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Abstract

The formation of new neurons continues into adult life in the dentate gyrus of the rat hippocampus, as in many other
species. Neurogenesis itself turns out to be highly labile, and is regulated by a number of factors. One of these is the
serotoninergic system: treatment with drugs (such as the SSRI fluoxetine) markedly stimulates mitosis in the progenitor cells
of the dentate gyrus. But this process has one remarkable feature: it takes at least 14 days of continuous treatment to be
effective. This is despite the fact that the pharmacological action of fluoxetine occurs within an hour or so of first
administration. This paper explores the role of BDNF in this process, using the effect of a Trk antagonist (K252a) on the
labelling of progenitor cells with the mitosis marker Ki67 and the associated expression of pCREB and Wnt3a. These
experiments show that (i) Fluoxetine increased Ki67 counts, as well as pCREB and Wnt3a expression in the dentate gyrus.
The action of fluoxetine on the progenitor cells and on pCREB (but not Wnt3a) depends upon Trk receptor activation, since
it was prevented by icv infusion of K252a. (ii) These receptors are required for both the first 7 days of fluoxetine action,
during which no apparent change in progenitor mitosis occurs, as well as the second 7 days. Increased pCREB was always
associated with progenitor cell mitosis, but Wnt3a expression may be necessary but not sufficient for increased progenitor
cell proliferation. These results shed new light on the action of fluoxetine on neurogenesis in the adult dentate gyrus, and
have both clinical and experimental interest.
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Introduction

The realisation that neurogenesis continues in the dentate gyrus

into adult life has aroused considerable interest for several reasons.

The functional significance of a generative and restorative process,

more typical of the developing brain, in this region of the adult

remains enigmatic. It has also raised hopes that a similar process

might be inducible in other areas following damage or malfunction.

A number of attempts, some more convincing than others, have

been made to show that inhibiting neurogenesis - a procedure which

has technical problems related to its specificity - reduces mnemonic

abilities [1,2,3,4] though precisely why this should require newly-

formed neurons is still debated [5,6]. There is the suggestion that the

onset of depression in humans, or its response to treatment with

antidepressants, may be related in some way to altered neurogenesis

in the dentate gyrus[7,8,9]. Direct evidence for this hypothesis is still

scanty and conflicting [10,11]. However, there is no doubt that

some drugs used as anti-depressants – such as fluoxetine - stimulate

neurogenesis, particularly the mitotic rate of the progenitor cells.

Chronic, but not acute, treatment of rats with fluoxetine, a

typical SSRI (Selective Serotonin Reuptake Inhibitor), stimulates

the proliferative rate of the progenitor cells lining the internal layer

of the dentate gyrus [12]. This takes around 14 days, which is

intriguing since the pharmacological action of this drug begins

within hours. These finding suggests that there are downstream

actions upon which the proliferativc action of these drugs depends.

This latent period recalls the similar one preceding therapeutic

effects in patients treated for depression. Santarelli and colleagues

reported that suppression of neurogenesis either by radiation or

5HT1A receptor knockout prevented the ameliorating actions of

fluoxetine on novelty suppressed feeding [13]. Although this was

hailed as support for a link between hippocampal neurogenesis

and depression, the behavioural test had more to do with anxiety

than depression, and a further study (from the same group) using a

different test (forced swim) and a different strain of mouse failed to

replicate it [14]. Nevertheless, the necessity for prolonged

treatment with drugs such as fluoxetine for both behavioural

and cytological actions remains to be explained.

BDNF (Brain-Derived Neurotrophic Factor) is involved in

activity dependent neuroplasticity, survival and differentiation in

both the periphery and CNS. The BDNF-responsive TrkB

(Tropomyosin-associated kinase) receptors upregulate or down-

regulate many second messengers that lead to the phosphorylation

of transcriptional factors such as CREB (c-AMP response element-

binding). Chronic antidepressant treatment stimulates pCREB

though there have been conflicting reports[15,16,17]. Previous

studies have also shown that there are increased levels of BDNF

protein and mRNA in rat treated with antidepressants [16,18,19].
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Transgenic mice with reduced BDNF levels or impaired TrkB

signalling in the brain have provided evidence that TrkB activation

is required for the behavioural actions typically induced by

antidepressants [20]. Wnt signalling has been implicated in both

embryonic and adult neurogenesis[21,22], but whether it is involved

in the action of fluoxetine on adult neurogenesis is not known.

