
SYSTEMS NEUROSCIENCE

along with the fact that cognitive processing time varies from trial 
to trial for each animal, prevents the direct comparison of the 
time course of the neuronal activity profiles. Despite the intrin-
sic limitation that PETH computation does not by itself provide 
a framework for statistical inference (Czanner et al., 2008), it 
remains a widely used tool that provides meaningful insights and 
whose efficiency has been improved (Endres and Oram, 2010). To 
solve this conundrum, we developed a simple method to normal-
ize time durations in each trial and thus to build a normalized 
inter-event time histogram (NIETH) for individual neurons. This 
normalization method was applied to the whole trial duration 
because BG activity is notoriously variable and may have dynamic 
encoding capacities (Arkadir et al., 2004). Using this method, we 
analyzed data previously recorded in the GPi and the striatum 
of two monkeys during a reward probability-based, free-choice 
motor task (Figure 1, see Pasquereau et al., 2007 for details). We 
then focused our analysis on a possible correlation between the 
neuronal activity in striatum and GPi and the animal behavior 
during the crucial period between the appearance of the cue and 
the go signal, the decision period (DP). To link neuronal activity 
to behavior, we investigated neuronal coding of behavioral events 
as a possible basis for a computational predictive model and their 
mutual information to quantify their interdependence. We thus 
addressed the questions of how and where information flows were 
processed in the BG system.

IntroductIon
In a visually guided motor task, decision-making is a distributed 
neural process that involves the basal ganglia (BG) interacting with 
the frontal and prefrontal cortical areas as well as with the dopamin-
ergic system (Opris and Bruce, 2005; Schultz, 2006; Daw, 2007; 
Samejima and Doya, 2007; Kable and Glimcher, 2009). In a recent 
electrophysiological study in behaving monkeys, using a multiple 
choice task, we showed that the encoding of the movement direc-
tion by the neurons of the striatum (the main input of the BG) and 
the internal globus pallidus (GPi, the main output of the BG) is 
modulated by the incentive value of the action (Pasquereau et al., 
2007). This could provide a mechanism by which motor program 
selection could be learned under dopamine control (Samejima and 
Doya, 2007).

However, the selection process, is only partially accessible using 
classical electrophysiological analysis methods, such as PETHs. 
This is because, even when a cue is presented at a known time 
and the time of the locomotor action to implement the deci-
sion is known, the actual moment of decision-making cannot be 
observed and so its temporal relationship to the cue and other 
events cannot be precisely known. Moreover, experimental pro-
tocols for decision-making assessments (including those used in 
our own studies) assign a randomly variable duration between 
task events in order to decorrelate all the steps from one another. 
This means that the time between events varies for each trial. This, 
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MaterIals and Methods
The reader is invited to refer to the first paper dealing with these 
data (Pasquereau et al., 2007) for an exhaustive description of 
materials and methods involved with the data acquisition. Here we 
provide a summary including only the details necessary to explain 
the additional analyses and results.

anIMal traInIng and surgery
The study was conducted on two female rhesus monkeys (Macaca 
mulatta, weighing 5.6 and 4 kg). The primates were kept under 
water restriction to increase their motivation during the task train-
ing. A veterinarian skilled in the healthcare and maintenance of 
non-human primates supervised all aspects of animal care. Surgical 
and experimental procedures were performed in accordance with 
the Council Directive of 24 November 1986 (86/609/EEC) of the 
European Community and the National Institute of Health Guide 
for the Care and Use of Laboratory Animals. In the task, monkeys 
were trained to move a custom-made manipulandum in a hori-
zontal plane with their right hand. The manipulandum moved a 
cursor on a computer screen placed 50 cm in front of the monkey. 
In each trial of a session, two different cue targets (randomly chosen 
from a set of four targets, each with a different reward probability 
(P(R) = [0, 0.33, 0.67, and 1])) were displayed simultaneously on 
the screen. Each cue appeared randomly in one of four possible 
directions (0°, 90°, 180°, 270°). In order to induce a situation in 
which there was always an optimal choice, a single trial could not 
include two identical cues or two targets in the same location. After 
a random period (1–1.5 s), the “go” signal was given and the monkey 
had to initiate a movement toward one of the two targets. Once 
this position was reached the animal had to hold the cursor on the 
target for a random period (0.5–1 s) after which the cursor had 

