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Abstract

The liver is the largest solid organ and a primary metabolic hub. In recent years, intact cell nuclei were used to
perform single-nuclei RNA-seq (snRNA-seq) for tissues difficult to dissociate and for flash-frozen archived tissue
samples to discover unknown and rare cell subpopulations. In this study, we performed snRNA-seq of a liver sample
to identify subpopulations of cells based on nuclear transcriptomics. In 4282 single nuclei, we detected, on average,
1377 active genes and we identified seven major cell types. We integrated data from 94,286 distal interactions
( p < 0.05) for 7682 promoters from a targeted chromosome conformation capture technique (HiCap) and mass
spectrometry proteomics for the same liver sample. We observed a reasonable correlation between proteomics and
in silico bulk snRNA-seq (r = 0.47) using tissue-independent gene-specific protein abundancy estimation factors. We
specifically looked at genes of medical importance. The DPYD gene is involved in the pharmacogenetics of
fluoropyrimidine toxicity and some of its variants are analyzed for clinical purposes. We identified a new putative
polymorphic regulatory element, which may contribute to variation in toxicity. Hepatocellular carcinoma (HCC) is
the most common type of primary liver cancer and we investigated all known risk genes. We identified a complex
regulatory landscape for the SLC2A2 gene with 16 candidate enhancers. Three of them harbor somatic motif breaking
and other mutations in HCC in the Pan Cancer Analysis of Whole Genomes dataset and are candidates to contribute
to malignancy. Our results highlight the potential of a multi-omics approach in the study of human diseases.
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Introduction

The liver is the largest solid organ of the human
body and a primary metabolic hub. The parenchymal cells

(PCs), that is, hepatocytes (HCs), constitute the biggest part of
the liver and are involved in diverse physiological processes,
for example, protein synthesis and storage of carbohydrates,
lipid metabolism, urea and bile synthesis, drug metabolism,
and detoxification processes for exogenous and endogenous

compounds. HCs are arranged in hepatic lobules (Fig. 1), a
microscopical hexagonal architecture with a central vein in the
middle draining the blood coming from the distal hepatic artery
(HA) and portal vein (PV) branches (Fig. 1).

Linear stretches of HCs (HC cords) define sinusoid capil-
laries where most of the nonparenchymal cells (NPCs) of the
liver are located. NPCs release factors that regulate HCs both in
physiological and pathological conditions (Kmiec, 2001). The
best characterized NPCs include the liver sinusoidal endothelial
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cells (LSECs) lining the sinusoid capillaries, Kupffer cells
(KCs), which are macrophages resident in the sinusoid capillary
lumen, and hepatic stellate cells (HSCs) that act as storage for
fat and vitamin A, and are located in the space of Disse defined
by the HC cords and the sinus (Arii and Imamura, 2000).

Most knowledge of the function of liver cells is based on
analysis of bulk tissue, but recent advances in next-generation
sequencing (NGS) technologies are opening the field to the
study of genomics and transcriptomics of single cells. Studying
the gene expression profiles of single cells can potentially lead

FIG. 1. Schematic cross-sectional view of the structural organization and cell populations of a liver lobule. (A) Each
lobule presents a radial structure with a central vein (CV) in the middle from which HC cords radiate toward the so called
portal triad consisting of branches of the portal vein (PV) and hepatic artery (HA) and bile ducts. The sinus is delimited by
HCs that are arranged back to back in cords and it is lined by specialized sinusoidal endothelial cells. Kupffer and immune
cells are located in the sinusoidal lumen, while hepatic stellate cells are localized in the space of Disse. (B) Workflow
representing the design of the multi-omics study. The crystal structure of the glucose transporter was obtained from PDB
(ID: 4ZWB, Deng et al., 2015). HC, hepatocyte.
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to the discovery of new and rare cell subpopulations or track
cell lineages in development (Hwang et al., 2018). Single-cell
RNA sequencing (scRNA-seq) has been successfully per-
formed in several tissues in mice (Han et al., 2018); however,
when it comes to human tissue, the scarcity of fresh tissue and
the difficulty to obtain rare and difficult to isolate cell types
constitute a major bottleneck (MacParland et al., 2018).

In recent years, it has been proposed that intact cell nuclei
can be used to perform single-nuclei RNA-seq (snRNA-seq)
for cell types difficult to dissociate, for flash-frozen archived
tissue samples, and for large cells like fat and muscle (Nguyen
et al., 2018). Several studies have reported high correlation
between snRNA-seq and scRNA-seq gene expression, but at
the same time revealed an enrichment bias for nuclear RNAs
and lncRNAs in nuclei (Gao et al., 2017; Habib et al., 2017).

The differences in transcriptomics profile between defined
liver cell populations stem from a precise genetic control of
gene expression mostly driven by cell type-specific enhancers
and other distal regulatory elements. Promoter-enhancer in-
teractions has been studied on a genome-wide scale using
HiC, a chromosome conformation capture technique that al-
lows defining topologically associated domains and higher-
order chromatin interactions (Lieberman-Aiden et al., 2009).
Building on HiC, a novel technique known as targeted chro-
mosome conformation capture (Capture-C, ChiC, and HiCap)
has been developed to explore promoter-enhancer interactions
to a much higher resolution (Dryden et al., 2014; Jäger et al.,
2015; Sahlén et al., 2015). Today, it is possible to elucidate a
genome-wide promoter-enhancer interaction network using as
much as 50,000 capturing probes targeting gene promoters in
a single HiCap experiment (Åkerborg et al., 2019).

Proteomics studies represent the ideal complementary
analysis to evaluate the level of translation of an mRNA
transcript into a protein. However, abundance in mRNA
might not be proportionally correlated to the levels of proteins
due to mRNA degradation, faulty translation mechanisms, or
high rate of protein turnover (Maier et al., 2009). Moreover,
transcriptomic analysis does not take into consideration
crucial post-translational modifications that largely affect a
protein’s half-life and stability (Benjannet et al., 2006). Mass
spectrometry (MS) has become the method of choice for
analysis of proteins’ primary structures, post-translational
modifications, or protein-protein interactions in complex
protein samples (Aebersold and Mann, 2003) both in bulk and
single-cell environment (Specht and Slavov, 2018).

In this study, we performed snRNA-seq of a human liver
sample to identify subpopulations of cells based on the nu-
clear transcriptomics. Using data from the same liver, we
then integrated long-range HiCap interactions and pro-
teomics data from bulk experiments with single nuclei tran-
scriptomics data to ‘‘assign’’ specific enhancer-promoter
interactions to specific liver cell populations.