We have addressed the question of the importance of TrkB

receptor activation on antidepressant effect on cell mitosis and on

the latent period preceding activation of progenitor cell mitosis.

The first experiment determines whether intracerebroventricular

(icv) infusion of the Trk antagonist K252a, can block the action of

fluoxetine (10 mg/kg/day) on progenitor cell mitosis, and the

effect it has on the expression of pCREB and Wnt3a in the

granular neurons in the dentate gyrus. The second explores

whether rats treated with the same dose of fluoxetine for 7 days

show any change in progenitor proliferation, or expression of

pCREB or Wnt3a, compared to those treated for 14 days. Then

the role of the Trk receptors in the latent period required for

fluoxetine to act was investigated by giving K252a for either the

first or second 7 days of the 14 day treatment period.

Materials and Methods

Animals
All procedures were carried out under Home Office (UK) licence.

Male Sprague-Dawley rats 8 weeks old (Harlan, Oxon, UK) were

used, weighing 200–250 grams at the start of the experiment. Rats

were housed individually in a controlled environment. Ambient

temperature was maintained at 21uC and humidity at 55% with ad

libitum access to food and tap water. Animals were kept in a reversed

12-h light:12-h dark cycle, (lights off at 10.00 h).

Cannula placement
Animals were anesthetised with isofluorane, oxygen and NO

and placed securely into a stereotaxic frame (David Kopf

instruments, Tujunga,CA, USA). A cannula (length 5 mm, outside

diameter 0.36 mm; (Charles River, Margate, UK) was implanted

into the right lateral ventrical. Coordinates were 1 mm posterior

and 1.5 mm lateral from bregma, 23.3 mm from the cortex

[23].The cannula were fixed in place by dental cement attached to

three stainless steel screws inserted into the skull. They were

connected to an Alzet osmotic minipumps (model 1002; volume

100 ml, flow rate 0.25 ml/h; (Charles River, Margate, UK) via

medical grade vinyl tubing (8 cm length, except in Experiment 2).

All pumps were implanted subcutaneously in the posterior upper

thorax. The pumps and the tubing had been filled the day before

surgery with either K252a (Merck Chemicals, Boulevard Indus-

trial Park, Nottingham) (59.05 ng/day) [24].or saline and

incubated at 37uC overnight in a sterile saline solution to prime

them before implantation. The position of each cannula was

assessed post-mortem by examining its track on sections stained

with cresyl violet (Sigma, UK).

Experimental groups
Experiment 1: The effect of K252a on the response to

fluoxetine. There were four groups (n = 6 per group). All were

implanted with Alzet osmotic mini pumps subcutaneously (model

2ML2; volume 2 ml, flow rate 5 ml/h; Charles River,

Margate,UK). In two groups, the pumps delivered fluoxetine

(10 mg/kg/day dissolved in saline) for 14 days; in the other two,

saline alone. All were also implanted with an icv cannula (right

lateral ventricle) connected to a smaller subcutaneous mini-pump

(model1002) (see above). One each of the fluoxetine and saline-

treated groups received icv K252a 59.05 ng/day[24] for 14 days;

the others, saline. The position of each cannula was assessed post-

mortem by examining its track on sections stained with cresyl

violet (Sigma, UK). All animals were killed on day 15, the brains

removed and snap-frozen and placed in 270uC until they were

sectioned later. Sections were stained for Ki-67, BDNF and TrkB

mRNA by in situ hybridisation, and immunofluorescent for

pCREB and Wnt3a proteins.

Experiment 2. Blockade of Trk receptors during the

initial or later stage of the response to fluoxetine. Two

experiments were carried out. In the first, rats (n = 5 per group)

were treated either with fluoxetine (10 mg/kg/day) or saline

delivered from osmotic minipumps subcutaneously and killed after

either 7 or 14 days. Brains were examined for Ki67, pCREB,

BDNF and Wnt3a.

