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Simple Summary: Upper gastrointestinal cancer is a major cancer type in China with low 5-year
survival rates due to without cost-effective non-invasive early detection tool. In this study, a novel non-
invasive panel was developed for early detection of upper gastrointestinal cancer, and the selected
methylated makers in the panel showed excellent PCR amplification efficiency and reproducibility.
The panel detected three types of upper gastrointestinal cancers with relative high sensitivity and
specificity. We hope this novel tool can help Chinese population to increase the proportion of early
diagnosis and treatment of upper gastrointestinal cancer and reduce its incidence and mortality.

Abstract: Background: Upper gastrointestinal cancer (UGC) is an important cause of cancer death
in China, with low five-year survival rates due to the majority of UGC patients being diagnosed
at an advanced stage. Therefore, there is an urgent need to develop cost-effective, reliable and
non-invasive methods for the early detection of UGC. Methods: A novel plasma-based methylation
panel combining simultaneous detection of three methylated biomarkers (ELMO1, ZNF582 and
TFPI2) and an internal control gene were developed and used to examine plasma samples from
186 UGC patients and 190 control subjects. Results: The results indicated excellent PCR amplification
efficiency and reproducibility of ELMO1, ZNF582 and TFPI2 in the range of 10–100,000 copies per
PCR reaction of fully methylated genomic DNA. The methylation levels of ELMO1, ZNF582 and
TFPI2 were significantly higher in UGC samples than those in control subjects. The sensitivities of
ELMO1, ZNF582 and TFPI2 alone for UGC detection were 32.3%, 61.3% and 30.6%, respectively;
when three markers were combined, the sensitivity was improved to 71.0%, with a specificity of
90.0%, and the area under the curve (AUC) was 0.870 (95% CI: 0.832–0.902). Conclusion: Methylated
ELMO1, ZNF582 and TFPI2 were specific for UGC and the three-methylated gene panel provided an
alternative non-invasive choice for UGC early detection.
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1. Introduction

Upper gastrointestinal cancer (UGC), including gastric cancer (GC), esophagogastric
junction cancer (EJC) and esophageal cancer (EC), represent more than 8.7% (1,693,203)
of new cancer cases and about 13.2% (1,312,869) of cancer-related deaths worldwide in
2020 [1]. China is the country that suffers the heaviest disease burden of UGC, with more
than 40% of new cases and deaths of GC in the world found in China ever year [2], and
almost half of the new EC cases all over the world occurring in China [3]. Due to the fact
that most UGCs were diagnosed and treated at an advanced stage, the average five-year
survival rate for UGC is only about 10–30% [2,4]. However, if the UGCs were detected at
an early stage, the five-year survival rate can be as high as 90% [2] and most of them can be
curatively treated by endoscopy [5].

Routine screening and early detection of UGCs have proved to be an effective strategy
to reduce their incidence and mortality. Although the incidence rate of GC in Japan
and South Korea was significantly higher than that in China, the mortality rate of GC
was reduced by approximately 67%, due to the high participation rate in screening [6].
The gold standard for the detection and treatment is endoscopy; however, the limitation
of medical resources and endoscopists, and low compliance with endoscopy made it
difficult for endoscopy to be a primary screening and early detection method for UGC.
Although several blood-based tumor biomarkers (such as CEA, CA199, CA724 and SCC-
Ag) have been applied for detecting GC or EC, low sensitivities and specificities limited
their application [7], and none of them can be simultaneously applied to detect multiple
types of UGC. Therefore, there is an urgent need to develop cost-effective, reliable and
non-invasive methods for the early detection of UGC.