to be moved back to the central position. The reward was then 
delivered (fruit juice) according to the probability associated with 
the chosen target. For each successful trial, if the monkey chose the 
target associated with the highest probability of receiving a reward, 
their choice was defined as optimal. If not, they would still receive 
reward with a probability equal to that for the chosen target. A 
recording chamber was then implanted on the skull of each animal. 
The surgical procedure for attaching the recording chamber has 
been extensively described in previous publications (Bezard et al., 
2001; Boraud et al., 2001).

For purposes of analysis of the relationship between external 
sensory cues and the neuronal firing activity, we consider that the 
context in which the animal was making the decision was the com-
bination of the two targets that were visible during a trial. Thus, 
with two targets selected from four, there are six possible combina-
tions and therefore six distinct contexts within which the animal 
makes a decision on which target to choose. Due to the animals 
being over-trained, they never choose a target associated with a 0 
reward probability. Consequently, they are considered to have only 
three possible choices associated with the remaining 0.33, 0.67, and 
1 reward probabilities.

recordIng and data acquIsItIon
Neuronal recordings were performed in the dorsolateral stria-
tum and the GPi. Data acquisition, spike sorting, and storage 
are described elsewhere (Pasquereau et al., 2007). The following 
behavioral events were recorded and stored simultaneously with the 
electrophysiological recordings: trial begin (TB), cue presentation 
(CP), go signal (GS), on target (OT), back home (BH), reward/no 
reward (RW/NRW), and finally trial end (TE). This is described 
in Figure 1.

Figure 1 | Behavioral paradigm of the reward probability-based 
free-choice task. Two different targets associated with reward 
probabilities (here P(R) = 0.33 and 0.67) are displayed simultaneously during 
each trial in four possible positions in random order (six target combinations)  
and in random locations (4 × 3 possibilities). The different milestones of a 

trial sequence are described here with their range of duration. During the 
“move” phases, the duration is partially under the control of the  
animal itself. Inset: difference of the average durations of task phases  
under the control of the monkey, error bars indicate SEM (Student’s t-test, 
p < 0.01).
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whole time course of a trial. This amplitude normalization allows 
averaging of the profile of activation of many neurons across an 
event, whatever the maximal firing rate of individual neurons, by 
considering only their deviation from their baseline level. Without 
the amplitude normalization, neurons with a high maximal fir-
ing rate would have a disproportionate effect on the profile and, 
assuming that the information within the system is transmitted 
by population encoding, would distort the representation of the 
information across the course of an event.

Monkey data have been separately processed and not pooled 
because of a non-negligible level of variability related to their indi-
vidual behavior. Indeed, the analysis of the distribution of the two 
inter-events intervals which are under the control of the animal 
(GS–OT and OT–BH) exhibited significant differences as shown in 
Figure 1 inset. Using this method, we have performed new analyses 
of the data of a previous publication by our team (Pasquereau 
et al., 2007).

nIeths study and coMparIson
We compared NIETH distributions between striatum and GPi. 
Our first goal here was to find whether salient activity profile 
features emerged in the neuronal activity of the two structures. 
To achieve this, two complementary approaches were explored, 
applied separately to each monkey. The first approach consisted in 
computing correlation coefficient matrices between every neuron 
NIETH. The second relied on the computation of NIETH entropies 
to estimate the variability within their population. The Shannon 
(1948) entropy computation (and its derived methods) is now 
often used as a non-linear analysis tool providing information on 
neuronal activity temporal organization (Borst and Theunissen, 
1999; Lim et al., 2010) or complexity characterization (Haslinger 
et al., 2010). Here, we used it to quantify the activity variability 
throughout the task in parallel for every neuron. If the activity 
profiles are similar, successive entropy values will be low and vice 
versa. Both approaches were performed on all the NIETHs. The 
Shannon entropy H (here in bits) of a discrete variable X with n 
possible values is given by:
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dimensionality of NIETHs, a preliminary discretization procedure 
is applied before entropy calculation. NIETH amplitudes vary 
between 0 and 1 and we arbitrarily chose to linearly distribute 
their values into a 10 interval alphabet ranging from 1 to 10 (i.e., a 
0.527 or a 0.596 amplitude value will provide a 5 and a 0.758 will 
provide a 7). These computations were performed with a dedicated 
Matlab toolbox (Peng et al., 2005) which was also used for further 
mutual information calculations. These analyses were performed 
separately on the two monkeys and on striatum and GPi.