In the second, there were four groups (n = 6 per group). All

animals received 10 mg/kg/day fluoxetine for 14 days delivered

from osmotic minipumps subcutaneously, as above. All were also

implanted with a second osmotic minipump, connect to an icv

cannula (as above). Through this cannula they received the

following treatments: (i) saline 14 days (ii) K252a for 14 days (as

above) (iii) K252a for the first 7 days, saline for the second 7 days

(iv) saline for the first 7 days, K252a for the second 7 days. The

osmotic minipumps were attached to the tube 11.3 cm long and a

volume of 3.74 ml/cm (ID 0.69 mm). Since flow is 6 ml/day, the

tube will empty by day 7. This was checked in vitro at 37uC. In

group (ii) both tubing and pump were filled with K252a; in group

(iii) the tubing contained K252a, and the pump saline only; this

was reversed in group (iv). All animals were killed on day 15 and

the brains were snap frozen and placed in 270uC until they were

sectioned (as above). Sections were stained for Ki-67.

Brain sections
Brains were sectioned in the coronal plane at 20 mm. The brain

from each rat was sampled from 22.80 to 24.52 behind bregma.

Sections were cut at 220uC using a Bright cryostat, and every

sixth section was mounted on a polylysine-coated microscopic

slide, six to a slide. The slides were left in a fume hood to dry

overnight, then stored at 270uC. For each rat twelve sections

through the dorsal hippocampus were analyzed 120 mm apart (ie

one in six sections) for Ki-67 staining.

Immunohistochemistry
Ki67. Sections were incubated in 0.01 M citric acid for

40 min at 98uC. They were cooled and washed twice 65 min in

KPBS. Endogenous peroxidase activity was quenched with 3%

H2O2 solution for 10 min followed two 5 min washes with KPBS.

They were incubated with primary antibody (1:100 mouse

monoclonal IgG anti-human Ki-67; Novocastra, Newcastle

Upon Tyne, UK) and 1% horse serum in a humidified chamber

at room temperature overnight. The next day, after twice 65 min

washes with KPBS, they were incubated with secondary antibody

(1:200 biotinylated mouse IgG; Vector laboratories Ltd,

Peterborough UK) for 1 hour at room temperature. After twice

65 min washes with KPBS, they were incubated with Avidin-

Biotin-Peroxidase reagent (Vector laboratories Ltd, Peterborough

UK) for a further hour, followed by twice 65 min washes with

KPBS. The staining was visualized using DAB tablets (3,3-

diaminobenzidin) (Sigma, Dorset, UK) for 5 min. Slides were then

counterstained with 10% crystal violet solution followed by

dehydration through ethanol and Histoclear. They were cover-

slipped with DPX for light microscopy at 640 magnification.

pCREB and Wnt3a. Three sections from each animal (1 in

12; between bregma 23.14 mm and 23.30 mm) were incubated

in rabbit anti pCREB (Cell Signaling, Hitchen, UK; 1:25 in 0.5%

BDNF and Neurogenesis
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Triton with 1% goat serum) overnight in a humidified chamber at

room temperature. After two washes with KPBS, the sections were

incubated in Alexa Fluor 568 (Invitrogen, Paisley UK) goat anti

rabbit (1:200 in 0.5% Triton) for one hour, washed twice with

KPBS, and cover slipped.

For single staining with Wnt3a, sections were incubated in rabbit

anti Wnt3a (Abcam, Science Park, Cambridge UK; 5 ug/ml in

0.5% Triton with 1% goat serum) overnight in a humidified

chamber at room temperature. The following day, after two washes

with KPBS, they were incubated in Alexa Fluor 568 goat anti rabbit

(1:200 in 0.5% Triton) for one hour, and washed twice with KPBS

and covered slipped.

