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Abstract: A key aspect of cytokine-induced changes as observed in sepsis is the dysregulated activa-
tion of endothelial cells (ECs), initiating a cascade of inflammatory signaling leading to leukocyte
adhesion/migration and organ damage. The therapeutic targeting of ECs has been hampered by con-
cerns regarding organ-specific EC heterogeneity and their response to inflammation. Using in vitro
and in silico analysis, we present a comprehensive analysis of the proteomic changes in mouse
lung, liver and kidney ECs following exposure to a clinically relevant cocktail of proinflammatory
cytokines. Mouse lung, liver and kidney ECs were incubated with TNF-α/IL-1β/IFN-γ for 4 or 24 h
to model the cytokine-induced changes. Quantitative label-free global proteomics and bioinformatic
analysis performed on the ECs provide a molecular framework for the EC response to inflammatory
stimuli over time and organ-specific differences. Gene Ontology and PANTHER analysis suggest
why some organs are more susceptible to inflammation early on, and show that, as inflammation
progresses, some protein expression patterns become more uniform while additional organ-specific
proteins are expressed. These findings provide an in-depth understanding of the molecular changes
involved in the EC response to inflammation and can support the development of drugs targeting
ECs within different organs. Data are available via ProteomeXchange (identifier PXD031804).

Keywords: inflammation; endothelium; proteomics; organ heterogeneity

1. Introduction

Inflammation, in response to infection or injury, activates the vascular endothelium,
resulting in pro-inflammatory signaling, coagulation, increased barrier permeability and
excessive leukocyte trafficking to vital organs, such as the lungs, liver and kidneys [1–4].
This increased leukocyte trafficking is associated with tissue damage, multiple organ
dysfunction and increased mortality. Thus, the endothelium has a critical role in the
cytokine-induced changes and is an important therapeutic target [5]. While the endothelial
cells (EC/ECs) share multiple common properties, EC heterogeneity results in organ-
specific variations in the EC structure, function and mechanisms regulating leukocyte
trafficking into key organs [6–8]. Sepsis, for example, is an important inflammatory disease
which is a major health issue in the United States, with over 1.7 million cases/year and more
than 270,000 deaths/year, despite appropriate antibiotic therapies [9,10]. In sepsis, patients
often die of organ failure, and vascular EC barrier function plays a critical role in the early
course of organ damage [11,12]. Thus, it is important to understand EC heterogeneity and
its impact on cytokine-induced changes as observed in sepsis.
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In order to develop appropriate therapeutics targeting the vascular endothelium,
studies are needed to identify organ-specific EC responses to inflammatory signals. While
several studies have analyzed the functional changes in the ECs of different organs during
cytokine-induced changes as observed in sepsis [1], the underlying molecular mechanisms
of this differential response have not been studied. As inflammation is a highly dynamic
process, the level of protein alterations may vary during the different stages of disease [13].
Compared with genetic analyses, which often provide indirect clues about cell function,
proteomic analysis can give direct insight into the protein expression in organ-specific
ECs and help bridge the genotype–phenotype gap [14,15]. Nonetheless, few previous
studies have identified the possible protein regulation patterns or evaluated the interaction
and differential expression among various proteins in organs, such as the lungs, liver and
kidneys during inflammation [16,17]. Specifically, most previous proteomics studies have
focused on identifying diagnostic biomarkers for cytokine-induced changes [18,19], or have
used genomics or transcriptomics to group patients into different endotypes [20–22], rather
than developing a comprehensive, mechanistic understanding of the disease and the role
of EC heterogeneity in tissue damage and organ failure.

In this study, we use a combination of in vitro and in silico approaches to present
a comprehensive analysis of the dynamics of proteomic changes in mouse lung, liver
and kidney ECs, following exposure to a cocktail of clinically relevant proinflammatory
cytokines (cytomix: TNF-α, IL-1β and IFN-γ) [23–26]. We hypothesize that during the
inflammatory process, the organ-specific EC proteomic expression changes over time, and
there are unique EC-specific proteins that are differentially expressed.

2. Results
2.1. Global Proteomic Analysis Identifies Differentially Expressed Proteins in ECs in Response to
Inflammatory Stimuli

The global proteomic analysis, comprising of more than 6000 proteins, identified
both unique and common proteins between the ECs specific to the lung, liver and kidney.
Figure 1 highlights the volcano plots for the upregulated, downregulated and insignifi-
cantly changed proteins between the control (buffer-treated) and cytomix-treated ECs of
each organ at 4 h and 24 h. Each dot represents the fold change (log2 fold) versus the
significance (−log10 (p-value)). The red dots represent the upregulated proteins, the green
dots represent the downregulated proteins and the gray dots represent the proteins that
were not significantly altered in response to the cytomix treatment. At the 4 h timepoint, the
cytomix-treated lung ECs had 190 proteins upregulated and 119 proteins downregulated,
as compared to the control ECs. The liver ECs had 167 proteins upregulated and 103 pro-
teins downregulated, and the kidney ECs had 167 proteins upregulated and 130 proteins
downregulated in response to the cytomix treatment. At 24 h post cytomix treatment,
there were further significant alterations in the protein expression in lung ECs, resulting
in 316 upregulated proteins and 218 downregulated proteins, as compared to the control
ECs. Similarly, the liver ECs had 273 upregulated proteins and 193 downregulated proteins,
while the kidney ECs had 285 upregulated and 170 downregulated proteins, as compared
to the control ECs. The upregulated and downregulated protein lists in each of the organs
at 4 h and 24 h are listed in the “4 h Upregulated Proteins”, “4 h Downregulated Proteins”,
“24 h Upregulated Proteins” and “24 h Downregulated Proteins” Excel files in the Sup-
plementary Materials. These differential expression patterns at 4 h and 24 h demonstrate
that the cytokine-induced changes as observed in sepsis not only upregulate a significant
number of proteins, but also play a major role in the downregulation of the EC proteins.
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Figure 1. Volcano plots of the protein changes for the 4 h and 24 h cytomix-treated ECs as compared 
to control. For all three organs, the red represents upregulated proteins, green represents downreg-
ulated proteins and gray represents proteins that were not significantly altered in response to cyto-
mix treatment. 

