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Twisted space‑frequency 
and space‑time partially coherent 
beams
Milo W. Hyde IV

We present partially coherent sources that are statistically twisted in the space-frequency and space-
time domains. Beginning with the superposition rule for genuine partially coherent sources, we derive 
source plane expressions for the cross-spectral density (CSD) and mutual coherence functions (MCFs) 
for twisted space-frequency and space-time Gaussian Schell-model (GSM) beams. Using the Fresnel 
approximation to the free-space Green’s function, we then paraxially propagate the CSD and MCF 
to any plane z > 0 . We discuss the beams’ behavior as they propagate, with particular emphasis on 
how the beam shape rotates or tumbles versus z. To validate our analysis, we simulate the generation 
and subsequent propagation of twisted space-frequency and space-time GSM beams. We compare 
the simulated moments to the corresponding theoretical predictions and find them to be in excellent 
agreement. Lastly, we describe how to physically synthesize twisted space-frequency and space-time 
partially coherent sources.

Approximately 30 years ago, Allen et al. discovered that fields with a vortex wavefront, e.g., Laguerre–Gaussian 
beams, carried orbital angular momentum (OAM)1,2. This initial discovery has spawned much research in apply-
ing vortex beams in free-space optical communications, optical tweezers, astronomy, etcetera3–8.

In 1993, Simon and Mukunda introduced the concept of a twisted partially coherent field9. Like fields with 
vortex phase fronts, twisted partially coherent beams carry OAM. They differ from traditional vortex fields in 
that the twist, or rotation is statistical in nature and exists only in the context of stochastic beams, i.e., the twist 
disappears in the coherent limit. Like Allen et al.’s seminal OAM work, Simon and Mukunda’s twisted partially 
coherent beams have generated significant interest in the intervening years10–21.

A vast majority of the references pertaining to vortex or twisted beams, whether they be fully coherent or 
stochastic, deal with spatial vortices or twists in the plane orthogonal to the direction of propagation, e.g., the x–y 
plane for a z propagating wave. All of these beams possess OAM orientated in the longitudinal direction. Recently, 
a class of vortex beams has been introduced where the vortex exists in the space-time domain22–27. Referred to 
as spatiotemporal optical vortices (STOVs), these beams carry transverse OAM. Their study and subsequent 
synthesis opens up the possibility for novel uses in optical manipulation, optical tweezing, and other applications.

Motivated by the existence of STOVs and their potential applications, we introduce the space-frequency 
and space-time extensions of Simon and Mukunda’s spatially twisted partially coherent beams. Analogous to 
the relationship between spatial and spatiotemporal vortices, twisted space-frequency and space-time partially 
coherent sources possess statistical twists between their spatial and temporal dimensions. Like STOVs, these 
beams carry transverse OAM, and, in addition, rotate or tumble as they propagate.

We emphasize two foundational papers that describe spatiotemporal coupling which are germane to our work. 
The first is a paper by Akturk et al. that develops a general mathematical theory for spatiotemporal coupling of 
coherent Gaussian pulsed beams28. The second is authored by Wang et al. and presents a 6 × 6  matrix formal-
ism which describes the behavior of partially coherent Gaussian Schell-model (GSM) pulsed beams in linear, 
dispersive media29. Although spatiotemporal coupling has been researched in the past by these and numerous 
other authors, no one, to our knowledge, has formally presented—mathematically and physically described 
the propagation behaviors, or generated random field realizations of—twisted space-frequency and space-time 
partially coherent sources, as we do here.

In the next section, we derive expressions for the cross-spectral density (CSD) and mutual coherence func-
tions (MCFs) for twisted space-frequency and space-time partially coherent beams, respectively. Assuming 
sources of GSM form30,31, we study the behaviors of twisted space-frequency and space-time beams as they 
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propagate in free space by evaluating the CSD and MCF paraxial propagation integrals. We simulate the synthesis 
and propagation of these beams, and compare the simulated, or sample statistical moments to their corresponding 
theoretical expressions to validate our analysis. We conclude with a discussion of how to physically synthesize 
these new partially coherent beams and a summary of our work.

Methods
In this section, we theoretically introduce twisted space-frequency and space-time partially coherent sources.