Materials and Methods

Ethics statement

The study was approved by the Uppsala regional ethics
committee (Dnr: 2009/028, 2011/037, 2014/433).

Preparation of single nuclei suspension

Human liver tissue was kindly provided by Prof. Per Ar-
tursson, Uppsala University. The liver sample was obtained

from a partial hepatectomy of a patient with colon cancer and
hepatic metastasis. The patient had provided written consent
for the use of the biological sample for scientific research.
Part of the resection, characterized as tumor free by a pa-
thologist, was flash-frozen and subsequently employed for
this study. The use of the sample for research purposes has
been approved by the Uppsala ethics regional committee Dnr
2009/028 (updated 2011/037) for Prof. Artursson and Dnr
2014/433 for Prof. Wadelius.

A suspension of single liver nuclei was prepared using the
gentleMACS dissociator (Miltenyi). Five milligram of frozen
liver tissue was transferred into a gentleMACS C-tube with
10 mL of 0.250 M sucrose solution. The tissue was homog-
enized using the gentleMACS dissociator program E. The
homogenate was filtered using 100 lm MACS SmartStrainers
and the volume was brought up to 15 mL with the sucrose
solution. The homogenate was then centrifuged at 600 g at
4�C in an Eppendorf 5810R Centrifuge and the supernatant
was discarded. The nuclei in the pellet were resuspended in
2 mL of phosphate-buffered saline (PBS) with 0.04% bovine
serum albumin and RiboLock RNase Inhibitor (Thermo
Scientific) and filtered using a 30 lm MACS SmartStrainers.
The nuclei suspension was evaluated for purity and concen-
tration using a hemocytometer (Fuchs-Rosenthal) for a final
count of *1000 nuclei/lL.

Alternatively, the nuclei suspension was stained with 4¢,6-
diamidino-2-phenylindole (DAPI) and sorted using fluorescence-
activated cell sorting (FACS) using the BD FACSMelody
cell sorter with a 100-lm nozzle to achieve even a higher
debris removal and precise determination of the nuclei con-
centration for a final count of *227 nuclei/lL.

snRNA-seq—cDNA library preparation
and sequencing

After the determination of the nuclei suspension concen-
tration, the suitable volume of nonsorted and sorted nuclei
was calculated for a target cell recovery of 6000 and 3000
nuclei, respectively.

Samples were loaded on the 10 · Genomics single-cell-A
chip (PN-no. 120236) and run on the Chromium System
(Chromium Controller GCG-SR-1, 10 · Genomics).

After droplet generation and reverse transcription, the
cDNA was recovered and amplified for 12 cycles. The
samples where run on a High Sensitivity D1000 ScreenTape
on the TapeStation (Agilent Technologies) and measured on
the Qubit to determine the cDNA concentration.

The two sequencing libraries for FACS and notsorted nuclei
were prepared using the Chromium Single Cell 3¢ v2 Reagent
kit (10 · Genomics, cat no. 120236/37/62) according to the
manufacturer’s protocol (CG00052 Single Cell 3¢ Reagent Kit
v2 User Guide). The adapter-ligated fragments were quantified
by quantitative polymerase chain reaction using the Library
quantification kit for Illumina (KAPA Biosystems) on a
CFX384 Touch instrument (Bio-Rad Laboratories) before
cluster generation and 26 + 8 + 0 + 91 cycles of sequencing of
the two libraries in one S1 flowcell using the NovaSeq system
and v1 sequencing chemistry (Illumina, Inc.).

snRNA-seq—data preprocessing, nuclei clustering,
and differential expression

The raw base call files (bcl files) were demultiplexed using
cellranger mkfastq tool and the resulting fastq files were
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analyzed with the cellranger count tool that performs align-
ment, filtering, barcode identification, and unique molecular
identifier (UMI) counting.

We merged the unfiltered matrices from cellranger for the
pre- and post-FACS replicates. We used the function emp-
tyDrops of the R package DropletUtils (Griffiths et al., 2018;
Lun et al., 2018) to filter out putative empty droplets at 1%
false discovery rate (FDR) requiring nuclei to contain
a minimum of 200 UMIs each. We used the function isOutlier
of the R package scater3 to remove damaged or dying nuclei
and removed nuclei with log-library sizes and log-transformed
number of genes three median absolute deviations below the
respective median. The same function was applied to filter out
nuclei with percentage of counts for mitochondrial genes
three median absolute deviations above the overall median.

Next, we removed all the genes that were expressed in <5
nuclei. We performed a rough clustering of the nuclei using
the function quickCluster with min.mean = 0.1 and irlba.args =
list(maxit = 1000) to control for potential heterogeneity be-
tween replicates and we computed the size factors using the
function computerSumFactors with minimum library size-
adjusted average counts 0.1 (McCarthy et al., 2017). We then
applied the size factors to normalize the UMI counts using the
function normalize (McCarthy et al., 2017). Lack of spike-in
transcripts led us to model the technical noise after a Poisson
distribution which serves as a lower bound for the variances
of endogenous genes. For that, we used the scran (Lun et al.,
2016) functions makeTechTrend with default arguments and
trendVar with block set as replicates, a parametric curve fitted
before smoothing, disabled spike-ins, and the degree of
smoothing set to 0.05. This also provided a set of genes with
positive biological components.

For batch effect correction between replicates, we used
the function fastMNN from scran that uses a mutual nearest
neighbors (MNN) approach (Haghverdi et al., 2018; Lun
et al., 2016). In fastMNN, we assumed that every nucleus has
*20 neighbors and we approximated the genes with positive
biological components in all nuclei with the first 50 principal
components, which are used for the batch effect correction.
Next, we used the Poisson technical trend to compute the
number of principal components that explain the majority
of the variance in the data with the function denoisePCA
from scran. We also applied the function runPCA from
scater to detect and remove potential outliers. We computed
the t-distributed stochastic neighbor embedding (t-SNE) di-
mensionality reduction for batch effect principal components
from fastMNN and perplexity = 30.

Finally, we built a k-nearest neighbors graph with k = 50
using the function buildSNNGraph from scran to identify the
clusters of cell types formed by the nuclei.

We next used Seurat v3.0 (Butler et al., 2018; Stuart et al.,
2018) to explore the impact of a possible bias due to the cell
cycle on our data and to regress out the impact of replicates
from the data that would allow us to perform differential
expression. Finally, we identified all the marker genes of each
cluster using the function FindAllMarkers from Seurat fil-
tering on 0.1% FDR and 1.5 log-fold change (Supplementary
Table S1).