In order to investigate any commonality between the biological replicates across the 
conditions for an EC phenotype, we generated heatmaps of the proteomic changes. Figure 
2 shows the heatmaps of the differentially expressed proteins (p < 0.05) for kidney, lung, 
and liver at 4 h and 24 h normalized protein expression across the control and the cytomix 
biological replicates. The heatmaps are clustered by sample (or replicate) and thus high-
light which samples showed a similar expression for a particular condition across the or-
gans. They provide a qualitative image of the changes occurring in the organ-specific ECs 
at 4 h and 24 h post cytomix treatment, highlighting the heterogeneity of protein expres-
sion between the organs and across time. As shown, in Figure 2, the treatment groups in 

Figure 1. Volcano plots of the protein changes for the 4 h and 24 h cytomix-treated ECs as compared to
control. For all three organs, the red represents upregulated proteins, green represents downregulated
proteins and gray represents proteins that were not significantly altered in response to cytomix treatment.

In order to investigate any commonality between the biological replicates across the
conditions for an EC phenotype, we generated heatmaps of the proteomic changes. Figure 2
shows the heatmaps of the differentially expressed proteins (p < 0.05) for kidney, lung,
and liver at 4 h and 24 h normalized protein expression across the control and the cytomix
biological replicates. The heatmaps are clustered by sample (or replicate) and thus highlight
which samples showed a similar expression for a particular condition across the organs.
They provide a qualitative image of the changes occurring in the organ-specific ECs at
4 h and 24 h post cytomix treatment, highlighting the heterogeneity of protein expression
between the organs and across time. As shown, in Figure 2, the treatment groups in the
kidney ECs cluster together more closely compared to the liver and lung, highlighting that
kidney ECs have a greater uniformity between the control or cytomix replicates over time.
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Figure 2. Sample clustering of heatmaps highlighting the overall similarity and differences in nor-
malized protein expression (p < 0.05) across control and cytomix conditions for all replicates in the 
kidney (panel A), lung (panel B) and liver (panel C) at 4 h and 24 h. The white bars in the heatmaps 
represent those proteins that did not show any expression. The color bars on top of the heatmap 
represent different treatment groups. Blue bars indicate control at 4 h, orange cytomix at 4 h, green 
control at 24 h and red cytomix at 24 h. The color key in the top left shows whether protein expres-
sion was above or below the mean. 
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Figure 2. Sample clustering of heatmaps highlighting the overall similarity and differences in
normalized protein expression (p < 0.05) across control and cytomix conditions for all replicates in the
kidney (panel A), lung (panel B) and liver (panel C) at 4 h and 24 h. The white bars in the heatmaps
represent those proteins that did not show any expression. The color bars on top of the heatmap
represent different treatment groups. Blue bars indicate control at 4 h, orange cytomix at 4 h, green
control at 24 h and red cytomix at 24 h. The color key in the top left shows whether protein expression
was above or below the mean.

As shown in the Venn diagrams, the number of proteins commonly expressed between
these organs increases substantially from 4 h (Figure 3A) to 24 h (Figure 3B) after the cytomix
treatment. At 4 h post cytomix treatment, 38 of the proteins were shared between all three
organs, 12 shared between the kidney and liver, 8 shared between the kidney and lung
and 19 shared between the lung and liver. Following 24 h cytomix treatment, 79 proteins
were shared between all three EC types, 50 between the kidney and liver, 20 between the
kidney and lung and 23 between the lung and liver, highlighting the progression of the
cytokine-induced changes over time. The increase in the number of the common proteins
between the EC phenotypes indicates more uniformity in the proteomic expression during
the progression of inflammation. More importantly, both the liver and kidney ECs showed
a minimal increase in the number of the unique proteins at 23 and 27 proteins, respectively,
from 4 h to 24 h, while the lung ECs showed an increase of 69 unique proteins at 24 h
compared to 4 h. The number of unique and common downregulated proteins between the
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three organs at 4 h and 24 h are shown in Figure 3C,D, respectively. Following the trend
observed with the upregulated proteins, the number of downregulated proteins commonly
expressed between all three organs increased from 1 at 4 h (Figure 3C) to 16 at 24 h
(Figure 3D), post cytomix treatment. At 4 h post cytomix treatment, four downregulated
proteins were shared between the kidney and liver, four between the lung and kidney and
no proteins were shared between the lung and liver, highlighting the unique downregulated
proteomes in the lung and liver. At 24 h post cytomix treatment, 16 downregulated proteins
were shared between the lung and liver, 6 between the lung and kidney and 26 between
the liver and kidney, which again suggests that, as inflammation progresses, there is an
increase in uniformity in the proteomic expression. Similar to what was observed with
the upregulated proteins, while the number of the unique downregulated proteins in the
liver and kidney increased at 24 h by 1 and 38, respectively, the number of the unique
downregulated proteins in the lung increased by 67. The common and unique protein lists
across the organs at 4 h and 24 h are listed in the “Common and Unique Downregulated 4 h
Proteins”, “Common and Unique Downregulated 24 h Proteins”, “Common and Unique
Upregulated 4 h Proteins” and “Common and Unique Upregulated 24 h Proteins” Excel
files in the Supplementary Materials. These findings indicate that there are large numbers
of organ-specific changes in protein expression in the ECs over time.
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2.2. Functional Enrichment Analysis