Twisted space‑frequency partially coherent sources.  Our analysis begins with the necessary and 
sufficient criterion for a genuine CSD function32,33:

where ω is the radian frequency, p is any positive function, and H is an arbitrary kernel. Equation (1) is also 
referred to as the superposition rule in the literature. For simplicity, we restrict our analysis to one spatial dimen-
sion x.

Adapting Mei and Korotkova’s14 twist kernel, we let H be

where ω̄ = ω − ωc and ωc is the radian frequency of the light, or carrier wave. We will discuss σx , σω , α , β , and 
µ later on in the paper. We note that other twist kernels exist in the literature10,15,18,19,21 and can be adapted in a 
similar manner as above to produce twisted space-frequency and space-time beams.

To generate twisted GSM beams, we choose p to be10,14,15,18,19,21

Like H in Eq. (2), other p can be used, e.g., the multi-Gaussian p in Refs.14,34. Substituting Eqs. (2) and (3) into (1) 
and evaluating the integrals yields a CSD of the form

where Wx and Wω are the beam and spectral pulse widths, δx and δω are the spatial coherence and spectral 
coherence widths, and µ is the twist parameter. These beam parameters are not independent and are linked in a 
complex, nonlinear way. Referring back to Eq. (2),

In addition, |µ|δxδω ≤ 131,35,36, and therefore, the space-frequency twist necessarily disappears in the coherent 
limit δx , δω → ∞.

Equation (4) has the same basic form as a spatially twisted GSM beam9,10,12,14,37; however, here, space and 
frequency are statistically twisted. It is well known that the spectral density of a spatially twisted stochastic source 
rotates as the beam propagates. This rotation is in the plane orthogonal to the propagation direction, e.g., x–y 
plane for a z propagating wave. Twisted space-frequency beams also rotate—this time, in the x–ω plane.

The paraxial, twisted space-frequency GSM CSD at any propagation plane z > 0 can be found using the 
two-frequency Fresnel integral, namely,
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where k1,2 = ω1,2/c and �1,2 = 2π/k1,2 are the wavenumbers and wavelengths associated with ω1 and ω2 , respec-
tively and c is the speed of light. Substituting in Eq. (4) and after much calculus and algebra,
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.
The exponentials on the third, fourth, and fifth lines of Eq. (7) correspond to the beam shape, coherence, and 

twist, respectively. Because of the initial space-frequency coupling, the spectral content of the beam affects its 
spatial distribution and equivalently, vice versa.

The spectral density S of the source can be found by evaluating Eq. (7) at the same space and frequency 
points30,31, i.e.,

where γ 2
x = W2

x /δ
2
x and NF = 2kW2

x /z is the coherent Gaussian beam Fresnel number. In order, the exponentials 
in Eq. (8) physically correspond to the spectral beam shape, spatial beam shape, and x-ω plane rotation. We note 
that the coefficient in the spectral beam shape exponential is greater than or equal to one. This, when combined 
with the fact that the spatial beam shape is only affected by diffraction (depends on Fresnel number, spatial 
beam size, and coherence radius), means that the beam essentially “trades” spectrum to rotate. As z → ∞ or 
NF → 0 , the spectral beam radius asymptotes (the spectral beam shape does not appreciably change), diffraction 
dominates, and the beam no longer rotates.

Although evident from the numerous references describing rotating coherent beams28,37–39, it is important to 
point out that beam rotation does not imply partial coherence. Rotation, therefore, is a characteristic of partially 
coherent twisted beams, not a defining characteristic.

Twisted space‑time partially coherent sources.  Similar to the approach we used above to produce 
twisted space-frequency sources, we can also construct twisted space-time partially coherence sources. In many 
respects, these sources are more physically intuitive than their twisted space-frequency counterparts, as the rota-
tion occurs in the x–t plane. Paraxially, t is closely related to the propagation direction z , and therefore, these 
beams rotate or tumble as the beam propagates.

Like above, we begin with the superposition rule, this time for the MCF Ŵ32,33:

where p and H are

Substituting the above p and H into Eq. (9) and evaluating the integrals produces an MCF of the form
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The physical source parameters Wx , Wt , δx , δt , and µ are related to σx , σt , α , and β in the same way as the corre-
sponding twisted space-frequency beam parameters—see Eq. (5). As expected, when µ = 0 , Eq. (11) simplifies 
to a traditional GSM pulsed beam29,40–44.

