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Abstract: The building of heterocyclic systems containing hydrogenated fragments is an important
step towards the creation of biologically-active compounds with a wide spectrum of pharmacolog-
ical activity. Among the numerous methods for creating such systems, a special place is occupied
by processes using N-substituted maleimides as the initial substrate. This molecule easily reacts
in Diels-Alder/retro-Diels-Alder reactions, Michael additions with various nucleophiles, and co-
polymerization processes, as have been described in numerous detailed reviews. However, infor-
mation on the use of maleimides in cascade heterocyclization reactions is currently limited. This
study is devoted to a review and analysis of existing literature data on the processes of recyclization
of N-substituted maleimides with various C,N-/N,N-/S,N-di- and polynucleophilic agents, such
as amidines, guanidines, diamines, aliphatic ketazines, aminouracils, amino- and mercaptoazoles,
aminothiourea, and thiocarbomoyl pyrazolines, among others. The significant structural diversity of
the recyclization products described in this study illustrates the powerful potential of maleimides
as a building block in the organic synthesis of biologically-active compounds with hydrogenated
heterocyclic fragments.

Keywords: N-arylmaleimides; recyclization; hydrogenated heterocyclic compounds

1. Introduction

Fragment-based drug discovery (FBDD) is a well-established method for creating
new hits and leads [1–6]. This approach has been repeatedly confirmed in practice and it
is an additional strategy to supplement other search methods, such as high-throughput
screening [7].

A detailed evaluation of many existing “fragmentary” libraries indicates the pre-
dominance of (hetero)aromatic “planar” compounds and the very low diversity of chiral
compounds rich in Csp3 atoms [8,9].

However, studies by Ritchieetal [10] and Loveringetal [11] demonstrated that an
increase in the proportion of Csp3 atoms in a molecule or the limitation of the number
of aromatic rings significantly increase the activity of compounds and their easy passage
through barriers. In addition, it has been proven that mainly systems rich in Csp3 atoms
are used in real clinical practice after human trials [12]. All these facts point to the necessity
to build unsaturated condensed or linear coupled ensembles, both for the development of
screening collections and in the subsequent development of hit to lead.

The number of studies aimed at synthesizing heterocyclic compound collections
enriched in Csp3 atoms is very limited, and therefore access to new types of scaffolds is lim-
ited. There are only a few studies [13] devoted to the development of new approaches and
methods for constructing fragments with several synthetically available three-dimensional
growth vectors, which provide fast and efficient development of hit to lead after initial
screening. Considering all the above points, an important task is the development of
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efficient synthetic routes for partially saturated bicyclic heteroaromatic (PSBH) frameworks
with an increased content of Csp3 atoms compared to existing libraries.

The requirements for the efficiency of synthetic methods are constantly increasing
due to the need to simultaneously increase the molecular complexity and minimize
the number of steps in synthetic procedures. Cascade (tandem, domino) processes
are a very promising methodology for organic synthesis, allowing the structure of the
target molecule to complicate by combining a series of successive transformations in one
synthetic operation. Among the developed methodologies for domino transformations,
the most effective is the sequence of reactions, at the key stage of which the formation
of a heterocyclic system occurs as a result of the recycling of the intermediate. With
this approach, the chemo-, regio-, and stereoselectivity of processes usually increases
significantly due to the greater determinism of the location of the reaction centres of the
reagent and substrate.

The problem of searching for easily accessible, polyfunctional substrates that
allow for directed cascade synthesis of various heterocyclic structures is one of the
key ones. In this context, N-arylmaleimides deserve special attention [14,15]. Their
interaction with various reagents, including the domino route, can lead to the forma-
tion of a large number of hydrogenated heterocyclic systems. However, only (retro-)
Diels-Alder reactions [14,16,17], Michael additions [16,17] with various nucleophiles,
and co-polymerization processes [16,18] have been studied in detail to date. This
study is devoted to a review and analysis of existing literature data on the processes
of recyclization of N-substituted maleimides with various linear and cyclic di- and
polynucleophilic agents.