extractIon of “codIng neurons”
The monkey’s decision is made between the CP and the movement 
initiation triggered by the GS. This period of time includes the 
decision process phase itself, but it may also include an amount of 
time during which the monkey has already made its decision and 

data analysIs
The analyses were performed with custom-made Matlab 
(MathWorks, Natick, MA, USA) and NeuroExplorer tools and 
scripts (Nex Technologies, Littleton, MA, USA), and C# libraries 
(Microsoft, Seattle, WA, USA).

nIeth analysIs
nIeths extractIon and norMalIzatIon
To have an overall view of the neuronal dynamics associated with 
the choice task and to compare both striatal and pallidal activity 
profiles, we investigated the temporal outline of NIETHs across 
all the steps of the task. Therefore, we have implemented an algo-
rithm that can automatically identify event sequences of interest 
within the NIETHs and extract the spike trains related to these 
events. In a first step, the algorithm, extracted all the recorded 
sequences where the monkey completed every event through the 
course of the trial (here the event sequence: TB–CP–GS–OT–
BH–RW–TE) and discarded sequences where any event was not 
completed (e.g., where the monkey failed to return the cursor 
to home). Because recording continues until and after reward 
delivery, we were able to note that the firing profile in cases where 
reward was obtained and those where no reward was obtained 
were different. Therefore, all trials in which no reward was gained 
were also discarded. In summary, in the presented results only 
successfully completed trials where a reward was obtained are 
shown in order to minimize variation in neuronal activity due 
to inter-trial variation in behavioral profile. The algorithm then 
computes the NIETHs using each occurrence of the complete 
event sequence. Duration of the inter-event intervals (IEI) is either 
random or behaviorally dependent as shown on Figure 1 and 
this adds variability to the NIETH length and thus makes inter-
neuron activity profile comparisons difficult. In a second step, 
an additional procedure of time normalization of the NIETH is 
implemented to solve this problem. The first IEI between TB and 
CP is always split into the same number of time bins in every trial 
and for every neuron. This means that the duration of a bin in 
one trial is not equal to that in another trial but that the number 
of bins for a given TB–CP interval is the same for every trial. In 
our study, the first IEI (TB–CP) was always split into 100 bins in 
order to obtain a bin size close to 10 ms (Zhang and Reid, 2005). 
Because the duration of this event can vary from 1 to 1.5 s, the 
length of a bin can thus vary from 10 to 15 ms, but the average 
length of bin duration can be calculated. This average bin dura-
tion is then used for all subsequent IEIs (CP–GS, GS–OT …). 
Because the average duration of each subsequent event differs, 
the number of bins allocated for each event also changes. Thus, 
for example if the average duration of the TB-CP event was 1.2 s 
and for the CP–GS event was 1.8 s, the CP–GS event would be 
divided into 100 × 1.8/1.2 = 150 bins. This rescaling prevents 
time normalization biases by maintaining IEI durations close to 
the original. Due to the similar IEI average durations between 
different neurons (most of the random durations are generated 
by the software itself), this normalization technique finally allows 
NIETHs alignment in time and thus their comparison. At the same 
time, amplitude normalization (Burkhardt and Whittle, 1973; 
Gage et al., 2010) is applied to the NIETH based on the maxi-
mum number of spikes observed at any point in time over the 
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The prediction quality of the model was then compared to 
random choices based on context and choice chance based rates 
(respectively 16.67 and 33.33% to obtain the actual value with a 
random draw). The significance of the model retrieval rates was 
compared to the chance based rates using a Kolmogorov–Smirnov 
test. A Wilcoxon rank signed test was then applied on success rates 
to compare the power of the model concerning context and choice 
prediction in order to conclude which was most efficiently encoded 
in the recorded structures.