Based on the proteomic analysis, we then performed functional enrichment analysis by
using (a) Gene Ontology (GO) to determine how the different classes of significant (p < 0.05)
Biological Processes (BPs) regulate EC function during inflammation (summarized in
the panels in Figure 4) and (b) the PANTHER database to identify the classes of the
upregulated and downregulated proteins common between the three EC phenotypes at 4 h
and 24 h (summarized in Tables 1–3). GO and PANTHER summarize how the differentially
expressed proteins play a significant role in regulating the specific BPs during the cytokine-
induced changes in ECs. The BPs can be defined as the biological objective to which a gene
or gene product contributes through a series of molecular functions [27]. Thus, the BPs
are normally described by the functional role that they play in cells, tissues and organs.
As shown in Figure 4, the lung, liver, and kidney ECs shared the same top five GO hits in
each BP class at 4 h (panel A) and 24 h (panel B) post cytomix treatment. Furthermore, four
of these top five BPs observed at 4 h are still present at 24 h. However, while these BPs
similarly activate the immune system, they appear to be doing so in slightly different ways.
For example, the liver and kidney ECs appear to have a higher percentage of their proteins
involved in the response to the bacterium class when compared to the lung ECs at 4 h
(Figure 4, panel A). The response to the bacterium process had 39 proteins upregulated for
liver, 32 upregulated for lung and 35 upregulated for kidney. The defense response to the
organism had 47 for lung, 49 for liver and 42 for kidney. The response to cytokine had 44
for lung, 46 for liver and 37 for kidney. The innate immune response had 41 for lung, 41 for
liver and 40 for kidney. The cellular response to cytokine stimulus had 37 for lung, 41 for
liver and 35 for kidney, further highlighting the response of various ECs to inflammation
and providing insight into the signaling response. Figure 4, panel B, shows that, while the
response at 24 h is similar to that at 4 h, a distinct pattern of uniformity of the proteins
across all of the organs is observed. For the proteins, the defense response to the organism
had 47 for the lung, 78 for the liver and 79 for the kidney. The innate immune response
had 57 for the lung, 69 for the liver and 68 for the kidney. The response to bacterium had
48 for the lung, 56 for the liver and 56 for the kidney. The response to cytokine had 54
for the lung, 62 for the liver and 68 for the kidney. Finally, the response to interferon-beta
had 15 for the lung, 16 for the liver and 21 for the kidney. Similar to the 4 h response
of the bacterium class, the lung ECs had the lowest percentage of proteins compared to
the other BPs for the response to interferon-beta. The “Innate Immune response GO BP”,
“Response to Bacterium GO BP”, “Response to Cytokine GO BP”, “Response to Interferon-
beta GO BP”, “Cellular Response to Cytokine Stimulus GO BP” and “Defense Response to
Other Organism GO BP” Excel files in the Supplementary Materials provide more detailed
information on these proteins. Figures S1 and S2 in the Supplementary Materials’ Word file
highlight the number of common and unique proteins upregulated between the top five
GO BPs at 4 h and 24 h, respectively, across the ECs.
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Figure 4. Functional enrichment analysis showing the top 5 GO BPs expressed in the ECs. Over time,
4 of the top 5 GO BPs observed in the upregulated proteins at 4 h (panel A) are also present at 24 h
(panel B). There were no BPs observed in the downregulated proteins at 4 h, but at 24 h (panel C), 4
and 5 significant GO BPs were identified in the liver and kidney, respectively.

Table 1. The PANTHER/GeneCards classes of 10 of the proteins that have the highest level of
upregulation compared to control at 4 h post cytomix treatment. As shown, most proteins are
categorized within the defense/immunity, cell adhesion and metabolite interconversion enzyme
classes and belong to multiple classes.

Protein Class Protein(s)

RNA Metabolism Zfp36

Cell Adhesion Vcam-1, Selp

Defense/Immunity Selp, Ccl2, Isg15, Tlr2, Acod1

Intercellular Signaling Ccl2

Membrane Traffic Tnfaip2

Metabolite Interconversion Enzyme Ptgs2, Acod1

Protein Modifying Enzyme Ripk2

Transmembrane Signal Receptor Tlr2

Cell-cell signaling Isg15

Table 2. The PANTHER/GeneCards classes of 10 of the proteins that have the highest level of
upregulation compared to control at 24 h post cytomix treatment. As shown, most proteins are
categorized within the defense/immunity class, followed by the protein modifying enzyme class.

Protein Class Protein(s)

DNA Metabolism Zbp1

Defense/Immunity Ifit2, Ifit1, H2-k1, Ifi44, Rsad2, Zbp1, Cebpb

Gene Specific Transcriptional Regulator Cebpb

Protein Modifying Enzyme Irak2, Ripk2

Anti-apoptosis Parp14
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Table 3. The PANTHER/GeneCards classes of 10 of the proteins that have the highest level of
downregulation compared to control at 24 h post cytomix treatment. As shown, most proteins are
categorized within the protein binding activity, extracellular matrix and cell cycle classes and belong
to multiple classes.

Protein Class Protein(s)

Cytoskeletal: Non-Motor Actin Binding Fli1

Extracellular Matrix Vwf, Hyal2

Coagulation Vwf

Translation Inhibitor (apoptosis) Pdcd4

Cell Cycle Ptprb, Rgcc

Protein Binding Activity She, Cbr4, Ednrb

Angiogenesis Tie1

Cell Proliferation Hyal2

Metabolite Interconversion Enzyme Cbr4

Calcium Binding Ednrb

No significant GO BPs were observed in the downregulated proteins either in the lung,
liver or kidney at 4 h, or in the lung at 24 h. However, as shown in Figure 4 panel C, four
BPs in common in the downregulated proteins at 24 h in the liver and kidney included the
BP classes tube development, angiogenesis, blood vessel morphogenesis and tube morpho-
genesis, suggesting that angiogenesis and blood vessel formation processes are dysregulated
during inflammation. More information on the downregulated proteins at 24 h in the liver
and kidney can be found in the “Tube Development GO BP”, “Tube Morphogenesis GO BP”,
“Angiogenesis GO BP”, “Blood Vessel Morphogenesis GO BP” and “Animal Organ Morpho-
genesis GO BP” Excel files in the Supplementary Materials. In summary, these data support
the concept that the proteomics of the organ-specific ECs evolve from a more heterogeneous
to a more uniform response over time during inflammation.