The analysis of the available literature data allowed us to draw a conclusion regarding
the sequence of these reactions. The initial nucleophilic addition of a di- or polynucle-
ophile according to the Michael reaction to the activated multiple bond of the imide and
subsequent recyclization of the intermediate succinimide intermediate proceeds due to
intramolecular nucleophilic substitution with the participation of another nucleophilic
centre and one of the carbonyl groups. It should be noted that, depending on the structure
of the dinucleophilic component and the selected conditions, the formation of various
alternative products is possible, which is reflected in Scheme 1.
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2. Reactions with N,N-dinucleophiles

Partially hydrogenated azoloazines represent a class of heterocyclic compounds with
high biological and pharmacological activity [19–21]. In addition, these systems are often
used as a simple model for studying such fundamental issues of medical and organic
chemistry as conformational flexibility, tautomerism, electronic effects, etc. [10,11]. One of
the most effective approaches to the building of partially hydrogenated azoloazines is the
reactions of 1,3-N,N- and 1,4-N,N-dinucleophiles with maleic anhydride and its imides.

A typical example of recyclization reactions of maleimides 1 with 1,3-N,N-binucleophiles,
is their interaction with carboxymidamides 2 (Scheme 2). Thus, Kh. S. Shikhaliev [22] and
Yu. A. Kovygin [23] et al. found that the optimal conditions for these processes are boiling
the mixture of reagents in acetone or chloroform. It was assumed that the mechanism of the
process consists of two successive stages. During the first stage, the nucleophilic addition
of the carboximidamide amino group at the double bond of the N-arylmaleimide molecule
occurs. The resulting adduct undergoes subsequent tandem recycling of the succinimide
moiety to form substituted 2-[4-oxo-4,5-dihydro-1H-imidazol-5-yl]-N-arylacetamides 4,
the structure of which was proved using XRD analysis. The authors also noted that when
using methanol, isopropanol, water, or dimethylformamide, mixtures which are difficult to
separate were formed, which was most likely due to the solvolysis of maleimide that had
been catalyzed by the highly basic carboxamide. In addition to the main target compound
4 (the yield fluctuated within 50%), the transamidation product 5 (yield up to 10%) was
also isolated. The attempts for cyclization of this product were unsuccessful.
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We know about examples of substitution of aliphatic 1,3-binucleophiles in these
reactions by their heterocyclic analogues containing a guanidine fragment [24]. Thus,
for 2-aminobenzimidazole 7 and 2-aminotriazole 8 when they interact with 1 in dioxane
medium, the corresponding 2-oxo-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-a]pyrimidine-
4-carboxyanilides 9 and 7-oxo-5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-a]pyrimidine-5-
carboxyanilides 13 were isolated. Taking into account the non-equivalence of nucleophilic
centres in the initial heterocyclic matrices, the formation of several regioisomeric products
during these processes (9–12) shown in Scheme 3 for 2-aminobenzimidazole is possible.
The choice of the structure of the obtained compounds was carried out using the detailed
analysis of the literature data [25] and obtained spectral [24,26] data.



Molecules 2022, 27, 5268 4 of 24Molecules 2022, 27, x FOR PEER REVIEW 4 of 26 
 

 

 
Scheme 3. The interaction of N-arylmaleimides with aminoazoles. 

Later, R.V. Rudenko et al. [26] showed that varying the solvent significantly changes 
the direction of this reaction. If in the case of 2-aminobenzimidazole the replacement of 
dioxane by dimethylformamide only reduced the reaction time, a completely different 
pattern would be observed for 2-aminotriazole 8. Thus, when the reaction was performed 
in the acetic acid or DMF medium, the regioisomer 14 was formed instead of the expected 
compound 13 (Scheme 4). 

 
Scheme 4. Specifics of the interaction of N-arylmaleimides with 2-aminotriazole. 