results
nIeths extractIon
The software successfully extracted and normalized, both in time 
and amplitude, the global NIETHs from all recorded neurons 
and according to the previously defined sequence of events. The 
present study is based on 111 striatal cells (53 in monkey T and 
58 in monkey D) and 107 pallidal cells (51 in monkey T and 
56 in monkey D). The normalized NIETH distributions among 
striatal and pallidal neurons in both monkeys are presented in 
Figure 2. Several automatic clustering of neuronal subpopula-
tions algorithms, based on principal component analysis of the 
NIETHs profiles, have been tested here without success. This 
failure is consistent with the time axis position distribution of 
the NIETH amplitude peak, as shown in Figure 2. This position 
is here used as a NIETH sorting parameter and it clearly appears 
as continuously distributed from one neuron to another all along 
the time axis.

the populatIon actIvIty synchronIzatIon dIffers between 
strIatal and pallIdal neurons
A two-way ANOVA was applied to the average correlation coef-
ficient (ACC) values to investigate possible monkey and structure 
combination (GPi–striatum, GPi–GPi, and striatum–striatum) 
effects. The resulting p-values were significant (p < 0.01) and 
provide evidence for interactions between monkey, structure 
combination and ACC. NIETH correlation coefficient matrices 
were then processed and compared separately for both mon-
keys and for striatal and GPi neurons. As was expected after a 
visual control of Figure 2, differences were revealed between 
the two regions regarding the neuronal dynamics, as shown in 
Figures 3A,B. The NIETHs correlation coefficient values were 
higher between GPi neurons than striatum neurons in both mon-
keys. This demonstrates that there is less dynamic variability 
between GPi neurons and this was confirmed by the estimate of 
their ACC values according to structure. As shown in Figure 3C, 
these latter differed significantly between the two regions. This 
emphasizes a higher temporal synchronization of GPi neuronal 
spike trains compared to striatum. Moreover, the lowest absolute 
value of correlation coefficient occurred in both monkeys when 
computing the ACC value between GPi and striatum, which is 
another argument in favor of a possible functional dissociation 
between the two structures. These results were similar in both 
monkeys.

The measure of the Shannon entropy between striatum and 
GPi added consistent results to this first outcome (respectively 3.11 
and 1.25 for monkey T and 2.79 and 1.19 for monkey D). Indeed, 
Shannon entropy can be considered as a measure of the variability 

just waits for the GS. Because it is not easy to differentiate between 
the decision period and the waiting period (Leblois et al., 2006a), 
we computed averaged firing rates for each neuron during this 
decision period (DPAFR) for each different context presented to 
the monkey and for each of its actual choices. We first extracted the 
neurons for which significant variations in DPAFR were related to 
any of the six different context values or to any of the three choice 
reward probabilities by applying a one-way ANOVA. We thus des-
ignated any neuron that had a significant variation in DPAFR to 
at least one context or one choice as a coding neuron. When the 
ANOVA was positive we applied post hoc methods based on the 
Tukey’s least significant difference procedure. We thus obtained 
tuning functions for each neuron which associated preferential 
coding context or choice values with a peak in the firing rate. 
These tuning functions were then applied to basic modeling stud-
ies. These analyses were performed with the Matlab Statistical 
toolbox and applied separately both to the two monkeys and to 
striatum and GPi. 

fIrIng rate carrIed InforMatIon analysIs
We computed mutual information between the DPAFRs and 
the context value, for coding neurons. The mutual information 
I between two discrete random variables X and Y is expressed in 
bits and is given by:

I X Y p x y
p x y

p x p yx Xy Y

, , log
,( ) = ( )⋅ ( )

( ) ⋅ ( )





∈∈
∑∑

where p(x,y) is the joint probability distribution function of 
X and Y, p(x), and p(y) are the marginal probability distribu-
tion functions of X and Y respectively. The results were used to 
investigate the respective involvements of the GPi and of the 
striatum in the processing of information of choice and context 
encoding in BG.