BDNF mRNA in situ hydridisation
Sections were allowed to air dry at room temperature and were

then fixed with 4% paraformaldehyde (Sigma, Dorset, UK) for

5 min, washed in PBS and then dehydrated in 70% ethanol and 95%

ethanol for 5 min before final storage in fresh 95% ethanol. In situ

hybridization was carried out under RNAase-free conditions. The

synthetic antisense oligonucleotide probe was confirmed by BLAST

searches. A 48 base and a 45 base oligonucleotide complementary to

exonic mRNA encoding BDNF mRNA [25]. 59 agt tcc agt gcc ttt tgt

cat gcc cct gca gct tcc ttc gtg taa ccc 93 was used. All probes were end-

labelled with 35S-ATP as follows: 2 ml of purified oligonucleotide

(5 ng/ml) was added to 1.25 ml Buffer and 1.25 ml cobalt chloride

(New England, Biosystem, UK). DEPC (Diethyl pyrocarbonate

Sigma, Dorset, UK)-treated water (6.5 ml) was added, followed by 1 ml

terminal 35S deoxyadenosine 59 (a-thio) triphosphate (10 mCi/ml)

(Amersham, Buckinghamshire, UK) and 0.5 ml (15–20 U) terminal

deoxynucleotide transferase enzyme (New England, Biosystem UK).

Probes were incubated at 37uC for 1 h before 40 ml of DEPC was

added to terminate the reaction. Purification of labelled probe from

unincorporated nucleotides was accomplished by centrifugation

through a G-50 Sephadex micro-column (Amersham, UK). Probes

were evaluated for incorporation of radiolabel by scintillation

counting. All hybridizations were carried out at 2500–5000 cpm/ml

in hybridization buffer (50% deionized formamide, 46 SSC, 56
Denhardt’s,100 mg/ml polyadenylic (potassium salt) acid, 200 mg/ml

salmon sperm DNA, 120 mg/ml heparin (BDH, Leicestershire, UK),

25 mM sodium phosphate pH 7.0,1 mM sodium pyrophosphate,

10% (w/v) dextran sulphate in DEPC–treated water (all Sigma

Dorset, UK). Sections were covered with parafilm and hybridized

overnight at 44uC in a humid atmosphere. Excess unbound probe

was removed using the following washes: 16 SSC (saline sodium

citrate, Sigma, UK) at room temperature, 2630 min at 55uC with

16 SSC and then rinsed at room temperature for 2 min, each in

16 SSC, 0.16 SSC, 18 V water, 50%, 70%, and 95% ethanol

(BDH. Leicestershire, UK).

Sections were exposed to autoradiographic X-ray film (Amer-

sham, Buckinghamshire, UK) for 14 days. Sense probes were run

as negative controls.

Quantification
Proliferating cells (Ki67). All slides were randomised and

coded prior to quantitative analysis.

Labelled cells were counted using a 40X objective; only cells on

the internal border of the subgranular zone of the dentate gyrus

were included. The data shown are the mean number of Ki67-

labelled cells per section from 12 sections per animal.

BDNF mRNA expression. Sections and C14 labeled

standards of known radioactivity (Amersham, Buckinghamshire,

UK) were placed in X-ray cassettes and exposed to

autoradiographic film. The optical density (OD) of the

autoradiographic images was measured using a computerized

PC-based image analysis system (NIH Image). ODs from the

dentate gyrus from three consecutive sections per rat were

obtained and averaged. The mean value for each rat was

entered into the equation derived from the C14 standards and

the final value were used to calculate group means. Sections from

all groups were processed at the same time to avoid intrinsic

variations between different in situ hybridizations.

Statistical analysis
Between-group one/two-way analysis of variance (ANOVA)

and Bonferroni’s post hoc test were used when applicable. Log

transformation was used to ensure homogeneity of variance before

ANOVA when appropriate. Results were considered statistically

significant if p,0.05.

Results

Experiment 1: Effect of K252a on the response of
progenitor cells to fluoxetine

In this experiment, we tested whether blockade of the Trk

receptor by icv K252a would prevent the stimulating action of

fluoxetine on mitosis in the neurogenic area of the dentate gyrus.

Ki-67. Ki67 positive cells were found in the SGZ of all

animals including controls, confirming the presence of a basal level

of progenitor cell mitosis in this region. There was a significant

interaction between fluoxetine and K252a treatments (Two-way

ANOVA, F (1,20) = 36.7, p,0.001). Icv K252a alone had no

effect on the number of proliferating cells (Bonferroni, p.0.05).