However, in the case of the 5-amino-4-R-pyrazoles [27] 15 variation of aromatic sub-
stituents in 1, it allowed both tetrahydropyrazolo[1,5-a]pyrimidines 16 and dihydroimid-
azo[1,2-b]pyrazoles 17 to be isolated (Scheme 5, Table 1). The authors also noted that when 
the reaction was carried out in isopropyl alcohol, a linearly-bound intermediate 18 was 
formed. When this intermediate was boiled in acetic acid, the mixture of 16 and 17 was 
formed, and intermediate 16 was obtained as the result of boiling in dimethylformamide. 

 
Scheme 5. The interaction of N-arylmaleimides with 5-amino-4-R-pyrazoles. 

Scheme 3. The interaction of N-arylmaleimides with aminoazoles.

Later, R.V. Rudenko et al. [26] showed that varying the solvent significantly changes
the direction of this reaction. If in the case of 2-aminobenzimidazole the replacement of
dioxane by dimethylformamide only reduced the reaction time, a completely different
pattern would be observed for 2-aminotriazole 8. Thus, when the reaction was performed
in the acetic acid or DMF medium, the regioisomer 14 was formed instead of the expected
compound 13 (Scheme 4).
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However, in the case of the 5-amino-4-R-pyrazoles [27] 15 variation of aromatic sub-
stituents in 1, it allowed both tetrahydropyrazolo[1,5-a]pyrimidines 16 and dihydroimidazo
pyrazoles 17 to be isolated (Scheme 5, Table 1). The authors also noted that when the reac-
tion was carried out in isopropyl alcohol, a linearly-bound intermediate 18 was formed.
When this intermediate was boiled in acetic acid, the mixture of 16 and 17 was formed, and
intermediate 16 was obtained as the result of boiling in dimethylformamide.
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Table 1. The composition of the reaction masses.

R Ar 16 17

C6H5 C6H5 70 30
C6H5 2-ClC6H4 100 0
C6H5 2-CH3O-5-ClC6H3 100 0
C6H5 4-CH3O-3-ClC6H3 100 0
C6H5 2-CF3C6H4 100 0
C6H5 4-FC6H4 65 35
C6H5 4-C2H5O2CC6H4 100 0

4-ClC6H4 4-CH3OC6H4 100 0
4-ClC6H4 2-ClC6H4 100 0
4-ClC6H4 3,4-OCH2OC6H3 100 0
4-ClC6H4 3-CH3OC6H4 100 0

2-CH3OC6H4 2,4-(CH3O)2C6H3 100 0
2-CH3OC6H4 2,4-(CH3)2C6H3 100 0
2-CH3OC6H4 2,4-Cl2C6H3 100 0
2-CH3OC6H4 4-BrC6H4 100 0
2-CH3OC6H4 3,4-F2C6H3 100 0

4-FC6H4 2,4-Cl2C6H3 100 0
4-FC6H4 2-ClC6H4 100 0
4-FC6H4 3,4-F2C6H3 100 0

Catalysts play a special role in recyclization reactions involving N-arylmaleimides.
T. Matviyuk [28] found that the interaction of 2-aminopyridines 19 with maleimides 1 in
a dioxane medium with the involvement of lithium perchlorate led to the formation of
2-oxo-2,3-dihydroimidazo[1,2-a]pyridin-3-yl derivatives of succinmide 24 (Scheme 6). The
authors suggested that during the first stage, 2-aminopyridine reacts with maleimide at
the endocyclic nitrogen atom, forming a substituted succinimide, the subsequent recycling
of which leads to intermediate compound 22. Alternatively, this reaction may proceed
with an initial attack of the exocyclic nitrogen atom followed by the formation of adduct
23. However, the performed NOESY analysis demonstrates a strong correlation between
the α-H of the pyridine ring and the proton of the methylene group in the side chain.
Further, intermediate adduct 22, being a strong CH-acid, reacts with the second maleimide
molecule, which leads to the final product 24.
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A series of studies was devoted to the investigation of the interaction of maleimides
with 1,4-binucleophiles. For 1,2-diaminoethane 25, N,N-dibenzylethane-1,2-diamine 26,
and 12,-diaminocyclohexane 27, which are symmetrical dinucleophiles, A. V. Zorina [29]
isolated the following compounds by boiling the mixture of reagents in methanol: 2-(3-
oxopiperazin-2-yl)-acetanilides 28, 2-acet-4-methylanilido-1,4-dibenzyl-3-oxopiperazines
29, and 2-acetanylido-3-oxodecahydroquinoxalines 30 (Scheme 7).
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M. M. Abelman [30] noted that when using unsymmetrical ethylenediamines, the
reaction in ethanol at room temperature, depending on the radicals, can lead to various
recyclization products (Scheme 8, Table 2).
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Table 2. Interaction of substituted ethylenediamines with maleimides.