tunIng functIon Model predIctIon
The tuning functions derived in the “coding neurons” section were 
then used as a simple reverse model to assess how good the tun-
ing function was at predicting a direction given the average firing 
rate in the decision period as an input. For every coding neuron 
in both structures, the tuning function exhibited a preferential 
context/choice value encoding (e.g., one neuron can have its high-
est DPAFR when the animal is presented with a given context or 
choice number). For each previously extracted coding neuron, 
our predictive model thus associated the six different reference 
DPAFRs of the tuning function with each of the six different con-
text values (and respectively the three DPAFRs associated with each 
of the three choice values). The model was then used as follows: 
DPAFRs were computed for each trial of a given coding neuron. 
For every trial, the experimental DPAFR was applied as an input 
to the tuning function (core of the model) which returned the 
most likely context or choice theoretical value (i.e., that for which 
reference DPAFR was closest to the experimental DPAFR). When 
this theoretical value was the same as the actual, the trial model 
prediction was considered as successful. Success rates were then 
computed for context and choice encoding in both monkeys and 
in both striatum and GPi.
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Figure 2 | NieTH plots from the striatum (left) and gPi (right) of monkey T (top) and monkey D (bottom), aligned on each event. The neurons were sorted 
using the curve peak time value. The color bar indicates the normalized amplitude value for each neuron.

Figure 3 | Cross-correlation matrices of all the neuron NieTHs for monkey T (A) and monkey D (B). (C) Histograms of average correlation coefficient values of 
the neuron NIETHs. Color bar: correlation coefficient value, error bars indicate SEM (one-way ANOVA, p < 0.01, post hoc: Tukey’s least significant difference 
procedure).
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Figure 4 | NieTH entropies computed for neurons in monkey T and 
monkey D. Error bars indicate SEM (Student’s t-test, p < 0.01).

of the signals emitted by a source (here the NIETHs shapes) and 
we noticed that, in both monkeys, the value was lower in GPi than 
in striatum, as shown in Figure 4.

These two results suggest that, considering a given behavioral 
event expected value such as a choice or a context encoding, the 
information carried by striatum seems condensed in GPi.

codIng neurons actIvIty analysIs
Only neurons that showed an average DPAFR that was depend-
ent on the context or choice were used for analysis of the coding 
(one-way ANOVA, p < 0.01). For monkey T, 33.96% of the striatal 
(n = 53) and 21.57% of the GPi neurons (n = 51) and for monkey 
D, respectively 17.24% (n = 58) and 14.29% (n = 56) displayed such 
a property (Figure 5A). Tuning function curves were extracted for 
each coding neuron by computing the DPAFR for every context and 
choice for that neuron. Some tuning function samples are shown 
here that exhibit either preferential context (Figure 5B) or choice 
coding values (Figure 5C).

Mutual information between DPAFRs and both context and 
choice values were computed and the results expressed in bits. The 
resulting amount of mutual information carried by striatal neurons 
was less than that carried by GPi neurons both in context (0.20 vs. 
0.73 for monkey T and 0.28 vs. 0.72 for monkey D) and in choice 
encoding (0.11 vs. 0.29 for monkey T and 0.10 vs. 0.34 for monkey 
D, Mann–Whitney test, p < 0.01) as shown in Figures 6A,B. GPi 
neurons appear as more reliable encoders because the DPAFRs of 
GPi neurons yielded more information on both the context and 
the choice values than those of striatal neurons in both monkeys,. 
This implies that the context and/or the choice information are 
refined between the striatum and the pallidal processing stages and 
therefore suggests an information convergence mechanism from 
one structure to another in the sense of a dimensionality  reduction 
(Bar-Gad et al., 2003). On average, one GPi neuron provides as 
much information as 2.9 striatum neurons in context encoding 

(and respectively 2.5 in choice encoding). In other words, sampling 
of fewer neurons in GPi is required to obtain a similar amount of 
information about both context and choice.