10 mg/kg/day fluoxetine increased the number of proliferating

cells by 88% (p,0.001) (Figure 1A). This effect was completely

blocked by K252a (p.0.05). The number of Ki67-labelled cells in

this group was not significantly different from the controls group

(p.0.05), but was significantly less than after fluoxetine treatment

alone (p,0.005) (Figure 1A).

BDNF mRNA. K252a alone had no effect (F = 0.28; p:ns).

Fluoxetine increased levels, as expected (F = 34.6. p,0.0001), but

this was not prevented by simultaneous infusion of K252a; there

was thus no significant interaction between K252a and fluoxetine

(F = 2.4, p:ns) (Figure 1B).

pCREB. Saline-treated animals showed little expression of

pCREB protein in the dentate gyrus. This was markedly

stimulated by fluoxetine treatment. K252a-treated animals

showed a similar picture to the saline-treated group (Figure 1C).

Adding K252a to fluoxetine resulted in reduced pCREB

expression which now resembled animals treated with saline.

Wnt3a. Saline-treated animals showed little expression of

Wnt3a protein in the dentate gyrus (Figure 1D). This was

markedly stimulated by fluoxetine treatment. K252a-treated

animals showed a similar picture to the saline-treated group.

However, adding K252a to fluoxetine did not prevent the latter’s

stimulating effect on Wnt3a expression (Figure 1D).

In summary: this experiment showed that icv K252a prevented

the stimulating effect of fluoxetine on progenitor mitosis in the

dentate gyrus, but did not prevent increased BDNF mRNA. There

was a selective action of K252a on inhibiting the effect of

fluoxetine on pCREB but not Wnt3a.

Experiment 2: Effect of treatment with K252a for either
the first or second 7 days of a 14 day fluoxetine
treatment

Since fluoxetine treatment is required for at least 14 days to

increase progenitor cell mitosis rates, we asked whether activation

of Trk receptors was required for the whole of this period.

BDNF and Neurogenesis
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Ki-67. The number of Ki-67 cells increased significantly as

expected after 14 days of fluoxetine treatment (Figure 2A).

However, at 7 days there was no difference between fluoxetine

and control groups (two-way ANOVA: fluoxetine6 time F = 14.0,

p = 0.002).

BDNF. BDNF mRNA expression showed a similar pattern.

Expression increased after 14 days in the fluoxetine-treated group,

but not 7 days, (F = 150, p,0.001) (Figure 2B). Pairwise

comparisons showed that BDNF levels at 7 days were no

different between the fluoxetine-treated and control groups

(Bonferroni, p.0.05) but that fluoxetine treatments at 7 and 14

days were significantly different from each other (p,0.001)

(Figure 2E, F).

pCREB and Wnt3a. There was also no observable change in

either pCREB or Wnt3a at 7 days, but by 14 days the expression

of both was clearly increased (Figure 2C, D).

Ki-67. In the second part of this experiment, as expected from

Experiment 1, icv K252a for 14 days reduced Ki67 positive cells

expression in 14-day fluoxetine -treated rats compared to those

receiving fluoxetine and icv saline (One-way ANOVA: F (3,15)

= 63.8, p,0.001. Pairwise comparison: (Bonferroni) p,0.001).

However, K252a infusions for either the first or second 7 days also

reduced the effect of 14 days fluoxetine treatment, and there was

no difference between the two 7-day treatment periods

(Bonferroni, p.0.05) There was also no difference between

either 7-day and 14 day K252a treatment (Bonferroni, p.0.05)

(Figure 3A). As in Experiment 1, pCREB expression was inhibited

by 14 days K252a treatment (not shown in Figure 3, since there

was effectively no signal in the K252a treated animals) but Wnt3a

expression was not altered, even though Ki67 expression was

reduced (Figure 3B).

In summary. The first part of this experiment showed that 7

days treatment with fluoxetine had no effect on Ki67 labelled cells,

or on the expression of either pCREB or Wnt3a. However, all

three were accentuated after 14 days treatment. The second part

showed that blocking Trk receptors with icv K252a for either the

first of second 7 day period of a 14 day fluoxetine infusion

prevented the expected increase in progenitor cell mitosis. As in

experiment 1, pCREB was reduced in fluoxetine and K252a-

treated animals, but increased expression of Wnt3a still occurred

in fluoxetine-treated animals given K252a.