Over the past decade, the fast development of liquid biopsy made cell-free nucleic
acids, such as miRNA, LncRNA or ctDNA, for early cancer detection and the monitoring
of therapeutic efficacy from study moving to clinical application [8], especially for miRNA
and DNA methylation. Jimmy et al. reported a 12-miRNA panel for GC screening, with
a sensitivity of 87% at a specificity of 68% [9]; and Jinsei et al. developed an 8-miRNA
panel for the early detection of esophageal squamous cell carcinoma, with sensitivities
ranging from 87–89% and specificities ranging from 60–85% [4]. DNA methylation is one
of most common epigenetic modifications in mammals, which plays a key role in cancer
development; thus, DNA methylation may serve as a biomarker for cancer detection or
prognosis [10]. Compared with miRNA, the DNA methylation biomarker is more stable
and specific for each cancer type, and the whole process procedure for the DNA methylation
test is simpler than that of the miRNA-based test; thus, DNA methylation is more suitable
as a biomarker for the early detection of cancer than other biomarkers [11]. Up to now,
various DNA methylation-based biomarkers for the early detection of gastrointestinal
cancer have been reported [12–14], and several commercial kits for colorectal cancer (CRC)
screening or early detection have been approved by the FDA and NMPA [15–17]. The
successful application of DNA methylation markers in CRC early detection indicated that
they may serve as a potential effective method for UGC detection. ELMO1 has been used as
a methylated marker for GC detection in plasma [18]; methylated ZNF582and methylated
TFPI2 were reported as potential makers for EC [19,20]. However, the sensitivities for those
genes detected GC or EC were insufficient when used alone; the experience in our research
group indicated that the combination of multiplex methylation markers could significantly
improve the sensitivity for early-stage cancer [13], and these three methylation markers
have never been used in combination for UGC early detection. Therefore, in this study,
we developed a novel plasma-based panel, including these three methylation markers, to
examine its feasibility and performance for the early detection of UGC.

2. Materials and Methods
2.1. Sample Collection

In this case-control study, the performance of a plasma-based multiplex DNA methy-
lation assay designed for UGC detection was evaluated by multi-center cohorts. Three
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hundred and seventy-six plasma samples were collected from The Affiliated Jiangning
Hospital of Nanjing Medical University, The Affiliated Suqian First People’s Hospital of
Nanjing Medical University, Affiliated Hospital of Xuzhou Medical University and First
People’s Hospital of Xuzhou from July 1, 2020 to June 30, 2022. Including 109 GC patients,
29 plasma samples for EGC, 48 EC patients and 190 control subjects, all the participants
were confirmed by endoscopy and patients were examined by pathological diagnoses. The
control group contained non-UGC patients, such as non-atrophic gastritis, esophagitis,
superficial gastritis and subjects with no evidence of disease.

The inclusion criteria for all the participants were as following: aged at 18 years old or
above, no history gastrointestinal cancers, no pregnancy, underwent complete endoscopy,
and the patients’ results were confirmed by pathology. A blood sample of 10 mL was
collected from each subject using a 10 mL K2EDTA tube and stored at room temperature
(20 ± 5 ◦C) for no more than 4 h. Then, the plasma was separated after centrifugation
(twice) and immediately stored at −80◦C for long-term storage. This study was approved
by the Institutional Review Boards of the Affiliated Jiangning Hospital of Nanjing Medical
University (Ethics Committee reference number: 20190438). The informed consent was
signed by each participant prior to the sample collection.

2.2. Cell Free DNA Extraction, Bisulfite Treatment

Cell-free DNA (cfDNA) was isolated from 3.5 mL of plasma using the Versa-Autopure
nucleic acid purification system (Suzhou VersaBio Technologies Co., Ltd., Kunshan, China).
After the lysis and washing steps, the samples were finally eluted in 100 µL of elution
buffer. Purified DNA was bisulfite-treated using a fast bisulfite conversion kit (Suzhou
VersaBio Technologies Co., Ltd.) according to our previous study [7]. Purification of the
converted products was conducted using the Versa-Autopure nucleic acid purification
system by three washing steps, followed by the final elution in 100 µL of elution buffer.

2.3. Quantitative Methylation-Specific PCR

The plasma cfDNA was analyzed by a multiplex quantitative methylation-specific
PCR (qMSP) panel obtained from Suzhou VersaBio Technologies Co., Ltd. (Kunshan,
China). This one-tube multiplex panel included the detection and analysis of an internal
control (ACTB) and 3 methylated genes: ELMO1, ZNF582 and TFPI2. Primers and probes
included in the panel were presented in Supplementary Table S1. qMSP, with a total
reaction volume of 30 µL, including 15 µL of cfDNA performed on an ABI 7500 instrument
(Applied Biosystems, Foster City, CA, USA). The qMSP reaction conditions were as follows:
stage I, 20 min of initial activation at 95 ◦C; stage II, 50 cycles at 95 ◦C for 10 s, 58 ◦C for
30 s and 72 ◦C for 15 s; and stage III, cooling to 40 ◦C for 30 s.

