy and sensitivity to chemotherapy

(Figure 10E).

Validation of gene expression

To validate the expression profile of ERGs in LUAD

patients, clinical specimens were collected from LUAD

patients, together with adjacent normal tissue. These

specimens were analyzed using RT-qPCR. It was found that

LOXL2, PLOD2, MMP14 and SPOCK1 were upregulated in

tumor samples, whereas DCN was downregulated in tumor

specimens (Figure 11).

Validation of protein expression

The HPA is a public database with millions of

immunohistochemical images and is used by researchers to

compare protein expression patterns between normal and

tumor tissues. Because the lung cancer data were not classified

according to histological type in HPA, we analyzed the IHC

staining of six ERGs in lung cancer to verify their expression

levels. Notably, only protein expression staining images of five

genes (DCN, LOXL2, PLOD2, MMP14, and SPOCK1) were

found in HPA. Moreover, the results showed that the

expression levels of LOXL2, PLOD2, MMP14 and

FIGURE 6
Independent prognostic analysis of the prognostic model. (A) Independent prognostic factors in the training set. (B) Independent prognostic
factors in the test set. (C) The nomogram to predict overall survival was created based on independent prognostic factors. The 1-year, 3-year, and 5-
year survival rate is predicted according to the total score. (D) The correction curve based on the prediction model.
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SPOCK1 was higher whereas that of DCN was lower in tumor

tissues compared with normal tissues (Figure 12).

Discussion

The pathologic stage is a critical marker used for prediction of

the prognosis of LUAD in routine clinical practice. However, the

progression of LUAD is highly heterogenous in terms of genetic

and epigenetic presentations (Lu et al., 2021). For this reason,

patients with the same stage of disease may have different clinical

outcomes (Yao et al., 2021). Accurate prognosis analysis is a critical

factor of precision medicine in stratifying risks and developing an

optimal management plan. A growing body of research has

revealed that EMT process regulate several aspects of cancer

cells including invasion, metastasis, refractory responses to

chemotherapy and immunotherapy, immunosuppression, and

acquisition of stem cell-like properties. Studies have also

reported that the EMT process has been linked to metastasis

and treatment resistance in LUAD (Wang et al., 2021a).

Therefore, we constructed and validated a comprehensive

signature based on EMT-related genes to predict the prognosis

of LUAD patients using GEO and TCGA dataset.

The proposed signature consisted of six genes, DCN,

PMEPA1, LOXL2, PLOD2, MMP14, and SPOCK1. Among

them, PMEPA1, LOXL2, PLOD2, MMP14, and SPOCK1 were

associated with poor outcomes whereas DCNwas correlated with

good prognosis of LUAD patients. PMEPA1 has been shown to

induce tumorigenesis by interfering with several signaling

cascades such as mutated p53, Hippo signaling, Wnt, and

EGF (Qiu et al., 2021). It has also been reported to promote

malignant behavior and enhance tumorigenic ability by

activating MAPK/JNK signaling pathways (Tan et al., 2021).

LOXL2 regulates collagen cross-linking and deposition in

primary tumor tissue. In previous studies, it was found to

promote tumor cell survival and development of drug

resistance, regulate cell adhesion, motility, and invasion.

Upregulation of LOXL2 enhanced the invasion and metastasis

of lung cancer (Peng et al., 2017). Moreover, LOXL2 has been

incorporated in prognostic models to predict late recurrence in

LUAD patients (Zhao et al., 2021). PLOD2 is one of the members

of the PLOD family that encodes the lysyl hydroxylase 2. It

modulates collagen cross-link formation in the extracellular

matrix. In previous studies, PLOD2 was reported to promote

tumor metastasis by inducing collagen cross-linking (Yamauchi

and Sricholpech, 2012; Chen et al., 2015). A bioinformatics study

FIGURE 7
Gene set enrichment analysis (GSEA). (A) The top five enrichedGOpathways in the high-risk group. (B) The top five enrichedGOpathways in the
low-risk group. (C) The top five enriched KEGG pathways in the high-risk group. (D) The top five enriched KEGG pathways in the low-risk group.
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showed that the PLOD family members can be novel biomarkers