We can propagate the MCF in Eq. (11) to any plane z > 0 using the following integral expression:

This relation is accurate in the paraxial regime, and if the source is narrowband, i.e., ωc ≫ max (1/Wt , 1/δt) . 
Substituting Eqs. (11) into (12) and neglecting terms greater than second order produces

where t̄1,2 = t1,2 − z/c − x21,2/(2cz),

and NF = 2kcW
2
x /z is the Fresnel number at the carrier frequency.

Like the spectral density above, the time-varying, ensemble-averaged intensity can be determined by evaluat-
ing the MCF at equal space and time points:

The behavior of this beam in the x-t plane is the same as that described for the twisted space-frequency GSM 
source in the x-ω plane.

As briefly stated above, the time t paraxially corresponds to the physical propagation dimension z (i.e., 
t̄ ≈ t − z/c ). As such, when µ  = 0 , a twisted space-time beam tumbles as it propagates, and like beams with 
STOVs23,25–27, has a component of OAM in the ±y direction depending on the sign of µ . Figure 1 and the cor-
responding Supplementary Video V1 show this behavior for an example twisted space-time GSM partially 
coherent beam.

Results and discussion
In this section, we simulate the generation of twisted space-frequency and space-time GSM beams. First, we 
discuss the details of the wave-optics simulations.

Simulation setup.  For these simulations, we used computational grids that were 512 points per side. The 
grid spacings were approximately �x = 26.9 µ m and �ω = 1.11 GHz in the x and ω dimensions for the space-
frequency source, and �x = 26.9 µ m and �t = 1.11 ps in the x and t dimensions for the space-time source.

To generate twisted space-frequency and space-time GSM field realizations, we used their respective super-
position rules in Eqs. (1) and (9) as detailed in Ref.45. For the paper’s completeness and the reader’s convenience, 
we briefly review this synthesis method using the space-time GSM source as an example.

A stochastic instance of a space-time GSM partially coherent source can be generated by evaluating the fol-
lowing integral:
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where p and H are given in Eq. (10) and r is a complex, delta-correlated, Gaussian-distributed stochastic function45. 
Taking the autocorrelation of Eq. (16) and noting that �r(vx1, vt1)r∗(vx2, vt2)� = 2δ(vx1 − vx2, vt1 − vt2) repro-
duces the space–time source superposition rule given in Eq. (9).

We now express Eq. (16) in discrete form as the integrals are evaluated numerically. In addition, p and H 
are separable in vx and vt . Because of this, we can express the four-dimensional kernel H as the product of two 
three-dimensional kernels. This results in significant savings in computer memory. We therefore express Eq. (16) 
as the Hadamard product of two matrix-vector products:

where m, n are the discrete vx , vt indices, �vx ,�vt are the spacings in the vx , vt dimensions, and ij is a double 
index corresponding to every combination of discrete x, t coordinates.

The kernels H are (NxNt)× Nvx or (NxNt)× Nvt matrices, where Nx ,Nt and Nvx ,Nvt are the number of grid 
points in the x, t and vx , vt dimensions. The p and r are Nvx × 1 or Nvt × 1 vectors, and U—the stochastic field 
realization—is an (NxNt)× 1 vector, which must be reshaped to an Nx × Nt matrix. The r are vectors of standard 
complex normal random numbers.

In these simulations, Nx = Nt = Nvx = Nvt = 512 , �vx = (Nx�x)−1 = 72.7 m−1 , and �vt = (Nt�t)−1 = 1.76  
GHz. Likewise,  for the space-frequency source simulations,  Nx = Nω = Nvx = Nvω = 512 , 
�vx = (Nx�x)−1 = 72.7 m−1 , and �vω = (Nω�ω)−1 = 1.76 ps. Table 1 lists the parameter values for the 
simulated twisted space-frequency and space-time GSM partially coherent beams.
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Figure 1.   Mean intensity I(x, t, z) for a twisted space-time GSM partially coherent source with �c = 1 µm , 
Wx = 0.5 mm , δx = 0.27 mm , Wt = 70.7 ps , δt = 33.3 ps , and µ = 0.1