2.4. Analytic Performance Analysis

To determine the reproducibility and amplification efficiency of each methylated
marker in the panel, fully methylated genomic DNA (HCT116 cell line) was diluted to
create a series of mixtures (100,000, 10,000, 1000, 100 and 10 copies per reaction), and
PCR reactions at each concentration were repeated 3 times. The mean Ct value at each
concentration was used to calculate the PCR amplification efficiency of each methylated
marker following the formula below:

E = (10−1/slope − 1) × 100%

2.5. Data Analysis

The result was considered ‘valid’ if the ACTB Ct value was no more than 35.0. The
cut-off Ct values for ELMO1, ZNF582 and TFPI2 were 42.0, 35.0 and 45.0, respectively. A
receiver operating characteristic (ROC) curve was plotted according to the Ct values and
the values of the area under the curve (AUC) were calculated. The Ct values were set to the
maximal PCR cycle numbers of 50 for those subjects with no amplification signals in the
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qMSP reaction [6]. A multinomial logistics regression was applied to obtain the probability,
which was used as the test variable to run a ROC curve for the three biomarkers combined.
GraphPad Prism 6.0 was used for all the statistical analysis; the Pearson chi-squared test at
a significance level of p < 0.05 was used for the sensitivity comparison among groups; and
the Mann–Whitney U tested for the differences in methylation levels.

3. Results

This case-control study included 186 patients with UGC; of these patients, 136 were
males and 50 were females, and their median age was 68 years old. For the details, 48 EC
patients, 29 EJC patients and 109 GC patients were included, and the percentage of male
patients was 87.5%, 75.9% and 66.1%, respectively. The median ages (range) for EC, EJC
and GC patients were 68 (52–90), 71 (50–87) and 64 (28–86), respectively. The control group
included 74 males and 116 females, where the median age was 45 years old (Table 1).

Table 1. Characteristics of participants enrolled in this study.

Total Number
Gender Age

Male (n, %) Female (n, %) Min–Max Median

UGC 186 136 (73.1) 50 (26.9) 28–90 68
EC 48 42 (87.5) 6 (12.5) 52–90 68
EJC 29 22 (75.9) 7 (24.1) 50–87 71
GC 109 72 (66.1) 37 (33.9) 28–86 64
Control 190 74 (38.9) 116 (61.1) 23–79 45

Before evaluating the performance of the panel in the plasma sample, we verified
its reproducibility and amplification efficiency in simulated samples to confirm the effec-
tiveness of the panel. As shown in Figure 1, the reproducibility of ELMO1, ZNF582 and
TFPI2 in the range of 10–100,000 copies/PCR reaction of fully methylated genomic DNA
were excellent, and the calibration curves plot by Ct values indicated the excellent linearity
(R2 ≥ 0.9999) and good PCR amplification efficiency (90% < E < 110%). Therefore, the panel
developed in this study could efficiently detect methylated cfDNA fragments as few as
10 copies per reaction.
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Figure 1. Amplification curve and PCR amplification efficiency by real-time qMSP of ELMO1 (A,D),
ZNF582 (B,E) and TFPI2 (C,F).