perforMance of reverse tunIng curve Model
The previously constructed tuning curves were then used as a model 
to assess their capability of predicting a context or choice given a 
DPAFR as input. When the output of the model was the same context 
or choice that had generated the DPAFR, the model was considered 
to have made a successful selection. This allowed us to estimate the 
efficiency of the model in reconstructing the original choice and 
context values. Figures 6C,D summarize these computations. Our 
empirical method provided information on the ability of the model 
to reconstruct a significant part of the original data and thus on its 
retrieval capability. This allowed us to compare the predictive power 
of the two neuronal subpopulations. Considering the context or 
choice prediction rates, we observed a significant higher success rate 
for GPi neurons compared to striatal neurons. This corroborates 
the previous mutual information outcomes and confirms a greater 
involvement of the GPi compared to striatum in both context value 
and choice encoding and thus an information convergence process. 
The second result was obtained by comparing the averaged level 
of context and choice encoding success rates, relative to chance, 
giving an unbiased respective retrieval success rate. As shown in 
Figure 6C,D, the success rate profiles of context and choice encod-
ing were similar for the two monkeys. In a first step we compared 
the actual success rates of the model to the success rates due to 
chance, which can be described by a binomial distribution with a 
success base probability value of 16.67% for context and 33.33% for 
choice. Kolmogorov–Smirnov tests applied for both monkeys for 
both striatum and GPi vs. chance give p-values of p < 1% for both 
context and choice. This confirmed that the model predicted both 
context and choice at a level far greater than chance. In the second 
step we subtracted the success base chance rate from the actual 
model results to remove bias and compared the predictive power of 
the model in context and choice encoding (Bernard and Lapointe, 
1987). A Mann–Whitney test was then applied to the unbiased data 
using an alternative hypothesis of “less” for the choice prediction. 
For both monkeys and both anatomical structures p < 0.01 were 
obtained. This suggests that, during the decision period, the average 
value of the firing rates of the GPi and striatal neurons preferentially 
encodes the context rather than the choice value.

dIscussIon
This study presents a novel attempt to shed light on the correlation 
between BG neuron spike train dynamics and behavioral decision-
making tasks. It provides evidence that encoding neurons show 
at least two remarkable properties: (i) the firing activity of GPi 
neurons during the DP carries more information on the context 
and on the choice values than the striatal neurons and (ii) both 
structures preferentially encode the context rather than the choice.

the bg encoded InforMatIon as a contInuuM durIng the task
We have presented in this paper, several original approaches to 
improve analysis of time-dynamic neuronal activity as well as of 
the information flows in the striatum and the GPi of an animal 
involved in a sensory-motor probabilistic decision-task. These 
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Figure 5 | results of the coding neurons extraction. (A) Coding 
distributions regarding context or choice values for both monkey T (N = 53 
for striatum and 51 for GPi) and monkey D (respectively N = 58 and 56). 
Overlap indicates neurons coding for both context and choice. (B) Three 

tuning functions mean and ± SEM plot of context encoding (abscissa: 
context, ordinate: normalized firing rate) and (C) of three tuning functions 
of choice encoding samples (abscissa: choice value, ordinate: normalized 
firing rate).

approaches rely on normalized NIETH profiles (PETH computed 
on all the events of the task) analysis. This approach clearly showed 
that neurons of both structures cannot be classified into different 
clusters. Instead, they encoded the various parameters of the task as 
a continuum of responses (Figure 2). It also brings out that NIETH 
profile variability was higher in the striatum than in the GPi.

dIfferent levels of synchronIzatIon In the strIatuM and  
the gpI
The higher level of synchronization inside the GPi than in the 
striatum was then analyzed using two different methods: correla-
tion coefficient analysis (Figure 3) and the computation of entropy 
(Figure 4). This confirmed our previous work (Pasquereau et al., 
2007) where we showed that, during the executive part of a choice 
task, the GPi activity is strongly related to the action performed 
(encoding mainly movement parameters and action value), while 
the striatum stays more variable, encoding different parameters 
(chosen target value, non-chosen target value, motor parameters, 
action value, etc) in roughly equal proportions of neurons. This 
study shows that this focus on the action to perform in the output 
structure of the BG is associated with a high correlation level 
between GPi neurons. Experiments have shown that only 10–15% 
of GPi neurons responded to a specific task (Pasquereau et al., 
2007) and moreover it makes sense that such simple behavior 
does not recruit the whole BG system. These data may seem at 
variance with another study showing decorrelation between GP 
neurons in a discrimination task (Joshua et al., 2009). However, 
this study used a non-instrumental task (the animal had no action 
to perform in response to the cues) while, in our task, the action 
consequent upon the choice between two options is an essential 