(

mm ps
)−1—(a) z = 0.1 m, (b) 

z = 0.5 m, (c) z = 1 m, (d) z = 5 m, (e) z = 7.5 m, and (f) z = 10 m.
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After generating a field instance using Eq. (17) and the values listed in Table 1, we digitally propagated U 
z = 0.126 m , 0.262 m, 0.524 m, 1.05 m, 3.14 m, and 6.28 m—corresponding to Fresnel numbers NF = 25 , 12, 
6, 3, 1, and 0.5, respectively. For the twisted space-frequency field instances, we performed the propagations 
by evaluating the Fresnel integral along the x dimension of each realization U using a fast Fourier transform 
(FFT)46,47. The process was slightly different for the twisted space-time field realizations. We first transformed the 
twisted space-time field instance U to the x-ω domain using a FFT computed along the t dimension of U. We then 
propagated that field using the Fresnel integral (again, evaluated using a FFT) computed along the x dimension 
of U. Lastly, we transformed the field back to the x-t domain using a FFT computed along the ω dimension of U.

From 5,000 propagated field realizations of twisted space-frequency and space-time GSM partially coherent 
beams, we computed the sample spectral densities S and mean intensities I, respectively. In addition, we computed 
planar slices through the four-dimensional CSDs W and MCFs Ŵ , respectively.

In the next section, we compare these sample moments to their corresponding theoretical quantities derived 
and discussed earlier in the paper. The purpose of this is twofold: to verify that we have indeed produced the 
desired twisted space-frequency or space-time GSM source, and to validate our theory presented in the prior 
section.

We have included the MATLAB R2018b scripts (.m files) required to execute these wave-optics simulations 
as Supplementary Code C1.

Results.  Because the behaviors of the twisted space-frequency and space-time GSM sources simulated here 
are identical in their respective domains (x-ω in the former, x-t in the latter), we present results for both that are 
complementary, such that the spectral density S and mean intensity I, and CSD W and MCF Ŵ are presented for 
all NF , but not duplicated.

We begin with the S and I results, which are shown in Figs. 2 and 3, respectively. The layout of the figures 
is identical. Proceeding down the rows, the S or I are displayed for a particular NF . The Fresnel numbers are 
annotated on the figures for the reader’s convenience. Proceeding from left to right across the columns are the 
theoretical and simulated two-dimensional S or I in columns 1 and 2, respectively. The theoretical and simulated 
S or I images use the same false color scales defined by the color bars immediately following column 2. The last 
two columns report the one-dimensional profiles or slices through the theoretical and simulated (labeled “Thy” 
and “Sim” in the legends) S or I, plotted on the same axes for ease of comparison. Column 3 shows the ω or t 
slices, and column 4 displays the x slices.

The agreement between theory and simulation is excellent. The quality of these results imply that we have 
successfully generated twisted space-frequency and space-time sources that radiate the desired S and I. While 
these results are certainly positive, we still must verify that we have generated twisted space-frequency and space-
time beams with the desired coherence properties. This requires examination of the cross-spectral density and 
mutual coherence functions, respectively.

Figures  4 and  5 show W(x1, 0,ωc ,ω2, z) and Ŵ(x1, 0, z/c, t2, z) . We removed the piston phase shifts, 
exp
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]
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]

 , from these results. Both figures consist of three groups of four images. 
Each image group corresponds to an NF , labeled for the reader’s convenience. Inside each group, the four images 
are arranged in two rows and two columns. The first column presents the theoretical W or Ŵ , while the second 
column displays the simulated results. The first row shows the real parts of W or Ŵ ; the second row shows the 
imaginary parts. The theoretical and simulated W or Ŵ use the same false color scales defined by the color bars 
at rows’ end.

Again, the agreement between theory and simulation is excellent. The quality of these results, in combination 
with those in Figs. 2 and 3, prove that we have indeed generated twisted space-frequency and space-time GSM 
beams with the parameters given in Table 1.

Physical synthesis.  Before concluding, it is worth discussing how to physically synthesize these partially 
coherent beams. Here, we focus on twisted space-time GSM partially coherent sources, as the setup to synthesize 
twisted space-frequency GSM beams is similar.

Figure 6 shows a schematic of an optical system that can be used to synthesize a twisted space-time partially 
coherent source. This device is known as a Fourier transform pulse shaper23,26,48–51.

Table 1.   Simulated twisted space-frequency and space-time GSM beam parameters.