Table 1 summarises the results of these two experiments on the

expression of Ki67, pCREB and Wnt3a in the dentate gyrus.

Discussion

These experiments further define the role of BDNF in the

regulation of the mitosis rates of progenitor cells in the dentate

gyrus by serotonin-acting drugs such as fluoxetine. Progenitor

mitosis rates are the essential first step in the overall control of

neurogenesis in the adult hippocampus, since they determine its

early stages. Other factors then regulate the differentiation,

survival and connectivity of newly-formed neurons [26]. Labelling

cells with Ki67 is now well established as a reliable indicator of

progenitor cell mitosis in the dentate gyrus, and is highly

correlated with BrdU uptake [27]. The first experiment reported

here established that blockade of Trk receptors by the drug K252a

was able to prevent entirely the stimulating action of fluoxetine on

mitosis of the progenitor cells. The K252 family of alkaloid toxins

are protein kinase inhibitors, and K252a has a long history of

being used to antagonise Trk receptors, with particular affinity for

TrkB [28,29,30]. Icv K252a has already been shown to prevent

Figure 1. The effect of K252a icv on the mitosis rates (Ki67) of progenitor cells in the dentate gyrus. A: Mean number per section after
14 days treatment with either fluoxetine (10 mg/kg/day) sc, K252a icv, or both compared to controls (saline sc and icv). Values are means 6 SEM. C,D:
Photomicrographs of the expression of pCREB and Wnt3a after the four treatments. Bar represents a distance of 100 mm. B; BDNF mRNA in the
dentate gyrus following the same treatment. Values are mean 6SEM. *P,0.05, **p,0.001 compared to control.
doi:10.1371/journal.pone.0013652.g001
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some actions of BDNF on serotonin release after SSRI

administration [31], but there has been no report on its ability

to inhibit SSRI-induced progenitor cell mitosis. Although we

cannot be entirely certain that our results reflect specific blockade

of TrkB, the accumulative evidence points strongly in this

direction.

K252a did not prevent the fluoxetine-induced increase in

BDNF mRNA expression, suggesting that this is upstream of the

action of TrkB receptors, as might be expected. However, the

results on pCREB were clear-cut: fluoxetine increased its

expression and thiswas prevented by K252a. Since increased

pCREB may be an essential step in the up-regulation of progenitor

mitosis [32], it is interesting that this occurred not just in the cells

adjacent to the neurogenetic niche in the inner layer, but

throughout the dentate gyrus. This suggests that the function of

CREB in the dentate gyrus may be more complex than was

originally thought, and that cells other than those in the

neighbourhood niche may also contribute to the control of

neurogenesis [7]. In contrast, the expression of Wnt3a, also known

to be closely involved in neurogenesis [3,22,33,34] was, as

expected, increased by fluoxetine, but this was not prevented by

K252a. This experiment therefore shows that functional activity of

Trk, and hence – it may be presumed – BDNF is essential for the

stimulating action of fluoxetine on progenitor cell mitosis. This

agrees with results on BDNF-knockout mice, in which SSRIs and

similar drugs have reduced actions [35,36]. However, these studies

were limited to heterozygous knock-outs only, since homozygous

ones do not survive. It is interesting that K252a by itself did not

decrease progenitor mitosis below baseline: this may reflect the

fact that its blockade of TrkB may have been incomplete, or that

BDNF is required only for above-basal proliferation rates. K252a

also blocked the fluoxetine-induced expression of pCREB,

supporting the role for this compound in the control of

neurogenesis. However, it did not prevent increased Wnt3a

expression, suggesting that the latter is not a sufficient event for

increased progenitor cell mitosis.

The second experiment began by confirming, under our

conditions, that a 7-day treatment with fluoxetine had no

discernible effect on progenitor mitosis, or pCREB and Wnt3a

expression, whereas after 14 days all three were stimulated. We

use osmotic minipumps to deliver fluoxetine, since we (and some

others) find that parenteral injections are not effective [37,38].