R1 R2 R3 R4 R5 R6 Yield 31 32 33

CH3 H H H H H 88 100 0 -
CH3 H H H C6H5 H 92 100 0 -

H H CH3 CH3 C6H5 H 84 100 0 -
H C6H5 H H C6H5 H 65 0 0 100

CH3 CH3 H H H H 95 100 - -
CH3 CH3 H H C6H5 H 69 100 - -
CH3 C2H5 H H H H 93 93 7 -
CH3 C2H5 H H C6H5 H 76 91 9 -

H CH3 H H C6H5 CH3 32 100 0 -
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In the case of reaction 1 with o-phenylenediamine [31] (Scheme 9), regardless of
the solvent used, the formation of only tetrahydroquinaxolinyl acetanilides 37 was
noted. At the same time, the maximum yield of end products (67%) was achieved in
aqueous ethanol.
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tions for the reaction are boiling the mixture of reagents in a dioxane medium. It was as-
sumed that this reaction proceeds due to the nucleophilic attack by the sulphur atom of 
the thioamide 42 at the double bond of N-arylmaleimide 1 with the formation of succin-
imide 43. The intramolecular attack of the imine nitrogen on the nearest carbonyl group 
and subsequent recyclization of the imide ring leads to mesoionic intermediate 44. Fur-
ther, due to the intramolecular rearrangement of the proton or alkyl (aryl) group from the 
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3. Reactions with S- and O-containing Dinucleophiles

The thiazole molecule is a good pharmacophore nucleus due to its various phar-
maceutical applications. Its derivatives possess a wide spectrum of biological activity,
such as antioxidant, analgesic, antibacterial, anticancer, anti-allergic, antihypertensive,
anti-inflammatory, antimalarial, antifungal, and antipsychotic effects [32–37].

For the first time, the possibility of using N-arylmaleimides to build a thiazole ring
was described by M. Augustin [38] and D. Marrian [39]. Thiourea and N-phenylthiourea,
which are examples of 1,3-N,S-dinucleophiles, were considered as initial substrates. The
reaction was carried out in a dioxane medium (Scheme 10).
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Scheme 10. The interaction of N-arylmaleimides with unsubstituted and N-substituted thioureas.

The obtained results allowed the extension of this reaction to other systems con-
taining a thioamide fragment (Schemes 11 and 12). Thus, interactions of primary and
secondary thioamides with N-arylmaleimides were considered by T. Takido [40]. It
has been established that, regardless of the structure of the thioamide component, the
optimal conditions for the reaction are boiling the mixture of reagents in a dioxane
medium. It was assumed that this reaction proceeds due to the nucleophilic attack by
the sulphur atom of the thioamide 42 at the double bond of N-arylmaleimide 1 with
the formation of succinimide 43. The intramolecular attack of the imine nitrogen on
the nearest carbonyl group and subsequent recyclization of the imide ring leads to
mesoionic intermediate 44. Further, due to the intramolecular rearrangement of the
proton or alkyl (aryl) group from the nitrogen atom to the oxygen atom, the formation
of final thiazoles 45 occurs.