In this study, we focused on the GO BPs that are relevant to inflammation and com-
mon between the three EC phenotypes (as shown in Figures 4–6 in the manuscript); how-
ever, there were several BPs that were unique to each EC phenotype. For example, in
the lung, unique GO BPs include the B-cell-mediated immunity (Nsd2, Il6 and C1qc),
immunoglobulin-mediated immune response (Gimap5, Trex1, Nsd2) and regulation of
natural killer cell-mediated immunity (Clec2d, Gimap3 and Tap1). In the liver, the unique
GO BPs include leukocyte proliferation (Gja1, Cebpb and Tlr4), alpha-beta T-cell activation
(Bcl11b, Irf1, Cd44) and EC proliferation (Arg1, Emc10 and Sp1). In the kidney, the unique
GO BPs include response to ischemia (Cx3cl1, Hk2 and Panx1), blood coagulation (Comp,
Hpse and Fbln1) and positive regulation of cytokine production (Postn, Panx1 and Cd274).
Thus, many of the GO BPs unique to each EC phenotype, as well as those that are similar
between the phenotypes, are inflammatory-related, supporting the observation that the
heterogeneity of the EC proteomics contributes to cytokine-induced changes as observed
in sepsis.
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Figure 5. Comparison of 10 of the proteins that have the highest level of upregulation or downregula-
tion compared to control post cytomix treatment at 4 h and 24 h. Panels A and B represent the 4 h and
24 h upregulated proteins, respectively, and panel C represents the downregulated proteins at 24 h.
These bar plots highlight the differential expression of proteins across organs. The y-axis represents
the log2 level change compared to the background levels of each protein. The blue, orange and gray
bars represent lung, liver and kidney ECs, respectively. Data are plotted as mean ± SEM (n = 3).
Analysis of Variance (ANOVA) with Tukey post-hoc test was used to identify statistically significant
differences. The “*” symbol indicates that there was a significant difference (p < 0.05) between organs.

Int. J. Mol. Sci. 2022, 23, 8399 16 of 27 

kidney. Vwf plays a role in maintaining hemostasis [35] and the dysfunction of the com-
plementary and coagulation processes are well-known in the inflammatory processes as 
observed during sepsis [36]. Overall, these findings further indicate that during the cyto-
kine-induced changes as observed in sepsis, many of the key proteins are differentially 
expressed in the ECs of different organs over time. 

In order to investigate how each of the upregulated and downregulated proteins as-
sociated in each GO BP interacted with the proteins in the other BPs, gene-concept net-
work plots (or cnetplots) were generated for the ECs in Figure 6, panels A–C. As shown 
in Figure 6, panel C, only four of five significant GO BPs were identified in the downreg-
ulated proteins in the liver and kidney, respectively, at 24 h. Panel A represents the 4 h 
upregulated cnetplot, panel B represents the 24 h upregulated cnetplot and panel C rep-
resents the 24 h downregulated cnetplot. Each cnetplot shows the interaction levels of 
each of the BP proteins and their shared criteria between the organs. Most importantly, 
the common proteins between the BPs again highlight the heterogeneity of the organ re-
sponses to the cytomix treatment and their time-dependent changes during inflammation. 
It is important to note that, while at the 4 h upregulated timepoint there are more unique 
proteins, at the 24 h upregulated timepoint, the proteins start sharing more of the BPs, 
indicating the commonality between the ECs as the inflammation progresses. 

Ctrb1

AA (Upregulated at 4 hours)

Figure 6. Cont.



Int. J. Mol. Sci. 2022, 23, 8399 14 of 25Int. J. Mol. Sci. 2022, 23, 8399 17 of 27 
 

 

 

 
Figure 6. Cnetplots highlighting the interaction of commonly shared proteins between the top 5 GO 
BPs upregulated at 4 h (panel A); 24 h (panel B) and downregulated at 24 h (panel C) after cytomix 
treatment. 

BB (Upregulated at 24 hours)

C (Downregulated at 24 hours)

Figure 6. Cnetplots highlighting the interaction of commonly shared proteins between the top 5
GO BPs upregulated at 4 h (panel A); 24 h (panel B) and downregulated at 24 h (panel C) after
cytomix treatment.

We further analyzed the upregulated and downregulated proteins using the PAN-
THER and/or GeneCards database, to identify the classes of proteins common between the
three EC phenotypes. We then analyzed the log2 fold changes of 10 of the proteins that have
the highest level of upregulation or downregulation compared to the control, post cytomix
treatment at 4 h and 24 h. The results of this comparison for upregulated proteins at 4 h
(Figure 5, panel A), 24 h (Figure 5, panel B) and the downregulated proteins at 24 h (Figure 5,
panel C) are plotted. Tables 1–3 show the respective classes for each of the 10 proteins that
have the highest level of upregulation or downregulation compared to the control post
cytomix treatment between the three EC phenotypes upregulated at 4 h, upregulated at 24 h
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and downregulated at 24 h, respectively. The only common downregulated protein at 4 h
was Pdcd4, a key translation factor and a regulator of apoptosis [28]. The log2 fold changes
of Pdcd4 in the lung, liver and kidney were −4, −2 and −1, respectively. For the 4 h cy-
tomix treatment, we identified upregulated proteins in the RNA metabolism, cell adhesion,
defense/immunity, intercellular signaling, membrane traffic, metabolite interconversion
enzyme, protein-modifying enzyme and transmembrane-signaling receptor classes. At
24 h post cytomix treatment, we identified upregulated proteins in the defense/immunity,
DNA metabolism, gene-specific transcriptional regulator and anti-apoptotic classes. Unlike
the upregulated proteins, none of the PANTHER classes in the downregulated proteins at
24 h were grouped in the defense/immunity class. Rather, the downregulated proteins
at 24 h were grouped in the cytoskeletal class, specifically playing a role in actin binding,
the extracellular matrix, inhibition of translation, the cell cycle, protein-binding activity,
angiogenesis, cell proliferation, calcium binding, coagulation and metabolite interconver-
sion enzyme classes. Several of the proteins were identified in more than one class, thus
highlighting the multiple processes that are altered during the cytokine-induced changes
as observed in sepsis.

The log2 fold change shown in Figure 5 indicate that, although there was an increase
in the upregulated proteins across all of the EC phenotypes, the proteins were upregulated
to a higher level in the liver compared to the lung and kidney at both 4 h and 24 h. This
supports the observation that, while the organs, such as the liver, are more affected by
inflammation starting from earlier time points, additional organs, such as the lung and
kidney, are impacted in the cytokine-induced changes at later time points.