Based on the expression profile of marker genes in each
cluster, we determined the identity of the different liver cell
populations using a systematic literature search as reported in
the results section. The random seed used throughout the

whole study is 2019. R sessionInfo details can be found at
Supplementary Table S2.

In silico bulk and bulk RNA-seq combined
with mRNA-to-protein factors

In silico bulk snRNA-seq and scRNA-seq. To generate
the in silico bulk RNA-seq sets, we used the filtered matrices
from our snRNA-seq and publicly available scRNA-seq ex-
periments (GSE115469) (MacParland et al., 2018). We used
the function rowMeans of the R package Matrix to compute
the average number of UMIs over all the single nuclei and
cells, and we applied a log2 transformation to adjust their
distributions and to make them comparable to other datasets.

Bulk RNA-seq. To generate the bulk RNA-seq set, we
downloaded the publicly available GTEx V7 matrices of
gene reads (Lonsdale et al., 2013). We extracted samples of
liver origin, we used the function rowMeans of the R package
Matrix to compute the average number of reads over all the
samples, and we applied a log2 transformation to adjust their
distributions and to make them comparable to other datasets.

mRNA-to-protein factors. We downloaded a list of
tissue-independent and gene-specific protein abundance pre-
dictability factors (Moulana et al., 2018). We multiplied the
log2-average in silico bulk and bulk RNA-seq gene expres-
sions with their corresponding gene-specific factors for liver.

HiCap analysis

Mechanically fine-ground human liver tissue was used for
studying the folding of the chromatin by high-throughput
chromosome conformation capture coupled with subsequent
targeted sequence capture (HiCap). Cells were crosslinked
for 10 min in 1% formaldehyde solution and the reaction was
quenched with the final concentration of 0.125 M of glycine.
The samples were immediately lysed using ice-cold lysis
buffer containing 10 mM Tris-HCl, pH 8.0, 10 mM NaCl,
0.2% Triton X-100, and protease inhibitor cocktail. Before
incubating the lysis mixture for 10 min on ice, the cell ag-
glomerates were dissociated by passing the cells in lysis
buffer through a 27-gauge needle for up to eight times. Nuclei
were then washed in ice-cold PBS with proteinase inhibitor
blend and collected through mild centrifugation.

Sodium dodecyl sulfate (SDS) was used to partly solubi-
lize the chromatin to aid the accessibility of fast digest MboI
endonuclease (ThermoFisher Scientific) to the restriction
sites. Triton X-100 was used to quench the SDS before in-
troducing the enzyme into the mixture. After 4.5-h chromatin
digestion at 37�C, the protruding 5¢ends of the DNA left by
the endonuclease were filled with a mixture of nucleosides
containing biotin-14-dATP in a reaction catalyzed by Kle-
now fragment of DNA Polymerase I (ThermoFisher Scien-
tific). The reaction was quenched by 10 mM ethylenediamine
tetraacetic acid (EDTA) and brief incubation at 75�C. Blunt-
end chromatin complex intramolecular ligation (proximity
ligation) catalyzed by 12 Weiss Units of T4 DNA ligase
(New England Biolabs) was then performed for 4.5 h at 16�C.

After ligation, the samples were de-crosslinked by 8-h
incubation at 65�C with the presence of Proteinase K
(ThermoFisher Scientific) in the mixture. The samples were
then purified using phenol-chloroform-isoamyl alcohol
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(25:24:1) blend and precipitated in ethanol with sodium
acetate, pH 5.2, and glycogen. Any remaining intact RNA
was removed by a 1-h incubation at 37�C with the presence
of RNase A (ThermoFisher Scientific). Proximity ligation re-
action artifacts (unligated biotinylated DNA ends) were then
removed by T4 DNA Polymerase treatment. Resulting chi-
meric DNA constructs were subsequently sonicated to achieve
fragments around 200 bp in length.

Covaris sonication system with SonoLab software was
used for six cycles of 60 sec at 10% duty cycle, 200 cycles per
burst, and intensity of 5. KAPA HTP Library preparation kit
for Illumina platforms was used to prepare NGS-compatible
libraries by following manufacturer’s protocol for frag-
mented DNA end-repair, A-tailing, and TruSeq LT (Illumina,
Inc.) adapter ligation. Biotin-avidin selection of fragments
was performed before the adapter ligation step to further
remove the technology artifacts and enrich the successful
proximity ligation fragments.

Next, the targeted sequence capture was performed to
further enrich the libraries of interest using SureSelect XT
Target Enrichment System for Illumina Paired-End Multi-
plexed Sequencing libraries (Agilent Technologies). Hy-
bridization and Capture protocol and reagents were used in
this step following manufacturer’s recommendations for
custom RNA oligonucleotide probe hybridization to NGS-
libraries for 24 h. After probe hybridization, the stringent
washing of probe-captured libraries was performed to keep
the target libraries and remove the mismatched hybridization
artifacts. Enriched libraries were then sequenced in-house by
Illumina single TruSeq LT index, paired-end sequencing on
NextSeq 500 platform (Illumina, Inc.).

Throughout the chromosome conformation capture, li-
brary preparation, and target enrichment, the quality of the
samples was checked by the 2100 Bioanalyzer system
(Agilent Technologies) for automated electrophoresis on
laboratory chip, and Qubit fluorometric quantitation system
(Invitrogen) for nucleic acid quantitation.

HiCap analysis interaction calling. HiCap provides
p-values relative to the null hypothesis that physical 3D
distance is proportional to genomic distance (Anil et al.,
2017). Contact occurrences among genomic segment pairs of
interest are related to a carefully selected set of negative
controls at corresponding genomic distance. Negative con-
trols are regions with no known regulatory activity and far
from promoters at a set distance, which in this study was
50 kb. Only interacting segments meeting a requirement of
five p-value below 0.05 were taken forward. We merged
DpnII fragments and liver-specific peaks from ChIP-Atlas
database (Oki et al., 2018) (Supplementary Table S3) and
called the interactions using the merged fragment dataset to
increase the probability of calling interacting regions over-
lapping enhancer regions.

Distal elements interacting with promoters (probes) of
genes were annotated with a ChromHMM model (Ernst and
Kellis, 2012, 2017) that defines 25 chromatin states based on
imputed data for 12 epigenetics marks including H3K4me1,
H3K4me2, H3K4me3, H3K9ac, H3K27ac, H4K20me1,
H3K79me2, H3K36me3, H3K9me3, H3K27me3, H2A.Z,
and DNase. In this study, we utilized the ChromHMM an-
notation for healthy adult liver tissue (EID = E066) from the
Roadmap Epigenomics Project (Kundaje et al., 2015).