Later, D. Havrylyuk [41] et al. extended this process to heterocyclic systems containing
a thioamide component, in particular, to 3-phenyl-5-aryl-1-thiocarbamoyl-2-pyrazolines
(Scheme 12).
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Interesting and contradictory results have been obtained in the case of heterocyclic
matrices, in which the thioamide fragment was part of the cyclic system (Scheme 13).
Lesyk R. et al. [42], as a result of boiling an equimolar mixture of reagents for 2 h in acetic
acid, were able to isolate N-(R-phenyl)-(6-oxo-5,6-dihydro[1,3]thiazole[3,2-b][1,2,4]triazol-5-
yl)acetamides 51 based on the example of 1,2,4-triazole-3(5)-thiol 50. However, S. Holota [43],
when investigating the same interaction, showed that boiling an equimolar mixture in
the range of 30 min–24 h and the use of such solvents as acetic acid, acetone, acetonitrile,
benzene, and toluene in the presence or absence of sodium acetate only led to the formation
of linearly-bound product 52. At the same time, attempts at the cyclization of 52 did not
lead to success. Such a discrepancy in the obtained experimental results is due to the fact
that in [42], the conclusion about the structure of the obtained compound was made only
based on the interpretation of the spectral data. Thus, the signals in the 1H NMR spectra at
δ = 13.8 and -14.3 ppm were treated as NH protons in amide group 51. However, a similar
singlet in a similar magnetic field can belong to the signal of NH of the proton of triazole
ring 52. This controversial issue was resolved in [43] by analyzing XRD data.
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Another direction in the chemistry of N-arylmaleimides, which is well represented
in the literature, is the building of thiomorpholine rings when they interact with 1,4-N,S-
binucleophiles [38,44] (Scheme 14). This framework is a common pharmacophoric element
and it exhibits selective enzyme inhibition for many receptors and other types of molecular
targets [45–51].
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Scheme 14. The reactions of N-arylmaleimides with 1,4-N,S-binucleophiles.

The reactions of maleimides with the involvement of 1,4-N,O-binucleophiles also
proceed in a similar way. During these transformations, unsaturated oxazine (morpholine)
cycles are formed, which are part of a number of compounds with a wide spectrum of
biological activity [52–66]. A. V. Zorina et al. [67,68] studied the interaction of 1 with
aminophenol 55 and aminoethanols 56 in detail. It was noted that both linearly-bound
adduct 57 and cyclic regioisomers 58 and 59 can be isolated when 55 was introduced into
the reaction, which varies the solvents and catalysts (Scheme 15).
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The scientific team led by I. Ito [69] obtained succinimide 62 in a similar interaction us-
ing unsubstituted maleimide and 2,4-diamino-5-hydroxy-6-methylpyrimidine (Scheme 16)
in ethanol medium (the yield was 90%). It has been shown that boiling 62 in water
resulted in hydrolysis with the formation of β-carbamoyl-(2,4-diamino-6methylpyridin-
5-yl)hydroxyethylcarboxylic acid 63 and 64. If 63 was treated with sodium acetate in a
mixture of acetic acid and ethanol, 2-acetamido-8-acetyl-4,6-dimethyl-6H-pyrimido[5,4-
b][1,4]oxazin-7-one was formed, which can also be obtained via an alternative path-
way (Scheme 17). The substance, 2-amino-6-carbamoylmethyl-4-methyl-6H-pyrimido[5,4-
b][1,4]oxazin-7(8H)-one 66, was formed when succinimide 62 was heated in ethanol with
the addition of catalytic amounts of triethylamine.
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Interestingly, when using N-arylmaleimides, the process proceeds in a similar way,
however, the authors were not able to isolate intermediate 71 (analogue 62) (Scheme 18).
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4. Reactions with C,N-dinucleophiles

Recyclization reactions of maleimides during their interaction with C,N-binucleophiles
occupy a special place in the literature. Depending on the structure of the binucleophilic
component, such processes can form partially hydrogenated pyrrole, pyridazine, or pyri-
dine fragments.