Of the 10 proteins that have the highest level of upregulation or downregulation
compared to the control, the liver ECs expressed the largest number of proteins with the
highest fold change, while there were still both unique and uniform differential patterns
between the different EC types. For example, Vcam-1 (Vascular cell adhesion molecule 1), a
critical adhesion molecule for neutrophil attachment and migration across ECs [29], was
upregulated uniformly in all three EC types. Selp (P-selectin), another critical adhesion
molecule regulating the leukocyte–endothelium interactions, is induced by TNF-α and
IL-1β (components of cytomix) in mice [30]. Selp was found to be significantly upregulated
in all three EC phenotypes as expected, but the level of its upregulation was highest in
the lung, followed by the liver and the kidney. Acod1 (Aconitate decarboxylase 1) is a
key regulator of immunometabolism in disease and its upregulation was found to be
significantly higher in the kidney, followed by the liver and then the lung [31]. In the
case of the 24 h timepoint, the lung ECs expressed Zbp1 (Z-DNA binding protein 1) to
a significantly higher degree than the liver and kidney. Zbp1 regulates the host defense
against pathogens by sensing viral nucleic acids [32]. Cebpb (CCAAT Enhancer Binding
Protein Beta) and H2-k1 (Histocompatibility 2, K1, K region) are two proteins that play
critical roles in regulating the cytokine-induced changes as observed during sepsis, and
were significantly higher in the lung compared to the liver and kidney [15,33]. Rsad2
(Radical S-adenosyl methionine domain containing 2) is found to be responsive to interferon
and again is found to be associated with the cytokine-induced changes as observed during
sepsis [34]. Though Rsad2 was not statistically significant between the organs, its expression
was found to be highest in the kidney, then the liver and lastly the lung. At 24 h, Vwf
(von Willebrand factor) was significantly downregulated in the lung, compared to the liver
and kidney. Vwf plays a role in maintaining hemostasis [35] and the dysfunction of the
complementary and coagulation processes are well-known in the inflammatory processes
as observed during sepsis [36]. Overall, these findings further indicate that during the
cytokine-induced changes as observed in sepsis, many of the key proteins are differentially
expressed in the ECs of different organs over time.

In order to investigate how each of the upregulated and downregulated proteins
associated in each GO BP interacted with the proteins in the other BPs, gene-concept
network plots (or cnetplots) were generated for the ECs in Figure 6, panels A–C. As
shown in Figure 6, panel C, only four of five significant GO BPs were identified in the
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downregulated proteins in the liver and kidney, respectively, at 24 h. Panel A represents
the 4 h upregulated cnetplot, panel B represents the 24 h upregulated cnetplot and panel C
represents the 24 h downregulated cnetplot. Each cnetplot shows the interaction levels of
each of the BP proteins and their shared criteria between the organs. Most importantly, the
common proteins between the BPs again highlight the heterogeneity of the organ responses
to the cytomix treatment and their time-dependent changes during inflammation. It is
important to note that, while at the 4 h upregulated timepoint there are more unique
proteins, at the 24 h upregulated timepoint, the proteins start sharing more of the BPs,
indicating the commonality between the ECs as the inflammation progresses.

2.3. Statistical Analysis

Multivariate analysis of variance (MANOVA) was performed, using the 19 proteins
that were upregulated in all three organs at both 4 h and 24 h to test the hypothesis
that treatment (control vs. cytomix), organ (lung, liver, kidney) and time (4 h vs. 24 h)
had a significant impact on the protein expression levels. The impact of all three factors
(treatment, organ, time), as well as their corresponding interactions with the upregulated
proteins were found to be statistically significant (p < 0.05 in all of the cases). There was
only one protein that was downregulated in all three organs at both 4 h and 24 h. Analysis
of variance (ANOVA) indicated that the downregulated protein was significantly impacted
by both the treatment and organ (p < 0.05), as well as by the interaction between organ
and treatment (p < 0.05) and interaction between organ and time (p < 0.05). MANOVA
was used to demonstrate that 10 of the proteins that have the highest level of upregulation
or downregulation compared to the control at 4 h and 24 h (Figure 5) were significantly
impacted by the organ type (p < 0.05). ANOVA was used to identify the statistically
significant differences between organs in 10 of the proteins that have the highest level
of upregulation or downregulation compared to the control at 4 h and 24 h (Figure 5).
This statistical analysis supports the concept that organ-specific EC proteomic expression
changes significantly over time during inflammation. More information on these specific
proteins can be found in the “Proteins for Statistical Analysis”, “4 h Upregulated Statistical
Results”, “4 h Downregulated Statistical Results” and “24 h Downregulated Statistical
Results” Excel files in the Supplementary Materials.

3. Discussion

In this study, we performed a global proteomic analysis to study the differential re-
sponse of mouse ECs from three different organs (lung, liver and kidney) that are often
most immediately affected by cytokine-induced changes as observed in sepsis [37]. The
treatment of ECs with a cocktail of proinflammatory cytokines was used to induce in-
flammation [38]. Our results, from an analysis of more than 6000 proteins, highlighted
distinct changes in the number of proteins, BPs and molecular responses distinctive for
the cytokine-induced changes as observed in sepsis. The ECs from the three organs had
both unique and common upregulated and downregulated proteins following treatment
with the cytomix. Using global proteomic analysis allowed us to compare the time and
organ-specific EC protein differences. Hence, the analysis presented here lays a proteomic
framework for the better understanding of dynamic organ-specific cellular responses.

Our studies demonstrate that, during cytokine-induced changes as observed in sepsis,
in addition to alterations in defense and immunity cellular responses, a number of other
cellular processes, such as cell adhesion, nucleic acid metabolism, angiogenesis and apop-
tosis, are also impacted. More importantly, time-dependent protein expression changes
were observed. While some of these responses were common in all three ECs, others were
unique to one EC phenotype or another. For example, the differential expression of proteins
responsible for both the induction and repression of cytokine-induced changes were organ-
specific. Both the level of expression and the number of upregulated and downregulated
proteins differed between the EC phenotypes, suggesting the importance of investigating
organ-specific EC responses during inflammation. The bioinformatic analysis of the pro-
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teins indicated that, while the lung ECs were the most differentially expressed, there were
also several, highly expressed unique proteins in both the liver and kidney ECs. These
findings are consistent with our understanding that during cytokine-induced changes, a
dysregulated host response to infection results in the activation of ECs, coagulation and
increased cell adhesion [39,40]. Furthermore, the organ-dependent differential expression
of the cellular pathways is also consistent with clinical and in vivo observations of the
complexity of the inflammatory environment [41,42].