for predicting LUAD prognosis (Meng et al., 2021). Being a

member of the first membrane matrix metalloproteinases

(MMPS), MMP14 has been shown to promote extracellular

matrix (ECM) degradation to accelerate tumor cell migration,

inflammation, invasion, angiogenesis and metastasis. Its

expression was found to be increased in colorectal cancer,

lung cancer, and nasopharyngeal carcinoma, leading to

enhanced tumor progression (Yan et al., 2015; Stawowczyk

et al., 2017; Cui et al., 2019). SPOCK1 encodes a matricellular

glycoprotein belonging to a new Ca (2+)-binding proteoglycan

family, which promotes cell proliferation, adherence, and

migration (Bradshaw and Sage, 2001). High

SPOCK1 expression has been associated with increased

invasiveness, growth, and metastatic potential (Wang et al.,

2018). In lung cancer, high expression of SPOCK1 correlated

with poor prognosis. SPOCK1 is a novel TGF-β-targeted gene

that regulates lung cancer epithelial cells (Basu et al., 2018). As a

FIGURE 8
Landscape ofmutation profiles in the low- and high-risk groups. (A)Overview ofmutation types in the high-risk group. (B)Overviewofmutation
types in the low-risk group. (C) Waterfall Plot of the top 20 genes with the most mutations in the high-risk group. (D) Waterfall Plot of the top
20 genes with the most mutations in the low-risk group. (E) The correlation between risk score and TMB. (F) Kaplan-Meier curves for patients
stratified by risk score combined with TMB.
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protective factor, DCN has been suggested to block receptor

tyrosine kinases thereby suppress lung cancer progression

(Horváth et al., 2014). This view is consistent with that of

previous articles.

The immune components of the TME can promote or

inhibit or tumor progression (Papait et al., 2020). It is

important to understand the underlying mechanisms that

are involved between EMT and the TME. In this study, the

TME was assessed using CIBERSORT and the ESTIMATE

algorithm. The relationship between the risk score and

immune-infiltrating cells was evaluated. Results showed that

tumors in the high-risk group showed higher infiltration of

immunosuppressive cells such as macrophages, neutrophils,

and mast cells compared with tumors in the low-risk

group. This indicated that the EMT process may protect

tumors from the intrinsic anti-tumor immune response by

creating an immunosuppressive microenvironment.

Therefore, the EMT process may explain the poor prognosis

of the high-risk group. Previously, it was found that patients

with high levels of M0 macrophages had enhanced EMT

FIGURE 9
Landscape of immune Infiltration profiles in the low- and high-risk groups. (A) The ratio differentiation of 22 kinds of immune cells between the
low- and high-risk group, and the Wilcoxon rank sum was used for the significance test. (B–F) The violin plot showed the differences of ESTIMATE
score, stromal score, immune score, CYT score and mRNAsi score between the low- and high-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001.
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process, hence poor prognosis (Dong et al., 2021). Our findings

corroborate the results that mast cell-derived extracellular

vesicles induced EMT by signaling cascades (Yin et al.,

2020). Activated memory CD4+ T cells were also highly

expressed in the high-risk group. We speculate that

cytokines released by activated T cells, such as IL-6, TNF,

and TGFβ, can promote EMT development (Cohen et al.,

2015). It was reported that CD4+T cells can induce EMT-

like features in clear cell renal carcinoma cells by secreting IL-6

(Chen et al., 2017).