The 2-pyrrolidine core is one of the most abundant structural fragments in nat-
ural compounds and is also an important intermediate in the development of new
drugs [70–76]. Among the entire array of data, a special place in the synthesis of this
framework is occupied by the proposed Yu. A. Kovygin et al. [23] interaction of 1 with
β-aminocrotonic acid methyl ester 74 as a representative of 1,3-C,N-binucleophiles. The
process was carried out under various conditions: boiling in organic solvents (diethyl
ether, alcohols, dioxane, dimethylformamide, acetic acid), including using acidic or
basic catalysis. The authors found that, regardless of the medium used, in all cases
the same major product of 5-oxo-4,5-dihydro-1H-pyrrol-3-carboxylate 76 is formed
(Scheme 19). However, monitoring of the reaction showed that the maximum yield of
75–80% can be achieved by boiling the starting reagents in methanol with the addition
of catalytic amounts of toluenesulfonic acid. In this case, the chemical route of the
reaction assumes, as in the previous cases, the initial nucleophilic Michael addition
of the CH-proton of the enamine molecule at double bond 1. Further, via the imino-
enamine tautomerism stage, the amino group of 74 is attacked by carbonyl moiety 1,
which is accompanied by the opening of the pyrrolidinone ring and the formation of a
new pyrroline ring.
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Another promising direction in the chemistry of maleimides, which involves the use
of 1,3-C,N-binucleophiles, is the building of subunits of 4,5-dihydropyridazin-3(2H)-one.
It is known that this fragment is present in compounds with a significant spectrum of
biological activity: phosphodiesterase 3/4 (PDE3/PDE4) inhibitors, [77] cyclooxygenase-
2 (COX-2) inhibitors, [78] subtype-4 receptor agonists (MC4R), [79] platelet aggregation
inhibitors, [80] adenosine-3′,5′-cyclic phosphate phosphodiesterase III (CAMPPDEIII) in-
hibitors, [81] p38 MAP kinase inhibitors, and [82] β-adrenergic antagonists, [83] and in
compounds with antihypertensive, [84] positive inotropic, [85] cardiotonic, [86] antithrom-
botic, anti-inflammatory, and anti-ulcer effects [87]. A. Stepakov [88] showed that a simple
and convenient way to build 4,5-dihydropyridazin-3(2H)-ones is the interaction of aliphatic
and cyclic ketazines with arylmaleimides (Scheme 20).
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Although the mechanism of this reaction is not understood, the authors propose a
probable route involving the 1,4-addition of the tautomeric form of the azine A to maleimide
1 with the formation of product B of the Michael addition. Further, adduct B can be
converted into 4,5-dihydropyridazine-3(2H)-one D via N-substituted dihydropyridazinone
C. Formation of dihydropyridazinone C occurs by intramolecular nucleophilic substitution
with a carbonyl group (Scheme 21).

Fused heterocyclic systems containing a partially hydrogenated pyrimidine ring have
already proved to be efficient in medicinal chemistry and are promising objects for the
creation of new drugs [89–95].
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The authors of several studies [96–98] showed that Michael adducts are formed as a
result of the interaction of 6-aminouracils 84 with N-arylmaleimides 1 in acetonitrile or
isopropyl alcohol medium. However, the scientific team of R. Rudenko [99] succeeded in
isolating the corresponding recycling products by changing the process conditions to boiling
the reagents in acetic acid. It should be noted that, depending on the substituents in the
structure of 6-aminouracils, the authors were able to isolate the corresponding succinimide
86, and fused pyridopyrimidines 85 and pyrrolidinopyrimidine 88 (Scheme 22). It was
found that in the case of unsubstituted 84, the replacement of acetic acid—boiling of which
led to the formation of mixture 85 and 86—with DMF led to the formation of single product
85. In this case, complete conversion was achieved after only 3 h of boiling of an equimolar
mixture of reagents. Taking into account the fact that resulting systems 85′ and 88 have
the same set of signals in 1H and 13C spectra, their structures were proved using NOE and
XRD experiments.
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P. Romanov [100] showed that 2,4,6-triaminopyrimidines behave in a similar way
(Scheme 23).
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Among the large array of literature data on the building of bicyclic pyrrolidinones [101–105],
the reactions of N-arylmaleimides with heterocyclic ketene amines (HKAs) deserve special
attention [106] (Scheme 24). It was found that the optimal conditions for carrying out this
process is a 20-min stirring of the mixture of reagents in an ethanol medium, while the
yield of final bicyclic pyrrolidinones reached 85%. The mechanism of this reaction is similar
to the interaction of 1 with β-aminocrotonic acid methyl ester 74 shown in Scheme 18.
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arylmaleimides.