Our findings highlight a time-dependent increase in the number and magnitude of
upregulated and downregulated proteins from 4 h to 24 h, with the lung ECs demonstrating
the most pronounced change. Furthermore, the number of commonly shared upregulated
or downregulated proteins between the EC phenotypes increased over time, as shown in
the Venn diagrams. A heatmap analysis of the lung, liver and kidney biological replicates
at 4 h and 24 h showed some heterogeneity of protein expression between samples within
organs over time. Based on the global proteomic analysis, there are bound to be similarities
between the control and experimental samples as the treatment (cytokines) is not going
to change the expression level of all of the proteins. The protein expression changes occur
over a much larger time frame than the gene expression. Hence, it is reasonable to expect
that at 4 h, minimal differences will be observed between the treated and control samples,
while the expression level increases as the treatment time progresses as evidenced by the
significant increase observed at 24 h.

Interestingly, the functional enrichment analysis of the commonly upregulated proteins
showed that the same top five GO BPs were observed in the ECs of all three organs, and
four of these GO BPs were conserved over time, supporting the observation that similar
BPs regulate the progression of inflammation over time. Furthermore, the GO BPs observed
in the uniquely upregulated proteins of the ECs of different organs were also classified as
inflammatory-related. While the three EC phenotypes showed similar expression for the
protein-modifying enzyme and cell-adhesion classes at 4 h, at the 24 h timepoint, defense
immunity and DNA metabolism had the highest organ-specific changes. These again
suggest that, while the defense/immunity mechanism may be the most common response
during inflammation among all three organs, other cellular mechanisms also promote
the survival of the cells over time. This was also confirmed by the commonality of the
nodes of interactions between each of the top five BPs upregulated for each of the EC
types. The functional enrichment analysis of the downregulated proteins was different
compared to the upregulated proteins, since no significant GO BPs were observed in the
downregulated proteins at 4 h in the lung, liver or kidney, and only at 24 h in the liver
and kidney. The identified GO BPs show how inflammation has a significant impact on
blood vessel development and angiogenesis, as confirmed in other studies [43]. While
Pdcd4 is the only common, downregulated protein at 4 h and all three ECs showed similar
expression, at 24 h, the three ECs showed a similar expression in the calcium binding,
cytoskeletal: non-motor actin binding and cell proliferation classes. These results again
confirm that inflammation affects multiple cellular mechanisms of the ECs as well as the
immune system and warrant further investigation.

Though this study was performed in mice ECs, our proteomic findings do contribute to
our understanding of the inflammatory conditions in human ECs. The proteins, such as Selp
and Vcam-1 (adhesion molecules), thrombomodulin, Prox1, Foxc2 and endothelial protein
c receptor (all involved in coagulation) were evaluated in this study, with Selp, Vcam-1
and Foxc2 being upregulated in ECs. The proteome of the human ECs under inflammatory
conditions exhibit responses that are similar to the findings reported in this study for mouse
ECs [15,44]. For example, during the cytokine-induced changes as observed in sepsis, IL-
1β (which was part of the cytomix cocktail to stimulate the mouse ECs in our study) is
released and adhesion molecules (such as VCAM-1 and SELP) are upregulated from human
ECs during inflammation. Furthermore, in human ECs, the proteins, such as Prox1 and
Foxc2, are downregulated during inflammation which, in turn, decrease thrombomodulin
and endothelial protein c receptor expression (both involved in controlling coagulation),
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initiating leukocyte adhesion and migration [15]. Thus, inflammatory-related pathways
and BPs are dysregulated in human ECs, similar to what was observed in this study using
mouse ECs.

Our findings could provide further information on the underlying mechanisms of other
vascular diseases, such as atherosclerosis, and on the involvement of the mitochondria in
multiple pathologies. In this proteomics study, we observed several inflammatory-related
GO BPs (e.g., innate immune response, response to cytokines) that are upregulated in
ECs during inflammation which are potentially impacted during atherosclerosis and may
serve as targets of interest. Atherosclerosis also has a significant impact on metabolic-
related processes [45–48], and we identified additional BPs that alter the reactive oxygen
species, reactive nitrogen species and lipid production in ECs (e.g., the positive regulation
of reactive oxygen species, metabolic process, nitric oxide biosynthetic process, response
to lipid). Thus, the current study characterizes a number of underlying processes and
associated proteins that occur during inflammation and encourages future proteomic
studies of EC dysfunction during vascular disease progression, such as atherosclerosis.
Given the roles of mitochondria in producing energy through respiration and regulating
cellular metabolism, it stands to reason that mitochondrial function dysregulation may
be involved in various pathologies. For example, the release of mitochondrial DNA
and damage-associated molecular patterns (DAMPs) following injury, trauma or sepsis
(especially within ECs) has been implicated in activating TLR9, inducing MAPK and NF-κB
inflammatory pathways and disrupting the EC barrier via the targeting of HMGB1 [49].
Studies have also shown that metabolic changes (e.g., increased glucose uptake promoting
tumor growth) in malignant cells help to compensate for malfunctions in the respiratory
chain, and it has been hypothesized that the blockage of glycolysis could favor oxidative
phosphorylation and an anti-metastatic phenotype [50]. From our proteomic analysis,
we have identified several mitochondrial-related BPs and associated proteins therein that
contribute to the inflammatory and metabolic dysregulation in ECs [45].

In summary, we used a cytokine cocktail comprising of TNF-α, IL-1β and IFN-γ to
treat different organ-specific ECs for 4 h or 24 h and modelled the cytokine-induced changes
as observed in sepsis. Our study demonstrates that during the inflammatory process, the
organ-specific EC proteomic expression changes over time, and there are unique EC-specific
GO BPs and proteins that are differentially expressed. Post-translational modification
of proteins may also play an important role in regulating the EC function and should
be investigated in future studies. Finally, it will be important to build a global cellular
pathway map to investigate the underlying mechanisms of proteomic changes in ECs
and their downstream phenotypic effects on cell functions, such as leukocyte–endothelial
interaction and permeability. These effects are often observed during cytokine-induced
changes and may play important roles in organ dysfunction and failure [36,51]. Though
our initial goal was to explore and examine the entire proteome in ECs, our long-term
goal is to identify organ-specific EC proteins that could serve as therapeutic targets for
precision medicine. As we identify EC-specific proteins that can be used to phenotype
patients, we will confirm and validate these specific proteins experimentally (e.g., using
Western Blotting).