Proteomics analysis

Liver sample was boiled in lysis buffer containing 10%
Trifluoroethanol, 50 mM Tris pH 8 and 5 mM dithiothreitol
(DTT) and 20 mM chloroacetamide. Sample was sonicated
for 15 min on Bioruptor. Proteins were digested with LysC
and Trypsin overnight at 37�. The peptides were purified on
polystyrene divinyl benzene (SDB)-reverse phase sulphonate
(RPS) material. The purified peptides were measured using
liquid chromatography-mass spectrometry (LC-MS) instru-
mentation consisting of an EASY-nLC 1200 system coupled
to a nanoelectrospray ion source and a Q Exactive HF Or-
bitrap (all Thermo Fischer Scientific). Purified peptides were
separated on 50 cm high-performance liquid chromatography
(HPLC) columns (in house packed into the tip with Reprosil-
Pur C18-AQ 1.9 lm resin (Dr. Maisch GmbH). Purified
peptides were loaded in buffer A (0.1% formic acid) and
eluted with a linear 100-min gradient of 3–30% of buffer B
(0.1% formic acid and 80% [v/v] acetonitrile).

The column temperature was kept at 60� by a Peltier ele-
ment containing an in-house-developed oven. MS data were
acquired with Top15 data-dependent MS/MS scan method
(topN method). The target value for full scan MS spectra was
set to 3e6 in the 300–1650 m/z range with a maximum in-
jection time of 25 ms and a resolution of 60,000 at 200 m/z.
Fragmentation of precursor ions was performed by high-
energy C-trap dissociation with a normalized collision energy
of 27 eV. MS/MS scans were performed at a resolution of
15,000 at m/z 200 with target ion values of 1e5 and maximum
injection time of 25 ms.

MS raw file was analyzed using the MaxQuant software
(Cox and Mann, 2008) and peptide list was searched against
the human UniProt FASTA database with the Andromeda
search engine (Cox et al., 2011). For the search, a contami-
nation database was included, cysteine modification was set
as a fixed modification, and N-terminal acetylation and me-
thionine oxidation were set as variable modification. FDR
was 0.01 for both the protein and peptide level with a mini-
mum length of seven amino acids, and the FDR was deter-
mined by searching reverse database.

Enzyme specificity was set as C-terminal to arginine and
lysine using trypsin protease, and maximum two missed
cleavage were allowed for search. The peptides were iden-
tified with an initial precursor mass deviation of up to 7 ppm
and fragment mass deviation of 20 ppm. In case of identified
peptides that were shared between two or more proteins, these
were combined and reported in protein groups. Contaminants
and reverse identification were removed from further data
analysis.

We log2 transformed the MS proteomics levels to approx-
imate a normal distribution and to make the values better
comparable to the in silico bulk or bulk RNA-seq experiments.

Data availability

All relevant data are presented within the article and its
supporting information files. Access to the ENA (European
Nucleotide Archive) database, which will host the raw se-
quencing data, and PRIDE (PRoteomics IDEntification Da-
tabase), which will host the raw MS proteomics data, will be
available at the EBI BioStudies database under the accession
number S-BSST324. These data will be also available from
the corresponding authors upon request.
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Results

snRNA-seq identification of major liver cell types

Nuclei were isolated from a frozen sample of human liver
tissue. The nuclei isolation was carried out in two indepen-
dent replicates, with one replica undergoing an extra step of
FACS. The two replicates were pooled together, corrected for
batch effect (Supplementary Fig. S1), and underwent exten-
sive quality control (cf. Methods; Supplementary Figs. S2
and S3).

In total, we sequenced and analyzed 4282 nuclei from
adult human liver tissue. On average, 1377 genes were de-
tected per nucleus across the different cell types with HCs
showing an average of 2103 transcribed genes per nucleus,

suggesting a complex biology reflected in a more transcrip-
tionally active liver parenchyma (Supplementary Table S4).
We identified seven major clusters, which were assigned to
different cell types based on expression of cell type-specific
markers (Fig. 2): HCs, LSECs, KCs, active and several
groups of inactive HSCs, cholangiocytes, intrahepatic im-
mune cells (Nk-like/T/B cells), and a small fraction of cells
that likely are of nervous/arterial origin.

HCs are PCs that account for *70% of the liver’s mass.
They are involved in several biological processes from pro-
tein synthesis and lipid metabolism to exogenous and en-
dogenous detoxification. We used established HC gene
markers (Aizarani et al., 2019; Halpern et al., 2017, 2018;
MacParland et al., 2018; Ramachandran et al., 2019) to

FIG. 2. t-distributed stochastic neighbor embedding (t-SNE) plot for snRNA-seq analysis of 4282 liver nuclei.
(A) Overview of different liver cell populations. (B–I) Expression of cell type-specific gene markers shown in the right-
hand side of each panel. snRNA-seq, single-nuclei RNA-seq.
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identify 2155 nuclei (>50% of the total; Supplementary
Table S4) as HCs, including G6PC, APOA2, FGB, ALB,
PCK1, PLG, FGL1, MUP3, C3, and F5.

The remaining part of the liver is composed of NPCs that
interact with HCs in a paracrine manner. The largest NPC
population is LSECs, which line the sinusoidal capillary of
the liver acting as a barrier, but are also involved in several
physiological and immunological functions, particularly
mediating the immune response upon liver injury (Shetty
et al., 2018). We identified 488 (11.4%) LSECs based on the
expression levels of gene markers (Aizarani et al., 2019;
Halpern et al., 2017, 2018; MacParland et al., 2018; Ra-
machandran et al., 2019) such as FLT1, OIT3, PTPRB, F8,
NOSTRIN, and PLEKHG1.

Between the HCs and the sinusoidal space lined by en-
dothelial cells, in the so-called perisinusoidal space of the
liver, is located the fourth major liver cell population: the
HSCs. HSCs are lipid-storing cells that for the majority are
maintained in an inactive/quiescent state. They can be acti-
vated in response to liver injury, inducing the production of
collagen and extracellular matrix, making HSCs a major
player involved in liver fibrosis.

Based on the expression profile of inactive and active-
specific gene markers (Boers et al., 2006; MacParland et al.,
2018; Mannaerts et al., 2013; Zhang et al., 2016), we iden-
tified 232 (5.4%) active HCSs: ADAMTS2, COL3A1,
COL6A1/2/3, EPS2, LAMB1, IGFBP3, and DCN, and 868
(20.2%) inactive HSCs: PTPRN, UCHL1, and SPARCL1.
Supplementary Table S5 reports the list of genes differen-
tially expressed between inactive and active HSC. Interest-
ingly, the inactive HSCs cluster in three major groups,
indicating a phenotypic heterogeneity.