Another example of the formation of pyrimidine and pyrrole rings is the interaction of
N-arylitaconimides with 1,3-substituted 5-aminopyrazoles [27] 95 (Scheme 25). The process
conditions were similar to those for 6-aminouracils. NOESY and XRD experiments were
also used to establish the structure of compounds 96 and 97.
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5. Reactions with Polynucleophilic Reagents and Involvement in
Multicomponent Processes

In conclusion, we should consider the interaction with polynucleophiles as the most
promising and least studied direction currently in the recyclization reactions of maleimides.
Now, such processes have been well studied using the example of N,N-, C,N- and N,S-
containing polynucleophilic agents. In addition to the alternative opening of the maleimide
ring, polynucleophiles with several non-equivalent reaction centres can contribute to the
formation of various fused or linearly-linked systems, as well as their mixtures.

Despite the fact that aryl biguanidines 98 are polynucleophilic compounds, A.V. Zo-
rina [107] and Yu.A. Kovygin [23] found that, when they interact with N-arylmaleimides,
cyclization occurs during boiling in methanol with the involvement of the guanidine moiety
only (Scheme 26). Thus, biguanidines behave like typical 1,3-N,N-dinucleophiles. It is also
worth noting that attempts to change the conditions and the use of acidic or basic catalysis
did not affect the change in the reaction route. The structure of the resulting 5-oxo-4,5-
dihydroimidazol-4-yl-N-arylacetamides 99, for which the existence of a tautomeric form 99′

is also possible, was proved using the NOESY and XRD spectra. When polynucleophiles
containing simultaneously competing 1,3-N,N- and 1,3-N,S-dinucleophilic centres were
introduced into such reactions, the situation became more complicated. However, using the
example of amidinothiourea 100 and thiosemicarbazone 101, it was established [107,108]
that the reactions proceed at 1,3-N,S-dinucleophilic centres, forming the corresponding
thiazoline cycles 102 and 103.
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As mentioned earlier, the thiazoline ring can also be obtained from thioureas and
N-phenylthioureas, the reaction of which with maleimides proceeded unambiguously.
However, in the case of N,N-substituted thioureas, the reaction can proceed via several
alternative routes (Scheme 27). Thus, the study of A. S. Pankova [109] showed that the
reaction of N-alkylthioureas with maleimides at room temperature in ethanol can lead to
the formation of mixture 104 and 105. In addition, the nature of the solvent, substituents,
and the steric factor play an important role in the formation of specific regioisomers [110].
This result, according to the authors, is due to the fact that when using polar solvents, the
reaction is subject to kinetic control, while non-polar solvents contribute to the formation
of structure 108, which is more thermodynamically favourable.
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L. Salhi et al. [108] found that 2,3-diaminopyrimidine in the reaction with maleimides
acts as a 1,3-N,N-dinucleophile, forming imidazo[1,2-a]pyridines with a wide range of bio-
logical activity [111–114]. As in [23], the authors suggested that the formation of 115 occurs
first as a result of nucleophilic attack of the cyclic nitrogen atom of 2,3-diaminopyridine
110 of the double bond of maleimide 1. Further opening of fragment ring 1 occurs due to
the intramolecular attack of the imine nitrogen on the carbonyl group, which was previ-
ously protonated with acid, with the formation of intermediate product 112. Next, second
molecule 110 acts as a base and removes an acidic proton Hx with the formation of the final
product according to Knoevenagel (Scheme 28).