The DNA methylation levels of ELMO1, ZNF582 and TFPI2 were analyzed by the
mean Ct values from different samples. As shown in Figure 2A and 2C, ELMO1 and
TFPI2 in the GC, EJC and EC samples all displayed significantly higher methylation levels
than those in the control subjects (p < 0.01), and the methylation among GC, EJC and EC
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patients showed no significant difference. While ZNF582 in the GC, EJC and EC samples
showed significantly higher methylation levels than that in the control subjects (p < 0.01),
the methylation levels in EC were also significantly higher than those in GC (p < 0.01)
(Figure 2B).
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For evaluating the feasibility and performance of the methylation panel for detecting
UGC in plasma, we analyzed the sensitivity, specificity and Youden index of each of the
methylation markers in different cancer types. As shown in Figure 3A, the sensitivities
of ELMO1, ZNF582 and TFPI2 alone for detecting GC were 33.9%, 56.0% and 27.5%,
respectively; the combined used of ELMO1 and ZNF582 improved the sensitivity to 67.0%
and the combination of three methylation markers could further improve the sensitivity to
67.9%. In the EJC samples, ZNF582 also showed a relatively higher sensitivity than ELMO1
and TFPI2 (62.1%, 34.5% and 27.6%, respectively); and the combined use of ELMO1 and
ZNF582, and the combination of three methylation markers showed the same sensitivity
of 69.0% (Figure 3B). In EC patients, ZNF582 also showed the highest sensitivity (72.9%)
among those in ELMO1 (27.1%) and TFPI2 (39.6%). However, unlike the trend for EMLO1
and TFPI2 in GC and EJC, the sensitivity of TFPI2 was about 1.5 times higher than that for
ELMO1 (Figure 3C). For all the UGC subjects, the sensitivities of each methylation markers
showed a similar trend in GC, EJC and EC, and the combination of three methylation
marker showed the highest sensitivity of 71.0%. As for specificity and Youden index,
even though the specificity of ELMO1 was as high as 100% (Figure 3E), its sensitivity was
only 33.9%, resulting in a Youden index of 32.3% (Figure 3F). When combining the three
methylation markers together, it showed the lowest specificity of 90.0% (Figure 3E), while it
induced the best balance between sensitivity and specificity, with a Youden index of 61.0%
(Figure 3F).

The AUC values for ELMO1, ZNF582, TFPI2 and their combination for discrimina-
tion between the GC and control subjects were 0.638 (95% CI: 0.580–0.692), 0.843 (95%
CI: 0.797–0.883), 0.628 (95% CI: 0.571–0.683) and 0.839 (95% CI: 0.792–0.879), respectively
(Figure 4A). The AUC values of ELMO1, ZNF582, TFPI2 and the methylation panel for the
detection of EJC were 0.660 (95% CI: 0.594–0.723), 0.878 (95% CI: 0.827–0.918), 0.646 (95%
CI: 0.579–0.709) and 0.837 (95% CI: 0.781–0.883), respectively (Figure 4B). For the detection
of EC, the AUC values of ELMO1, ZNF582, TFPI2 and the methylation panel were 0.603
(95% CI: 0.538–0.666), 0.889 (95% CI: 0.842–0.926), 0.689 (95% CI: 0.625–0.747) and 0.893
(95% CI: 0.847–0.930), respectively (Figure 4C). As for detection of the whole UGC group,
the AUC values of ELMO1, ZNF582, TFPI2 and the methylation panel were 0.632 (95% CI:
0.581–0.681), 0.861 (95% CI: 0.822–0.894), 0.647 (95% CI: 0.596–0.695) and 0.870 (95% CI:
0.832–0.902), respectively (Figure 4D). Furthermore, the sensitivities of DNA methylation
panel for detection of UGC between different gender and age were shown in Table 2, and
no significant difference was observed in the whole UGC group. However, a significant
difference in sensitivities between different genders (p < 0.05) in the EJC samples was found,
which might be due to the sample size of EJC being too small.
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Table 2. Sensitivities of methylation panel in different groups.

Characteristics Total Number Positive Number Sensitivity (%) p-Value

UGC

Gender
Male 136 92 67.6

0.100Female 50 40 80.0

Age
<60 47 31 66.0

0.62960–70 77 57 74.0
>70 62 45 72.6

GC

Gender
Male 72 47 65.3

0.415Female 37 27 73.0

Age
<60 39 24 61.5

0.37660–70 41 31 75.6
>70 29 19 65.5

EJC

Gender
Male 22 13 59.1

0.042Female 7 7 100.0

Age
<60 2 2 100.0

0.05060–70 11 5 45.5
>70 16 14 87.5

EC

Gender
Male 42 32 76.2

0.179Female 6 6 100.0

Age
<60 6 5 83.3

0.62260–70 25 21 84.0
>70 17 12 70.6

4. Discussion

UGC, as one of the most common cancer types in China, contributed about 16.0%
(649,000) new cancer cases and 20.0% (482,400) new cancer deaths in China’s latest annual
report [21]. Early detection of UGC can provide opportunities to implement strategies for
effective treatment and improve the five-year survival rate. However, currently there is
no clinically viable non-invasive method for the early detection of UGC. In this study, we
selected three DNA methylation markers correlated to UGC and developed a plasma-based
panel for UGC early detection.