The transcriptome analysis of liver nuclei allowed us also
to identify a distinct cluster of 194 cholangiocytes (4.5%),
specialized epithelial cells of the bile duct that are involved
in the bile secretion. Specific gene markers (Li et al., 2017;
Sato et al., 2019) for this cluster were as follows: SOX4,
SOX9, EPCAM, FGF1, CDH11, LRP2, CFTR, SLC2A1,
and SPP1.

An immunity component of the NPCs is represented by
KCs, which are liver specialized resident macrophages. They
are located close to LSECs in the sinusoidal lumen and upon
activation release cytokines and other signaling molecules
affecting neighboring cells. We identified 135 (3.1%) KCs
expressing the following gene markers (Aizarani et al., 2019;
Halpern et al., 2017, 2018; MacParland et al., 2018; Ra-
machandran et al., 2019): IL18, MYO1F, FGD2, CD74,
CD163, SAT1, MARCO, and MSR1.

We also identified a cluster of 131 (3%) liver nuclei ex-
pressing genes characteristic of immune cells, such as
KLRB1, TXK, CD247, CCL5, IL2RG, KLRG1, ITGAL,
CXCR4, LTB, PAX5, and TLR1. The expression of these gene
markers has been reported characterizing B cells, T cells, and
NK-like cells (Aizarani et al., 2019; Halpern et al., 2018;
MacParland et al., 2018; Ramachandran et al., 2019) and in
this study, defines a cluster of intrahepatic immune cells.

Finally, we identified a small cluster of 79 nuclei (1.8%).
Analysis of gene markers characterizing this cluster sug-
gested both a nervous (APOD, NXPH1, LHFPL3, and
LRRC4C) and arterial (VCAN and TIMP4) origin. A hypoth-
esis is that they could represent afferent and efferent auto-
nomic nerves associated with branches of the PV or HA

( Jensen et al., 2013; Yi et al., 2010), so we defined them as
nervous/arterial cells.

Integrating bulk HiCap long-range interactions
and single nuclei transcriptomics data

We performed a HiCap experiment on the same frozen
liver sample using probes placed at the promoter regions of
all genes to identify all the distal elements interacting with
promoters. The rationale behind this experiment, performed
in bulk tissue, was to identify cell population-specific long-
range interactions by interpreting the HiCap results through
the single nuclei transcriptome profiles. In total, we identified
97,709 significant ( p < 0.05) long-range interactions between
7682 promoters and 94,286 distal regions (Fig. 1B; Supple-
mentary Tables S6 and S7).

Using chromHMM annotations, 4.88% of distal elements
were defined as enhancers, 0.68% as promoters for other
genes, and 64.41% as silent regions, while 13.7% of the distal
regions that overlapped at least two different annotation types
were defined as mixed (Supplementary Fig. S4; Supple-
mentary Table S8). The majority of the mixed set contained
enhancer annotations, accounting for 70.4% of the whole
group, increasing the overall portion of enhancers to *14%
of the total regions.

To integrate information from the different datasets, we
selected genes displaying expression profiles in snRNA-seq,
reported HiCap interactions, and detected protein levels as
discussed below. We focused on two groups of liver genes,
fulfilling the above selection criteria, which are important for
drug metabolism (pharmaceutically-relevant genes) and are
used as prognostic biomarkers in patients with hepatocellular
carcinoma (HCC), the most common type of primary liver
cancer.

Overall, we identified a total of 52 distal interactions with
putative active enhancers regulating pharmaceutically and
HCC-related genes (highlighted in Supplementary Tables S9
and S10) that warrant deeper experimental validations to
establish the molecular mechanism of regulation. In this
study, we present two examples of integration of bulk and
single nuclei data to identify putative genetic regulatory
mechanisms mediating drug toxicity and HCC.

Integration with bulk proteomics

We also carried out proteomics analysis in bulk to identify
the protein levels of the liver sample and explore correla-
tions with the single nuclei transcriptomics data. We detected
2351 unique proteins. Genes expressing 703 of the proteins
showed significant HiCap interactions with distal elements
(Fig. 1B). The correlation between mRNA and protein levels
has been reported to be highly affected by mRNA stability
and protein degradation, making it difficult to predict the
protein level from the mRNA.

Recently, it has been shown that considering a tissue-
independent and gene-specific mRNA-to-protein (RTP)
conversion factor may enhance the predictability of protein
copy numbers from RNA levels (Edfors et al., 2016; Moulana
et al., 2018). To compare transcriptomes from the single
nuclei analysis of liver tissue and bulk liver proteomics, we
first generated an in silico bulk dataset for snRNA-seq, av-
eraging the expression data of all nuclei following a similar
approach to a recent study integrating scRNA-seq and bulk
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proteomics in mice lung tissue (Angelidis et al., 2019). Fi-
nally, the bulk proteomics dataset was compared to the pro-
tein levels predicted by RTP ratios applied to the in silico
bulk snRNA-seq, scRNA-seq, and bulk RNA-seq datasets
(Supplementary Fig. S5).

As a benchmark, we compared the protein levels predicted
by RTP ratios combined with the in silico bulk snRNA-seq
for 4282 liver single nuclei, the in silico bulk scRNA-seq for
8444 single cells from 5 human liver samples (MacParland
et al., 2018) that showed marked heterogeneity in the t-SNE
plots, and the average RNA-seq expression in liver for 175
individuals from the GTEx project (Lonsdale et al., 2013).
We observed a good correlation between in silico bulk
snRNA-seq and scRNA-seq for the main liver cell types HC
and LSEC (Pearson r = 0.57 and r = 0.45, respectively;
Supplementary Fig. S6), and poorer correlation for other
cell types.

As expected, the overall correlation of the in silico bulk
snRNA-seq with the proteomics data was low (Pearson
r = 0.19; Supplementary Fig. S5B). A better, yet moderate
correlation with the proteomics data was observed for
in silico bulk scRNA-seq and bulk RNA-seq (Pearson r = 0.4
and r = 0.46, respectively; Supplementary Fig. S5A, C),
perhaps reflecting a quantitative ‘‘loss of information’’ when
comparing protein abundancies with transcript levels from
single nuclei, single cells, or bulk. The correlations improved
largely when RNA-seq experiments were adjusted for RTP
abundancy estimation factors (Pearson r = 0.47 for in silico
bulk snRNA-seq, r = 0.61 for in silico bulk scRNA-seq, and
r = 0.76 for bulk RNA-seq; Supplementary Fig. S5D–F),
confirming once more that mRNA levels cannot predict
protein levels on a general level, but must be verified in a
gene-specific way.