�c 1 µm

Wx 0.5 mm

δx 0.269 mm

Wω ,Wt 70.7 GHz, 70.7 ps

δω , δt 33.3 GHz, 33.3 ps

µ 0.10 (mmGHz)−1 , 0.10 
(

mm ps
)−1

σx 11 mm−2

σω , σt 700 THz−2 , 700 ns−2

α 0.13 mm2

β 0.002 THz2 ; 0.002 ns2
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We assume a coherent Gaussian pulse as the input field into the shaper, i.e.,

This field is incident on a grating (G), which in combination with a cylindrical lens (CL) of focal length f, maps 
the spectrum of U in into physical space at the plane of the spatial light modulator (SLM). The SLM modifies the 
field in the x-ω domain, introducing random space-frequency coupling. The field then transits another cylindri-
cal lens (of focal length f) and an identical grating to the first. This combination reverses the spectrum-to-space 
mapping of the first G-CL system, resulting in a stochastic fully-coherent realization of a twisted space-time GSM 
partially coherent beam ( Uout in the figure). Partial coherence is introduced by incoherently summing many 
such realizations, or pulses. Although we have ignored it for mathematical convenience, we note that the spatial 
distribution of the beam in the y direction is generally unaffected by the pulse shaper27. The beam, therefore, can 
be spatially shaped either before or after the pulse shaper.

In contrast to the simulations and, in particular, Eqs. (16) and (17), the SLM in Fig. 6, which produces the 
field realization, operates in the x-ω plane. Therefore, the kernel H in Eq. (10) must be transformed into that 
domain, namely,

(18)U in(x, t) = exp

(

−
x2

4W2
x

)

exp

(

−
t2

4W2
t

)

exp
(

−jωct
)

.

(19)

H(x,ω; vx , vt) =
1

2π

∫ ∞

−∞
H(x, t; vx , vt) exp

(

jωt
)

dt = H(x,ω; vx)H(x,ω; vt)

H(x,ω; vx) =

√

1

2
√
πσt

exp
(

−
σx

2
x2
)

exp

(

−
ω̄2

8σt

)

exp

(

α2µ2

4σt
v2x

)

exp

[

−j

(

x +
αµ

2σt
ω̄

)

vx

]

H(x,ω; vt) =

√

1

2
√
πσt

exp
(

−
σx

2
x2
)

exp

(

−
ω̄2

8σt

)

exp

(

−
v2t
4σt

)

exp

[(

βµx +
1

2σt
ω̄

)

vt

]

.

Figure 2.   Twisted space-frequency GSM spectral density S(x,ω, z) results. The theoretical spectral density Sthy 
is given in Eq. (8): NF = 25—(a) Sthy , (b) Ssim , (c) S(0,ω, z) theory versus simulation, and (d) S(x, 0, z) theory 
versus simulation; NF = 6—(e) Sthy , (f) Ssim , (g) S(0,ω, z) theory versus simulation, and (h) S(x, 0, z) theory 
versus simulation; NF = 1—(i) Sthy , (j) Ssim , (k) S(0,ω, z) theory versus simulation, and (l) S(x, 0, z) theory 
versus simulation.
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The coefficients for H(x,ω; vx) and H(x,ω; vt) are included for completeness. They scale the on-axis intensity 
of the beam and can be neglected. The kernel H(x,ω; vx) grows without bound because of the vx exponential; 
however, when multiplied by 

√

p(vx) , the superposition integral [see Eq. (16)] converges.
We close this section with a brief discussion of hardware considerations for the apparatus in Fig. 6. Note that 

additional information can be found in Refs.23,26,48–51 and the references cited therein. The most critical com-
ponent in Fig. 6 is the SLM, which ideally, should cycle at the source’s pulse repetition frequency. This ensures 
that every pulse is statistically independent of every other pulse and therefore, quick convergence to the desired 
twisted space-time partially coherent beam.

SLM speed depends heavily on type, e.g., liquid-crystal SLMs have refresh rates of 100s of Hz, segmented 
deformable mirrors (DMs) and digital micromirror devices (DMDs) refresh at rates of 10s of kHz. Of course, 
speed is not the only consideration. Liquid-crystal SLMs can have millions of pixels—orders of magnitude more 
than segmented DMs—and are more light efficient than DMDs, which are binary devices. More information 
on these SLMs can be found in Refs.52–59. As mentioned in Ref.51, since the MCF (or CSD) is computed over the 
ensemble of all possible field, or pulse realizations, SLM speed does not matter if the goal is solely to produce the 
partially coherent source. Although obvious, SLM choice ultimately depends on the application.