ELMO1, encoding a member of the ELMO domain-containing protein family, plays an
important role in promoting cell phagocytosis, reshaping and cell migration [22]. ELMO1
has also been found to be associated with cancer development by regulating cancer cell
proliferation, chemotaxis and invasiveness [22]. Therefore, EMLO1 can be a potential
diagnostic or prognostic biomarker for several cancer types [22]. Masahiro et al. found
the methylation level of ELMO1 in gastric cancer tissues was significantly higher than that
in gastric atrophy tissues [23]. Bradley W. et al. indicated that the methylated ELMO1
combined with other two methylation markers could detect 86% GC with a specificity of
95% in plasma [18]. Qin et al. also published a study involving the methylated ELMO1 in
EC patients, and the results showed methylated ELMO1 could significantly distinguish
ECs and controls in tissues and plasmas [24].

ZNF582 is involved in the DNA damage response, cell apoptosis, differentiation and
cell cycle control [25]. Recent studies revealed that methylated ZNF582 in the promoter was
an essential epigenetic mechanism for cancer silence [26], and it has been demonstrated that
hypermethylation occurred in EC tissues [20,27]; however, the study of methylated ZNF582
in EC plasma has not been reported. TFPI2 belongs to the Kunitz-type serine proteinase
inhibitor family, and methylation of TFPI2 was found to be closely related to elevated cancer
growth, invasion and dissemination [28]. Previous studies have demonstrated that TFPI2
was frequently methylated in EC tissues [29] and GC tissues [30] or serums [31]; however,
the application of plasma-methylated TFPI2 for detecting UGC has never been reported.
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UGC includes EC, EJC and GC. Although the methylation levels of ELMO1, ZNF582
and TFPI2 all showed a significant difference between each cancer type and control subjects,
they still showed a preference for a certain cancer type. For example, EMLO1 is more
sensitive for GC, and ZNF582 and TFPI2 are more sensitive for EC. Combining three
markers in a panel could narrow the sensitivity differences between the three cancer types
and improve the sensitivities for detecting each cancer type. The sensitivities of methylated
ELMO1, ZNF582 and TFPI2 for detecting UGC were 32.3%, 61.3% and 30.6%, respectively;
and the combination for UGC detection in plasma yielded an increase of 38.7%, 9.7% and
40.3% in sensitivities compared with each one of the methylated markers.

In China, there are several challenges remaining in the current practice of the early
detection of UGC, such as the low compliance of endoscopy and financial burden of the
government. Although numerous non-invasive methods based on liquid biopsy biomarkers
have been developed, most of these methods only targeted one cancer type [32,33]. As we
all know, the cost of the current liquid biopsy method is still significantly higher than that
of traditional serum tumor markers [34]; thus, it is difficult to apply those new methods
in clinical practice in developing countries such as China. In this study, we detected three
UGC types together for the first time and reacted the markers simultaneously in a single
tube. Therefore, the time cost and the labor costs in our panel remain the same when
compared with a single UGC type, such as GC or EC, while the whole cost for a single
UGC type was reduced to 1/3. Moreover, the panel developed in our study also displayed
a comparable sensitivity for each UGC type. For example, Xu et al. reported a combined
methylation assay for GC detection with a sensitivity of 60.3% and a specificity less than
88% [35].

This study had some limitations. First, the sample sizes of EJC and EC were small
compared with GC patients; thus, the overall performance might be affected by the unbal-
anced distribution of cancer types. Second, the age distribution among different groups
may be biased due to the limited sample enrolment and did not reflect the true distribution
in the real world. Third, the sensitivities of UGC across stages were not provided due
to the stage information of some samples being unsuccessfully collected. Finally, control
subjects should include a more high-risk interference sample, such as a Barrett esophagus
or OLGA/OLGIM III-IV. Therefore, multi-center trials with a larger number of patient en-
rolment with complete information, as well as a prospective study within a large real-world
population screening project, should be carried out in the future.

5. Conclusions

In conclusion, the results in this study indicated that the combination of several
methylated markers could detect UGC with relatively high sensitivity and specificity, which
might serve as a novel and potential alternative strategy for current UGC early detection.
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