Novel insights on the pharmacogenetics
of fluoropyrimidine toxicity

The individual response to a medication and the risk of
adverse reaction have strong genetic component and several
liver-expressed genes have been characterized as pharmaco-

genomics biomarkers. We explored the liver-related genes
reported as ‘‘Pharmacogenomic biomarkers in Drug Label-
ing’’ by the FDA (https://www.fda.gov/drugs/scienceresearch/
ucm572698.htm).

We selected pharmaceutically relevant genes that were
expressed in snRNA-seq, and that had HiCap and proteomics
signals (Fig. 1B; Supplementary Table S11). As an example,
we investigated the highly polymorphic and clinically ana-
lyzed DPYD gene and checked its cell population-specific
expression based on the snRNA-seq data, its HiCap interac-
tions, and proteomics profile in bulk (Fig. 3; Supplementary
Table S9).

The enzyme dihydropyrimidine dehydrogenase (DPD) is
encoded by the DPYD gene and represents the rate-limiting
first step in the catabolism of pyrimidines in liver. Deficit in
DPD is associated to missense alleles or alleles affecting
splice sites, or sometimes alleles with unknown function.
They increase the risk of toxicity in the form of severe bone
marrow depression and neurotoxicity upon the use of the
fluoropyrimidine chemotherapeutics fluorouracil (5-FU) or
capecitabine, cancer drugs used in treatment of colon, rec-
tum, stomach, breast, HCC, and other types of carcinomas.
Analysis of these variants is now clinically implemented in
several countries. In addition, over 30 single-nucleotide
polymorphisms (SNPs), mainly missense or noncoding gene
variants, have been identified in DPYD.

However, to date, the effect of these variants to the DPD
enzymatic activity remains unclear. HiCap analysis identified
95 different distal regions interacting with probes at the DPYD
promoter (Fig. 3D; Supplementary Table S9). Annotation of
these distal regions using chromHMM data for liver tissue re-
vealed six enhancer regions with different degrees of activity.
The strongest one (Fig. 3E), located in the first intron of DPYD,
shows transcription factors (TFs) binding sites for different TFs
and the presence of the SNP rs74450569, a putative regulatory
variant that may tune the gene expression and, in turn, con-
tribute to the DPD enzyme levels and drug response.

The overall, yet not fully reached, goal is to identify the
potential risk of toxicity upon fluoropyrimidine treatment
based on the DPYD allelic makeup. Today, at least 14
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FIG. 3. Multi-omics overview of DPYD. (A) Number of probe-distal HiCap interactions associated to liver-specific
chromHMM annotations. (B) Expression levels from snRNA-seq in different liver cell types. The size of the dot represents
the number of nuclei that express the gene, while the color intensity the overall level of expression. (C) Heatmap com-
paring the expected and experimental levels of protein abundance from RNA-seq and MS proteomics experiments, re-
spectively. The first column shows the log2-average expression of genes from the in silico bulk snRNA-seq, while the
second one illustrates the estimated protein abundance calculated after calibrating the in silico bulk snRNA-seq levels for
RTP abundancy estimation factors. The third column shows the experimental level of the protein abundance detected by
MS. The last two columns show the estimated protein abundance calculated after calibrating the log2-average in silico bulk
scRNA-seq levels and the log2-average number of reads of bulk RNA-seq. (D, E) Circos plots illustrating interactions of the
probe for DPYD with distal elements. (D) The first track shows gene annotations overlapping probe-distal interactions. The
second track shows manually curated chromHMM annotations overlapping interacting regions, while the inner one shows
the experimental HiCap interactions. The purple arrow marks the probe location. (E) A zoom-in on the area of interest for
the circos plot in (D). The first two tracks show chromHMM and gene annotations, respectively. The third track shows six
enhancers interacting with the DPYD promoter. The inner track shows probe-distal (red) HiCap interactions. The purple
arrow marks the probe location. (F) The genomic landscape for the SNP rs74450569 from (E) (marked in blue) located in a
distal element overlapping an active enhancer and interacting with the DPYD probe. The UCSC genome browser tracks
represent from the top: (1) the ChIP-seq signals for two active enhancer-specific histone modifications and ChromHMM
annotations in HepG2 and (2) the transcription factors binding from ChIP-seq experiments from the ENCODE project with
the coloring (light gray to dark gray) proportional to the signal strength observed in different cell lines (cell abbreviations
can be found at: https://tinyurl.com/watv2v7). DPYD, dihydropyrimidine dehydrogenase; MS, mass spectrometry; RTP,
mRNA-to-protein; scRNA-seq, single-cell RNA sequencing.
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different DPYD haplotypes have been reported from in vitro
and clinical/ex vivo data (Whirl-Carrillo et al., 2012).
rs74450569 has similar allele frequencies (D¢ = 1) and is in
linkage disequilibrium with the reported haplotype DPYD*-
HapB3 that contains three variants of unknown function as-
sociated to reduced DPD activity (rs75017182, rs56038477,
and rs56276561 in Fig. 3E). Thus, it is possible that
rs74450569 is the functional variant mediating the effect of
DPYD*HapB3.

The regulatory element harboring rs74450569 contains
several transcription factors binding sites (TFBSs) observed
from ChIP-seq experiments in different cell lines in the
ENCODE project (Dunham et al., 2012), including binding
sites for FOSL2, CEBPB, JUN, and JUND in the HCC-
derived cell line HepG2 (Fig. 3F).

Finally, the integration of snRNA-seq data allowed us
‘‘localizing’’ the expression of DPYD to both HCs and KCs
(Fig. 3B), suggesting a novel nonparenchymal and macro-
phagic component in the pyrimidine catabolism.

Bulk proteomics data confirmed the expression of the DPD
enzyme, although with a less predicted protein level than
expected using RTP adjusted values of in silico bulk snRNA-
seq (Fig. 3C). This trend was observed also for the other
pharmacogenomics biomarkers and could suggest a high le-
vel of degradation of nuclear mRNA transcripts or rapid
protein turnover. Further experimental validations with pro-
teomics studies at single-cell level will be needed to precisely
allocate the DPD protein level in HC and KC, and to verify
the nonparenchymal contribution to the drug response.

A complex regulatory landscape for a glucose
transporter linked to HCC

Collections of genes with biomarker characteristic are also
available for HCC survival outcome. Li et al. (2018) curated a
collection of 104 liver-enriched and prognostic genes in
HCC. We focused on 27 of these 104 genes that we matched
to the single nuclei transcriptomics data and for which we
obtained also bulk HiCap and proteomics data (Figs. 1B and 4;
Supplementary Table S12).