4. Materials and Methods
4.1. Endothelial Cell Preparation

Mouse Primary Liver Sinusoidal ECs (cat# C57-6017), C57BL/6 Mouse Primary Lung
Microvascular ECs (cat# C57-6011) and C57BL/6 Mouse Primary Kidney ECs (cat# C57-
6014) were purchased from Cell Biologics (Chicago, IL, USA). The ECs were isolated
from C57BL/6 pathogen-free laboratory mice and were negative for bacteria, yeast, fungi
and mycoplasma. The ECs were grown on gelatin-coated T25 flasks at 37 ◦C in 5% CO2,
according to the manufacturer’s specifications for each type of mouse EC. Each EC type was
used in experiments at passages 4–5. The ECs were harvested and plated in 6 well plates at
a cell concentration of 0.25 × 106 cells/well and grown for 3–4 days until the cells formed a



Int. J. Mol. Sci. 2022, 23, 8399 19 of 25

confluent monolayer. The cells (four wells/condition) were treated with buffer (control) or
Cytomix (TNF-α (10 ng/mL, R&D, 410-MT-010), IL-1β (5 ng/mL, R&D, 401-ML-005), IFN-γ
(100 ng/mL, 485-MI-100)) for 4 h or 24 h [23–26]. This well-described cocktail of clinically
relevant inflammatory cytokines has been used to model the inflammatory milieu of sepsis and
has been used extensively to model cytokine-induced cellular changes during septic conditions
in vitro, using epithelial and ECs [23–26,38,52]. The cells were harvested by treatment with
0.25% Trypsin-EDTA Solution (Cell Biologics, cat# 6914) and cell scrapping. The collected cells
were centrifuged, and cell pellets stored at −70 ◦C before proteomic analysis.

4.2. Global Label-Free Proteomic Analysis

For the label-free global proteomics studies, the proteins were extracted by adding 6M
guanidium hydrochloride buffer and dilution buffer (25 mM Tris, 10% acetonitrile). The
proteins were digested with Lys-C for 4 h at 37 ◦C. A second digestion was achieved by
overnight incubation with trypsin. The incubated solution was acidified and centrifuged
at 4500× g for 5 min. The supernatants consisting of peptides were loaded onto activated
in-house constructed cation stage tips [53]. The peptides from each sample were eluted
into six fractions using elution buffers, as previously described [54]. Mass spectrometry
(MS) analyses were performed on these fractions, using the Quadrupole Orbitrap Mass
Spectrometer (Q Exactive—ThermoFisher Scientific, Waltham, MA, USA) [55]. The de-
salted tryptic peptide samples were loaded onto an Acclaim PepMap 100 pre-column
(75 µm × 2 cm, ThermoFisher Scientific) and separated by Easy-Spray PepMap RSLC C18
column with an emitter (2 µm particle size, 15 cm × 50 µm ID, ThermoFisher Scientific)
by an Easy nLC system with Easy Spray Source (ThermoFisher Scientific). To elute the
peptides, a mobile-phase gradient was run using an increasing concentration of acetoni-
trile. The peptides were loaded in buffer A (0.1% (v/v) formic acid) and eluted with a
nonlinear 145-min gradient as follows: 0–25% buffer B (15% (v/v) of 0.1% formic acid
and 85% (v/v) of acetonitrile) for 80 min, 25–40% B for 20 min, 40–60% B for 20 min and
60–100% B for 10 min. The column was then washed with 100% buffer B for 5 min and
re-equilibrated, 50% buffer B for 5 min and re-equilibrated with buffer A for 5 min. The
flow rate was maintained at 300 nl/min. Electron spray ionization was delivered at a spray
voltage of −1500 V. The MS/MS fragmentation was performed on the five most abun-
dant ions in each spectrum using collision-induced dissociation with dynamic exclusion
(excluded for 10.0 s after one spectrum), with automatic switching between the MS and
MS/MS modes. The complete system was entirely controlled by Xcalibur software. Mass
spectra processing was performed with Proteome Discoverer version 2.5. The generated
de-isotoped peak list was submitted to an in-house Mascot server 2.2.07 for searching
against the Swiss-Prot database (Release 2013_01, version 56.6, 538,849 sequences) and
Sequest HT database. Both Mascot and Sequest search parameters were set as follows:
species, mus musculus; enzyme, trypsin with maximal two missed cleavage; fixed modi-
fication, cysteine carboxymethylation; 10 ppm mass tolerance for precursor peptide ions;
0.02 Da tolerance for MS/MS fragment ions. For dynamic modifications, we used oxida-
tion/+15.995 Da (M) and N-terminal modification Met-loss/-131.040 Da (M); additional
information on the alkylation/reduction can be found elsewhere [56]. The proteomics
of the ECs were investigated using a factorial design of three factors: treatment (control
vs. cytomix); organ (lung, liver, kidney) and time (4 h vs. 24 h) with n = 3 per condition
for a total of 36 samples. The mass spectrometry proteomics data were deposited to the
ProteomeXchange Consortium via the PRIDE [57,58] partner repository with the dataset
identifier PXD031804 and 10.6019/PXD031804. The reviewer account details are username:
“reviewer_pxd031804@ebi.ac.uk”, password: “3IUdGW3V”.