Conclusion
In this paper, we presented space-frequency and space-time extensions to Simon and Mukunda’s spatially twisted 
partially coherent beams. Like the recently introduced STOV fields, which provided the impetus for this work, 
twisted space-frequency and space-time partially coherent beams possess transverse OAM.

Starting with the superposition rule for genuine partially coherent sources, we derived the CSD and MCF for 
twisted space-frequency and space-time partially coherent sources, respectively. Assuming a GSM form for the 
twisted sources, we examined their free-space propagation behaviors by evaluating the paraxial CSD and MCF 
propagation integrals. We derived expressions for the spectral density and mean intensity for any plane z > 0 
and described both physically.

Figure 3.   Twisted space-time GSM mean intensity I(x, t, z) results. The theoretical mean intensity I thy is given 
in Eq. (15): NF = 12—(a) I thy , (b) Isim , (c) I(0, t, z) theory versus simulation, and (d) I(x, 0, z) theory versus 
simulation; NF = 3—(e) I thy , (f) Isim , (g) I(0, t, z) theory versus simulation, and (h) I(x, 0, z) theory versus 
simulation; NF = 0.5—(i) I thy , (j) Isim , (k) I(0, t, z) theory versus simulation, and (l) I(x, 0, z) theory versus 
simulation.
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To validate our work, we simulated the generation and propagation of example twisted space-frequency and 
space-time partially coherent beams. We described the details of our simulations and the stochastic field reali-
zation process. We compared the simulated, or sample second-order field moments—spectral densities, mean 
intensities, CSDs, and MCFs—to their corresponding theoretical expressions. The simulated and theoretical 
moments were found to be in excellent agreement.

Lastly, we described how to physically generate stochastic realizations of these beams using a device known 
as a Fourier transform pulse shaper, which consisted of two identical gratings, cylindrical lenses, and a SLM. 
We briefly discussed the characteristics of different types of SLMs, and the pros and cons of using them in the 
shaper to generate random pulse realizations.

Light that possesses transverse angular momentum is a relatively recent phenomenon and an exciting new 
area of beam control research. Considering the applications which use traditional, spatially twisted or vortex 
light3–8,10–21, we should expect that space-frequency or space-time twisted beams (including STOVs) will be 
used in optical tweezing, particle manipulation, optical communications, and astronomy in novel ways24,26,60. 
In addition, there has been recent work in coupling spin (concerns circular polarization) and orbital angular 
momenta resulting in novel light control, generation, and optical manipulation techniques61–63. Similar coupling 
is possible with space-frequency and space-time twisted partially coherent beams by generalizing the scalar 
analysis presented in this paper to include the vector or electromagnetic nature of these stochastic light sources. 
The work we present here adds to the exciting new field of light beams carrying transverse angular momentum 
as well as the existing, rich literature on partially coherent sources.

Figure 4.   Twisted space-frequency GSM W(x1, 0,ωc ,ω2, z) results. The theoretical CSD W thy is given in 
Eq. (7): NF = 12—(a) top Re

(

W
thy

)

 , bottom Im
(

W
thy

)

 and (b) top Re
(

W
sim

)

 , bottom Im
(

W
sim

)

 ; NF = 3
—(c) top Re

(

W
thy

)

 , bottom Im
(

W
thy

)

 and (d) top Re
(

W
sim
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 , bottom Im
(

W
sim
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 ; NF = 0.5—(e) top Re
(
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 , 
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Figure 5.   Twisted space-time GSM Ŵ(x1, 0, z/c, t2, z) results. The theoretical MCF Ŵthy is given in Eq. (13): 
NF = 25—(a) top Re

(

Ŵthy
)

 , bottom Im
(

Ŵthy
)

 and (b) top Re
(

Ŵsim
)

 , bottom Im
(

Ŵsim
)

 ; NF = 6—(c) top 
Re

(

Ŵthy
)

 , bottom Im
(

Ŵthy
)

 and (d) top Re
(

Ŵsim
)

 , bottom Im
(

Ŵsim
)

 ; NF = 1—(e) top Re
(

Ŵthy
)

 , bottom 
Im

(

Ŵthy
)

 and (f) top Re
(

Ŵsim
)

 , bottom Im
(

Ŵsim
)

.

Figure 6.   Fourier transform pulse shaper—G is grating, CL is cylindrical lens, and SLM is spatial light 
modulator.
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