In total, we identified 469 distal HiCap interactions, of
which 38 distal regions harbored active enhancers interacting
with the promoters of 11 of the selected 27 genes (Supple-
mentary Table S10). Six of these enhancers harbored at least
one HCC-specific somatic noncoding mutation identified in
the PanCancer Analysis of Whole Genomes consortium in
314 HCC cases (Supplementary Table S13) (Umer et al. ar-
ticle in preparation).

Not surprisingly, the vast majority of these essential genes
associated to HCC survival, were highly expressed in HCs
(Fig. 4B), in agreement with the established view that alter-
ations of the balance of damage and regeneration of the liver
parenchyma can result in fibrosis or cirrhosis, and eventually
in the onset of HCC (Supplementary Fig. S7).

The top two HCC-related genes with most HiCap-reported
interactions belong to the solute carrier (SLC) family of
membrane transport proteins (Supplementary Fig. S7). One
example is represented by novel putative distal regulatory
elements identified for the SLC2A2 gene. SLC2A2 or GLUT2
is a glucose transporter historically associated to the glyco-
gen storage disease type XI (also known as Fanconi-Bickel
syndrome) where a nonfunctioning GLUT2 prevents the ef-
flux of glucose from several tissues leading, among others, to
glycogen accumulation, glucose and galactose intolerance,
and fasting hypoglycemia (Santer et al., 1998).

In recent years, GLUT2 has been identified as a novel
prognostic marker for HCC when it is overexpressed to meet
the metabolic demands of proliferating cancer cells (Kim
et al., 2017). HiCap probes designed at the TSS of SLC2A2
identified 143 interacting distal regions, including 16 chromHMM
annotated enhancers, painting a rather complex regulatory
landscape (Fig. 4D).

These distal elements (Fig. 4E; Supplementary Table S13)
included seven enhancers located in introns 1, 3, 7, and 8 of
the SLC2A2 gene and four enhancers in introns 9, 10/11, and
25 of the TNIK gene encoding a kinase involved in the Wnt
signaling pathway. Nuclear expression of TNIK has been
associated with poor HCC prognosis ( Jin et al., 2014). HiCap
data also revealed two intergenic enhancers and three en-
hancers located in introns of genes. One of the enhancers was
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FIG. 4. Overview of top 10 HCC genes with the largest number of significant probe-probe or probe-distal interactions
detected in both proteomics and snRNA-seq. (A) Number of probe-distal (right panel) HiCap interactions associated to
liver-specific chromHMM annotations. (B) Expression levels from snRNA-seq in different liver cell types. The size of the
dot represents the number of nuclei that expresses the gene, while the color intensity the overall level of expression.
(C) Heatmap comparing the expected and experimental levels of protein abundance from RNA-seq and MS proteomics
experiments, respectively. The first column shows the log2-average expression of genes from the in silico bulk snRNA-seq,
while the second one illustrates the estimated protein abundance calculated after calibrating the in silico bulk snRNA-seq
levels for RTP abundancy estimation factors. The third column shows the experimental level of the protein abundance
detected by MS. The last two columns show the estimated protein abundance calculated after calibrating the log2-average
in silico bulk scRNA-seq levels and the log2-average number of reads of bulk RNA-seq. (D, E) Circos plots illustrating
interactions of the probe for SLC2A2 with distal elements harboring active enhancer elements. (D) The first track shows
gene annotations overlapping probe-distal interactions. The second track shows manually curated chromHMM annotations
overlapping interacting regions, while the inner one shows the experimental HiCap interactions. The purple arrow marks
the probe location. (E) A zoom-in on the area of interest for the circos plot in (D). The first two tracks show chromHMM
and gene annotations, respectively. The third track shows HCC-specific mutations detected from the PanCancer consortium.
The inner track shows 16 the probe-distal HiCap interactions overlapping active enhancer elements. The purple arrow
marks the probe location. (F) The genomic landscape of the T > A motif-breaking mutation identified in (E) (marked in
blue) located in one of the introns of the TNIK gene. The UCSC genome browser tracks represent from the top: (1) the ChIP-
seq signals for two active enhancer-specific histone modifications and ChromHMM annotations in HepG2 and (2) the
transcription factors binding from ChIP-seq experiments from the ENCODE project with the coloring (light gray to dark
gray) proportional to the signal strength observed in different cell lines (cell abbreviations can be found at: https://
tinyurl.com/watv2v7). HCC, hepatocellular carcinoma.
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located in intron 15 of the PLD1 gene, encoding for phos-
pholipase D1 involved in cell proliferation and migration,
and overexpressed in HCC (Xiao et al., 2016).

Another enhancer was harbored by intron six of PRKCI, a
member of the protein kinase C family related to invasion and
metastasis in HCC (Du et al., 2009). The third enhancer el-
ement was located in intron five of MGLL, a fatty acid me-
tabolism enzyme downregulated in HCC, hence increasing
HCC cell migration rate (Yang et al., 2018). Some of these
enhancers showed liver-specific TFBS signals based on
ENCODE data and three of them were defined by CTFC and
RAD21 binding sites, suggesting a putative regulatory role
through chromatin remodeling.

Not surprisingly, snRNA-seq analysis confirmed that the
vast majority of HCC-related genes, including the ones har-
boring SLC2A2 enhancers, are primarily expressed in HCs
(Tummala et al., 2017) (Fig. 4B). Bulk proteomics data
confirmed the expression of SLC2A2 with a comparable RTP-
predicted protein level than expected using RTP ratio-
adjusted values of single nuclei transcriptomics (Fig. 4C).
Predicted and observed protein levels for HCC genes did not
follow a defined trend, with some genes showing lower (e.g.,
PZP, ACOT12, and ABCB11), similar (e.g., CYP8B1, FMO3,
and APOB), or higher (e.g., SLC27A5, HAO1, and APOA1)
protein levels than expected from adjustments of bulk RNA-
seq data using RTP ratios (Supplementary Fig. S7). This
suggests a cell- and gene-specific balance of mRNA degra-
dation and protein turnover that calls for a validation at
single-cell level.

Three SLC2A2 enhancer-harbored somatic mutations
reported by the PanCancer consortium (Supplementary
Table S13), in particular one somatic mutation in the en-
hancer located in the intron 25 of TNIK, have been reported as
a motif breaker for the transcription factor VSX1, suggesting
a putative noncoding, yet direct genetic role of this cancer
mutation in the regulation of SLC2A2.

Further experimental validations editing and isolating
these different putative regulatory elements are necessary to
fully disentangle the genetic regulation of SLC2A2 in HCC.