The striking result, however, was that blocking TrkB for either the

first or the second 7 days of a 14 day treatment with fluoxetine

prevented increased progenitor mitosis. It is during the second

period that BDNF mRNA expression is increased, so it might

seem logical that blockade only during this time would prevent the

BDNF-dependent action of fluoxetine. Had this occurred it would

have implied that the latent period preceding the onset of

fluoxetine’s action was due to some event upstream of the action

of BDNF. But this was not the case. It seems clear that BDNF is

required throughout the latent period, though future experiments

Figure 2. The effect of either 7 or 14 days treatment with fluoxetine (10 mg/kg/day). A: Ki67 cell counts, B: BDNF mRNA expression,
C: pCREB D: Wnt3a. E,F: in situ hybridization images of BDNF mRNA. Values as in Figure 1. Bar represents 100 mm. Values are mean 6SEM.**p,0.001
compared to control. Representative sections are shown from fluoxetine-treated animals only, since there is virtually no expression in controls.
doi:10.1371/journal.pone.0013652.g002

BDNF and Neurogenesis
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might explore this more precisely, using more frequent sampling

points. Despite the fact that BDNF mRNA was increased only

after 14 days of fluoxetine treatment, blocking its action at a time

when there was no discernible change in BDNF mRNA prevented

not only the expected increase in progenitor mitosis, but also that

in pCREB, presumably a more proximal regulator of neurogen-

esis. The conclusion must be that BDNF may be active

throughout the latent period. However, we have shown previously

that icv infusions of BDNF are effective after 7 days [39], so the

latent period is not due to a delayed response to BDNF. Our

experiments do not yet allow us to offer a precise explanation of

these results, but there may be two processes. The first, dependent

on ‘basal’ BDNF, may represent one that, in some way, allows

increased BDNF to occur at some time after 7 days from

initiation. The second part of this process may depend on

heightened BDNF production, and it is this that results in

increased pCREB expression, and thus enhanced progenitor

mitosis. Some part of this whole process is highly sensitive both to

the absolute levels of corticoids as well as their circadian pattern

[26,39,40,41,42].

Our results suggest that the expression of pCREB is

downstream of the action of BDNF, since it was prevented by

K252a. Since CREB has a range of intracellular actions, these

may not all link with Wnt3a. Wnt3a has been implicated in the

ability of human neural progenitors to form neurospheres in

culture [33] and in the process of adult neurogenesis, though its

exact role is still unclear [43,44]. Our results suggest that factors

additional to Wnt3a (maybe other members of the Wnt family)

may be needed to increase progenitor cell mitosis rates. Table 1

shows that, whilst we find a consistent association between pCREB

and increased mitosis, this was not true for Wnt3a. However,

increased Wnt3a may be an essential ingredient of the stimulatory

process, since we never observed one without the other, and

inhibition of Wnt signalling reduces adult neurogenesis in the

dentate gyrus [3]. Our results further suggest that the stimulating

action of fluoxetine on Wnt3a may not be dependent on BDNF (or

Figure 3. Effect of treatment with K252a icv for either the first or second 7 days of a 14 day fluoxetine (10 mg/kg/day) treatment.
A: Ki67-labelled cell counts; B: Wnt3a expression in the dentate gyrus. Values as in Figure 1. Bar represents 100 mm.
doi:10.1371/journal.pone.0013652.g003
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Trk receptors: we have not investigated the lower-affinity p75

receptor), so there may be other pathways linking the action of this

drug to neurogenesis in the dentate gyrus. The ability of fluoxetine

to increase Wnt3a is consistent with this drug’s reported induction

of neural plasticity [45,46,47]. This may well contribute to its

efficacy as an anti-depressant.

The experiments reported here emphasise the central role of

BDNF in the regulation of mitosis of the progenitor cells in the

dentate gyrus of the adult rat, and its contribution in the latent

period preceding the effect of fluoxetine on this process. The role

of BDNF in the expression of pCREB and Wnt3a may be

distinct. Our results further suggest that the control of the

neurogenetic niche may be widespread throughout the dentate

gyrus, though the identity of the cells that produce BDNF is still

obscure. They do not add directly to the evidence linking adult

neurogenesis with depression, but strengthen understanding of the

role of BDNF and its receptor in the action of anti-depressants

such as fluoxetine.
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