In this study, the low-risk subgroup showed higher

immunoactivity of immune checkpoint molecules, immune

score, and cytolystic activity. The higher mRNAsi was found

in the high-risk group, which may explain why EMT results in

poor prognosis. The tumor immune escape decreases the

expression of HLA which enables tumor cells to avoid the

cytolysis function of T cells (Garcia-Lora et al., 2003). We

found that expression of HLA genes was significantly

downregulated in the high-risk group, which indicated that

immune escape occurred in the high-risk group. Previous study

also reported that EMT inhibits the formation of immune

synapses between cancer cells and T cells leading the

immune escape (Akalay et al., 2013). Based on the above

results, we speculated that there might be significant

FIGURE 10
Immune checkpoints analysis and evaluation of response to ICI therapy and chemotherapy. (A,B) The differentiation of immune checkpoints
between the low- and high-risk group. (C) The comparison of TIDE score between the low- and high-risk group. (D) Circos plot showing the
interconnectivity among ERGS genes. The thickness and color of the ribbons depend on the correlation between the signature gene expression. (E)
The sensitivity to paclitaxel, docetaxel and gemcitabine of patients with LUAD.
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FIGURE 11
Further verification of the overexpression of six genes in RT-qPCR analysis. (A) PMEPA1 expression level in LUAD and health control tissues. (B)
LOXL2 expression level in LUAD and health control tissues. (C) PLOD2 expression level in LUAD and health control tissues. (D) MMP14 expression
level in LUAD and health control tissues. (E) SPOCK1 expression level in LUAD and health control tissues. (F)DCN expression level in LUAD and health
control tissues.

FIGURE 12
Representative immunohistochemical stains of the five prognostic genes in the HPA database. (A) Expression of DCN protein in LUAD and
normal control samples. (B) Expression of LOXL2 protein in LUAD and normal control samples. (C) Expression of PLOD2 protein in LUAD and normal
control samples. (D) Expression of MMP14 protein in LUAD and normal control samples. (E) Expression of SPOCK1 protein in LUAD and normal
control samples.
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differences in the efficacy of immunotherapy between the two

groups. Therefore, we examined the response to ICI therapy

using the TIDE algorithm. Results showed that patients in the

low-risk group were more likely to respond to immunotherapy.

Further analysis showed that the six ERGs signature

predicted the responses to several common chemotherapeutic

agents. Particularly, the low-risk group was more sensitive to

chemotherapy drugs such as, paclitaxel, docetaxel, and

gemcitabine compared with the high-risk group. The lower

response in the high-risk group may be due to EMT-induced

drug resistance. Paclitaxel and docetaxel, two chemotherapy

drugs belonging to the taxene family, have been shown to

induce cell cycle arrest in cancer cells by preventing

microtubule depolymerization. EMT-induced invasive

behavior of cancer cells can cause tolerance towards Paclitaxel

and docetaxel. Upstream mediators of EMT, such as ZEb1/2,

TGF-β, and microRNA regulate response of cancer cells to

Paclitaxel and docetaxel (Ashrafizadeh et al., 2021). During

EMT process, the conversion of E-cadherin to N-cadherin

reduces the expression of human balanced nucleoside

transporter 1 (hENT1), a drug carrier for gemcitabine

membrane transport in cancer cells, which triggers

gemcitabine resistance in cancer cells (Weadick et al., 2021).

In general, we found that patients with low-risk may benefit more

from immunotherapy and chemotherapy compared with those

with high-risk. This implies that more studies are needed to

develop new treatment strategies or multi-drug combinations to

improve prognosis of high-risk patients.

Overall, the proposed ERGS signature showed good

performance in predicting the prognosis of LUAD. Our

results highlight the need to investigate the role of EMT in

the progression of LUAD. The constructed prognostic model

can also be used to evaluate the tumor immune

microenvironment, guide application of individualized

therapy, and facilitate the development of targeted therapy.

Nevertheless, this study has some limitations. First, this was a

retrospective study and independent prospective cohorts are

needed to validate the prognostic model developed in the study.

The value of six genes as potential targets also needs further

investigations. Second, this risk model is highly relied on public

databases. As a result of the clinical information downloaded

from TCGA and GEO databases is limited or incomplete data,

potential prognostic factors, such as personal clinical history

and treatment intervention, are missing in our nomogram. It is

not clear How the environmental factors such as smoking and

exposure to certain toxins might have influence the identified

gene signatures. Further investigations need to be undertaken

in future clinical researches.

Conclusion

This study constructed a novel prognostic model based on

6 EMT-related genes. The model was established in the training

cohort and validated using an external validation cohort, RT-PCR

tests, and IHC assays. The results showed that the model was a

robust biomarker for predicting the OS in LUAD patients.

Furthermore, according to the TME analysis and evaluation of

chemotherapy efficacy, the features indirectly demonstrated that

patients in the low-risk group based the model had a higher

likelihood to benefit from immune therapy and chemotherapy.

This study provides new reference findings for further exploration

of the mechanisms of EMT and tumor immunity. It also provides

insights to guide personalized treatment of LUAD patients.
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