Discussion

The analysis of transcriptome profiles from single nuclei
today offers the possibility to identify cell types and states in
biological samples difficult to dissociate or flash-frozen tis-
sue samples with limited availability (Grindberg et al., 2013).
Several studies have shown that a single nucleus displays an
expression profile that is remarkably similar to one of the
corresponding cells, with some expression bias toward tran-
scripts of nuclear proteins or ncRNAs.

In this study, we performed snRNA-seq of a frozen human
liver sample. The gene transcripts from liver nuclei were
analyzed pre- and post-FACsorting to minimize the amount
of cell debris from the tissue homogenization process. An
accurate quality control did not reveal significant differences
in the nuclei transcript quality, allowing us to pool the two
preparations and obtain a collection of 4282 liver single nu-
clei transcriptomes (Supplementary Figs. S1–S3).

Nuclei clustering followed by differential expression
analysis led to the identification of all the major liver cell
types: HCs, endothelial cells, KCs, and HSCs both in qui-
escent and activated state. One of the advantages in the use of

single cells/nuclei transcriptomics is the possibility to char-
acterize and explore complex or rare cell populations.

Aside from the expected NPC types, we also identified a
population of nuclei likely originated by resident immune
cells, a distinct cluster of nuclei showing markers specific
for cholangiocytes, and, perhaps more intriguingly, a small
population of 79 nuclei exhibiting both nerve- and vascular-
specific gene markers. While this finding must be validated in
different liver samples, it is worth to remind that the liver
innervation by the autonomic nervous system relies on the
portal vasculature with both sympathetic and parasympa-
thetic nerves wrapped around branches of the PV (posterior
plexus) and HA (anterior plexus) ( Jensen et al., 2013). The
small cluster of nuclei we identified may represent a sample
of this anatomical feature.

Two human liver cell atlases based on scRNA-seq have
been recently released, revealing new subtypes of liver
cells and providing a more detailed view of the organ de-
sign. (1) A study from Aizarani et al. (2019) on cryopre-
served and freshly isolated human liver samples resulted in
an atlas of about 10,000 single cells with a focus on epi-
thelial liver cell progenitors. (2) A second study from Ra-
machandran et al. (2019) on liver cirrhosis at single-cell
level performed on fresh liver biopsies, generated an atlas
of liver-resident cells clustering more than 66,000 single
cells into 21 populations with the spotlight on subpopula-
tions of scar-associated macrophages and endothelial cells
expanding in cirrhosis. Despite studying nuclei from a
single liver sample, we were able to identify most of the
major cell types reported in the aforementioned studies.
However, as expected, the limited number of total nuclei
and the confined view of the transcriptome coming from the
analysis of nuclei and not whole cells prevented us from
describing nuances such as zonation of cell types or rare
subsets of immune cell populations.

The differential expression of genes in different cell pop-
ulations stems from a precise genetic regulation with one or
several distal elements affecting the transcriptome profile of
each single nucleus. We used HiCap interaction data gener-
ated from the same liver tissue sample in bulk to identify
putative regulatory elements modulating the expression of a
set of liver-specific genes associated to drug metabolism and
as prognostic biomarkers in patients with HCC. We presented
two examples highlighting the potential of an integrative
multi-omics approach in untangling some of the regulatory
mechanisms behind the pharmacogenomics of fluoropyr-
imidine toxicity (DPYD) and the role of the glucose trans-
porter GLUT2 (SLC2A2) in HCC.

HiCap data pinpointed a series of liver-specific enhancers
that interact with the promoters of DPYD and SLC2A2.

SNPs located in DPYD-identified enhancers could affect
the individual response to drug toxicity. For example, the
regulatory element harboring rs74450569 presents several
TF binding sites, among others, FOSL2 and JUN that are
regulated by the ribosomal protein L34 (RPL34) through
MAPK and p53 signaling. Silencing of RPL34 has been
shown to inhibit tumor growth and proliferation, and simul-
taneously, to upregulate the expression of several TFs, in-
cluding FOSL2 and JUN (Wei et al., 2016). A working
hypothesis is that this may, in turn, increase the enhancer
activity of the regulatory element harboring rs74450569
leading to an increase in DPYD activity and reduced toxicity.
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At the same time, somatic mutations reported from the
PanCancer consortium and harbored in SLC2A2-identified
enhancers could shed more light in the HCC progression.
While HiCap experiments offer a new level of resolution in
the study of long-range 3D genomic interactions when
compared to other Hi-C-derived techniques, they require
further experimental validation to confirm the effect of distal
element on the studied genes.

When it comes to the protein abundance in a cell, the mRNA
translation and protein degradation processes are as important
as the mRNA transcription and stability (Vogel et al., 2010).
The nature of the mRNA also influences the correlation be-
tween mRNA and protein level: a relatively good correlation is
expected for housekeeping genes that show stable mRNA and
proteins opposed to TFs, signaling genes, or genes with cell
cycle-specific functions that show unstable mRNA and proteins,
and hence a poor correlation (Schwanhäusser et al., 2011).

An additional layer of complexity in trying to predict the
protein level from the mRNA level is represented by post-
translational modification with hundreds of ubiquitination
enzymes, serine-threonine kinases, tyrosine kinases, and phos-
phatase dramatically altering the protein half-lives. Recently, it
has been proposed that a better correlation could be achieved
using a tissue-independent and gene-specific mRNA-to-protein
conversion factor, which could enhance the predictability of
protein copy numbers from RNA levels.

Conclusions

The integration of single nuclei transcripts with bulk HiCap
and proteomics is a complex, heavily constrained multi-omics
challenge. To overcome this, we focused on specific groups of
genes that are of high importance to the liver. After exploring
these gene sets in the single nuclei transcriptomics space, we
focused on genes that showed interesting pharmacogenomics
or HCC-related biomarker patterns. We explored these pat-
terns through data generated in bulk, and we proposed po-
tential genetic mechanisms that might affect the regulation of
genes such as DPYD and SLC2A2, for instance by assigning
specific promoter-distal interactions potentially affecting
protein levels for genes expressed in distinct cell populations.
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Reseach Council (Vetenskapsrådet, grant no: 78081) (P.S.),
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KC ¼ Kupffer cell
LSEC ¼ lined by specialized sinusoidal
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SLC ¼ solute carrier

scRNA-seq ¼ single-cell RNA sequencing
SNP ¼ single-nucleotide polymorphism
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snRNA-seq ¼ single-nuclei RNA-seq
TF ¼ transcription factor

TFBS ¼ transcription factors binding site
t-SNE ¼ t-distributed stochastic neighbor embedding

UMI ¼ unique molecular identifier
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