aspect of the task. Considering different populations of neurons 
coding different tuning functions, their differential activation 
related to one specific trial will allow the selection of one specific 
action as a result of competitive mechanisms (Mink, 1996; Gurney 
et al., 2001; Nambu, 2004; Leblois et al., 2006b). Comparing these 
two studies reinforces the hypothesis that the very significant 
and transient synchronized response in the GPi neural popula-
tion reflects the decision-making and action selection processes 
occurring in the cortico-BG loop.

basal ganglIa encode contexts and choIces
In our experiments monkeys were over-trained and maximized 
their payoff by choosing the target with the higher reward value 
(for details see Pasquereau et al., 2007). This implies that the 
encoding strategies for the BG may vary between two bounda-
ries: either it may solely encode the chosen target or its activity 
may be related to the context dependent choice (Mink and Thach, 
1991). We have therefore focused our analysis on the decision 
period and used two methods to assess the relationship between 
the neural activity of the BG and the choices performed by the 
animals (Figure 6). Our model study reveals a better correlation 
for the encoding of the context than for the encoding of the choice 
and both (model and mutual information measure) show that the 
GPi is a better predictor than the striatum for both parameters. 
These data imply that, during the critical phase, when the animal 
decides which action to perform, the BG are deeply involved in 
the computation process which leads to the decision. The fact that 
there is a robust transformation (as shown by the higher correla-
tion between GPi  neurons) of the cortical input information as 
it passes from the input structure (the striatum) to the output 
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stage (the GPi) is a further confirmation of the importance of the 
BG in the decision-making process. Two hypotheses can explain 
why the correlation is higher for the context than for the choice: 
(i) the BG preferentially encoded the context or (ii) the BG takes 
into account the context in order to perform a choice. The lat-
ter hypothesis has already been proposed by other teams (Morris 
et al., 2006; Niv et al., 2006) and supports the hypothesis that the 
cortex BG loop acts as a SARSA learning system and encodes the 
combination of choice made and context within which the choice 
is made. Unfortunately, as the monkeys optimized their behavior 
in our task, thus maximizing their gains, it is impossible to rule 
out either of these hypotheses.

conclusIon
This work is a first attempt to analyze comprehensively the proc-
ess of neural computation occurring in the BG during the full 
duration of a trial of a behavioral task. The high variability of BG 

neural population firing rate and the impossibility to define clear 
cut categories of neurons, especially in the output stage, makes 
this approach more appropriate than the classical PETH which 
reduces the richness of the time course of the neural responses. 
The normalization approach we adopted allowed us to visualize 
and analyze the decision period and allowed us to demonstrate the 
crucial role played by this structure on the decision-making process. 
Our model based approach to the coding neuron tuning functions 
led us to deduce that the context was comparatively better encoded 
than the choice. The fact that the GPi encodes the context more 
than the choice itself can also be related to the fact that the differ-
ent aspects of the context converge from the striatum to the GPi 
(Mink, 1996). Taken together with our previous data (Pasquereau 
et al., 2007) and theoretical approach (Leblois et al., 2006a) we 
infer that this contextual information is used to shape the tuning 
functions allowing decision to occur by competition mechanisms 
in the cortex BG loop.

Figure 6 | Mutual information between DPAFr and context and choice 
values (A) for monkey T and (B) for monkey D. Prediction model success 
rates: (C) for monkey T and (D) for monkey D. Horizontal bars on (C,D) 

histograms indicate the respective success base chance to predict the correct 
values (respectively 1/6 for context and 1/3 for choice). Error bars indicate SEM 
(Mann–Whitney test, p < 0.01).
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