4.3. Bioinformatic Analysis

The protein lists generated by the Proteome Discoverer (v. 2.5) were uploaded into
the R programming language for Differentially Expressed Protein (DEP) identification [59].
Within R, the Bioconductor software was used to access the packages used for analysis and
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visualization [60,61]. The proteins with a log2 fold change > 1 and p < 0.05 were considered
to qualify as upregulated. Similarly, any protein with a log2 fold change < −1 and p < 0.05
were considered downregulated with target false discovery rate (FDR) set to 5%. These pro-
tein lists were then separated and split into smaller lists for each. Figure S3 (Supplementary
Materials) shows a flow chart of the process used for bioinformatic analysis. The upregu-
lated and downregulated proteins were compiled for each dataset and then compared to
one another across the timepoints, using volcano plots. In addition, the upregulated and
downregulated ECs were all compared to one another in Venn diagrams at the two different
timepoints to elucidate the commonality and difference between each of the categories
using the venn.diagram function, as part of the Venn diagram package in R [62]. From these
plots, we were able to compile the lists of proteins specific to the EC type and those that
were common across timepoints and organs. Heatmaps of normalized protein expression
for the sample replicates for each organ, treatment and time factor were created from the
data; hierarchical sample clustering by complete linkage method using Euclidean distance
was implemented and the data were scaled before clustering. White bars in the heatmaps
represent proteins that were not expressed. For normalization, the Proteome Discoverer
software uses total peptide amounts to sum the peptide group abundances for each sample
and determines the maximum sum for all of the files. The normalization factor is the factor
of the sum of the sample and the maximum sum in all of the files. In order to identify
the Biological Processes (BPs) most affected, we performed a Gene Ontology (GO) Over
Representation Analysis (ORA) across each list of upregulated DEPs [63]. GO Biological
Processes (BPs) were considered statistically significant if p < 0.05. These analyses were
completed using the R Package clusterProfiler [64]. ORA accepts a list of proteins to identify,
in which categories from the BP ontology are overrepresented [65]. Dotplots for each EC
type at 4 h and 24 h, evaluating significant BPs that were common across organs, were
generated using the compareCluster function, as part of the clusterprofiler package [64,66].
Once the dotplots were produced, gene-concept network plots (or cnetplots) among the
different EC types at 4 h and 24 h were created, using the compareCluster output and
cnetplot function. Finally, the PANTHER or GeneCards database was used to identify the
distinct classes that the common upregulated and downregulated proteins between the
lung, liver and kidney ECs at 4 h and 24 h were in, and bar plots illustrating the log2 fold
change expression amongst these common proteins were created in R.

4.4. Statistical Analysis

The normalized abundance values for the proteins that were detected in at least
two of the three replicates in both of the treatments, at both time points and in all three
organs (19 upregulated proteins and 1 downregulated protein) were used for the statistical
analysis [67,68]. The impact of treatment (control vs. cytomix), time (4 h vs. 24 h) and organ
(lung, liver, kidney) on the proteomic expression of ECs was investigated using multivariate
analysis of variance (MANOVA) for the 19 upregulated proteins and analysis of variance
(ANOVA) for the one downregulated protein in JMP Pro (version 16.1). MANOVA was used
to investigate the impact of organ specificity on fold-change expression between the three
EC types. Additionally, ANOVA was used to analyze statistically significant differences
between the organs in 10 of the proteins that had the highest level of upregulation or
downregulation compared to the control post cytomix treatment at 4 h and 24 h. Values of
p < 0.05 were considered statistically significant.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms23158399/s1.
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Abbreviations

ANOVA Analysis of Variance
Acod1 Aconitate decarboxylase 1
Arg1 Arginase 1
BP Biological process
Bcl11b B cell leukemia/lymphoma 11B
Crp C-reactive protein
Ctla2a Cytotoxic T lymphocyte-associated protein 2 alpha
C1qc Complement component 1, q subcomponent, C chain
Clec2d C-type lectin domain family 2, member d
Cebpb CCAAT/enhancer binding protein (C/EBP), beta
Cd44 Cluster of differentiation 44
Cx3cl1 Chemokine (C-X3-C motif) ligand 1
Comp Cartilage oligomeric matrix protein
Cd274 Cluster of differentiation 274
Ccl2 C-C motif chemokine ligand 2
Cbr4 Carbonyl reductase 4
DAMPs Damage-associated molecular patterns
DEP Differentially expressed protein
EC Endothelial cell
Ets1 ETS proto-oncogene 1
Ednrb Endothelin receptor type b
Emc10 ER membrane protein complex subunit 10
Fam181b Family with sequence similarity 181, member B
Fbln1 Fibulin 1
Fli1 Friend Leukemia Integration 1
Foxc2 Forkhead box c2
GO Gene ontology
Gimap3 GTPase of immunity associated protein 3
Gimap5 GTPase of immunity associated protein 5
Gja1 Gap junction protein, alpha 1
Hk2 Hexokinase 2
Hpse Heparinase
H2-k1 Histocompatibility 2, K1, K region
Hyal2 Hyaluronidase 2
Hmgb1 High mobility group box 1
IL-1β Interleukin-1 beta
IFN-γ Interferon-gamma
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Il6 Interleukin-6
Ifit2 Interferon-induced protein with tetratricopeptide repeats 2
Ifit1 Interferon-induced protein with tetratricopeptide repeats 1
Ifi44 Interferon-induced protein with tetratricopeptide repeats 44
Irak2 Interleukin 1 receptor associated kinase 2
Irf1 Interferon regulatory factor 1
Lys-C Lysyl-endopeptidase
MANOVA Multivariate analysis of variance
MS/MS Tandem mass spectrometry
Met Methionine
(m)M Millimolar
Mospd3 Motile sperm domain containing 3
Mapk Mitogen-activated protein kinase
NF-kβ Nuclear factor kappa beta
Nrp1 Neuropilin 1
Nsd2 Nuclear receptor-binding SET domain protein 2
ORA Overrepresentation analysis
Parp14 Poly(ADP-Ribose) polymerase family member 14
Panx1 Pannexin 1
Ptprb Protein tyrosine phosphatase receptor type B
Ptgs2 Prostaglandin-endoperoxide synthase 2
Postn Periostin
Ptpn5 Protein tyrosine phosphatase, non-receptor type 5
Pdcd4 Programmed cell death 4
PRIDE Proteomics identification database
Prox1 Prospero homeobox 1
Rsad2 Radical S-adenosyl methionine domain containing 2
Rgcc Regulator of cell cycle
Ripk2 Receptor interacting serine/threonine kinase 2
RSLC Rapid separation liquid chromatography
Selp P-selectin
Sox13 SRY (sex determining region Y)-box 13
Smim4 Small integral membrane protein 4
Sp1 Sp1 transcription factor
She Src homolog 2 domain containing E
TNF-α Tumor necrosis factor-alpha
Timm17a Translocase of inner mitochondrial membrane 17a
Tlr4 Toll-like receptor 4
Trex1 Three prime repair exonuclease 1
Tap1 Transporter 1, ATP binding cassette subfamily B member
Tlr9 Toll-like receptor 9
Tie1 Tyrosine kinase with immunoglobulin-like and egf-like domains 1
Tnfaip2 Tumor necrosis factor alpha-induced protein 2
Vcam-1 Vascular cell adhesion molecule 1
Vwf von Willebrand factor
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