Later, it was shown [115] that 1,2-daiminobenzimidazole, which contains competing
1,4-N,N- and 1,3-N,N-dinucleophilic fragments, exclusively reacts with maleimides as
1,3-N,N-dinucleophile (Scheme 29). It should be noted that, unlike diaminopyridine, this
reaction proceeds via the formation of succinimide by the aza-Michael reaction due to the
exo-amino group in the second position.

The interactions of maleimides with aminoazoles also proceed ambiguously. R.V.
Rudenko [27] showed that in the reaction of 5-amino-2-R-pyrazoles with 1, regardless of the
solvent used, a mixture of pyrazolopyrimidines 119 and pyrazolopyridines 126 was formed
(Scheme 30). However, for such polynucleophiles as 1,2-diamino-4-phenylimidazole [116],
it was possible to isolate only one of the possible products—imidazodiazinon 122. In
this case, the replacement of the solvent only affected the yield of the final product. The
authors suggested that at the first stage, diaminoimidazole is added to the double bond of
arylmaleimide 1 with the formation of linearly-bound products due to CH of the imidazole
cycle or NH2 groups. Further, intramolecular cyclization of the resulting intermediates can
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lead to various alternative products. The exact structure of the resulting imidazopyridazine
122 was established by the step-by-step reaction with the release of succinimide 121.
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Other promising but poorly studied issues relating to the chemistry of maleimides are
multicomponent processes. At the moment, there are only a few examples of such reactions.

The first three-component synthesis involving maleimides was described by T. Takido [40]
using the example of the interaction of 1 with thioamides and maleic anhydride 123
(Scheme 31), which led to rather unexpected tricyclic bridge systems. The optimal condi-
tions for this process are the 3-h boiling of a mixture of reagents in dioxane. The mechanism
proposed by the authors includes the first stage similar to that shown in Scheme 11, which
consists of the formation of succinimides 124 and 43 due to nucleophilic attack by the sul-
phur atom of thioamide 42 at the double bond of N-arylmaleimide 1 or maleic anhydride
123. Further recycling of 124 and 43 lead to the formation of mesoionic intermediates 44
and 125, which easily enter into 1,3-dipolar cycloaddition reactions with 1- and 123-forming
final products—tricyclic bridge systems 126–128.
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The second example of a multicomponent process was proposed by J. Noth [117]
and E. Fenster [118] for the production of γ-lactams (Scheme 32) as a result of the inter-
action of maleimides, aldehydes, and amines in the presence of reducing agents. The
route of this cascade reaction includes the formation of formyl methylsuccinimide 130
intermediates during the first stage, which were obtained and characterized earlier by the
authors [116,117]. Intermediate amino-succinimides 130 through the formation of Schiff
bases 131 are converted into a bisamide product without the use of additional synthetic
procedures under reductive amination conditions. Moreover, the process already proceeds
at room temperature. However, lactam products 132 and 133 were obtained as a mixture of
cis/trans isomers in the relative configuration of substituents on the lactam ring.
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6. Conclusions

As can be seen from the presented review, heterocyclic systems based on N-arylmaleimides
have attracted close attention from researchers for a long time. The interest in the chem-
ical transformations of maleimides is determined by the presence of several reaction
centres and the possibility for the synthesis of heterocyclic systems with a wide range
of biological effects, including drugs based on them. In this review, we have tried to
systematize all currently available data on the products and features of the interaction of
N-arylmaleimides with various binucleophiles. However, it should be noted that most
of the efficient synthetic pathways lead to partially saturated mono- and bicyclic het-
eroatomic (PSBH) frameworks with an increased content of Csp3 atoms. The presented
data can help in understanding and expanding the chemistry of N-arylmaleimides, in
particular, in identifying new directions for their application in the synthesis of various
non-aromatic heterocyclic systems.
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