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Summary
The dominant tracts-acting major histocompatibility complex (MHC)-linked class I modifier (cim)
locus, previously recognized through its ability to determine altered alloantigenicity ofa rat class
I Molecule, RTLA', is shown here to influence class I intracellular transport . The MHC re-
combinant laboratory rat strains PVG.Rl and PVG.R8 display unusually long retention of
RTLA1 within the endoplasmic reticulum or cis-Golgi . In appropriate Fi hybrid cells heterozy-
gous for RT1.A' and another class I MHC allele, RT1.A°, only the RTLA° protein is subject
to slow transport . The cim gene product therefore shows class 1 allele specificity in its action .
cim appears to be a polymorphic locus whose product is directly involved in the processes of
class I MHC assembly and/or intracellular transport .

Class I MHC antigens are highly polymorphic cell sur-
face molecules that present endogenously derived pep-

tide antigens to effector T cells of the immune system (1-3) .
They consist of a M 45,000 transmembrane heavy chain
noncovalently associated with the Mr 12,000 62-microglob-
ulin (62m)1 . During biosynthesis the MHC class I heavy
chains are inserted into the endoplasmic reticulum (ER), where
N-linked core glycosylation of the heavy chain and associa-
tion with 02m occur (4) . The loading of the class I mole-
cule with suitable endogenous antigenic peptides may also
occur at this early stage within the environment of the ER,
possibly playing an important role in the genesis of the cor-
rect overall structure of the molecule (5-8) . The assembled
molecule is subsequently transported through the Golgi ap-
paratus, where processing of the oligosaccharide side chains
takes place (9), and is finally expressed at the cell surface, where
presentation of the antigenic peptide occurs .

While the order of assembly of the component subunits
of MHC class 1, i.e., heavy chain, 02m, and peptide, remains
unclear, genetic data imply the involvement of other pro-
teins in the process . MHC-linked regulatory loci that can
influence assembly, transport, alloantigenicity, and antigen-
presenting capacity of class I molecules have been reported
in human, mouse, and rat systems (10-16) . In our recent
description of the rat cim system, we reported that recombi-
nation between the rat class I RT1.A region and the class

1 Abbreviations used in this paper. 02m, 02-microglobulin; endo H, endo-
glycosidase H; ER, endoplasmic reticulum; SR, spontaneous release; TfR,
transferrin receptor.

II RTI.B region in PVG.Rl (A°RDcC') and PVG.R8 (Aa-
BuDuC") recombinant rats resulted in the altered antigenicity
of the RT1.A' antigen (16) . The trans-acting locus involved,
cim, mapping close to the class 11 RTI.B region (16a) de-
termined the expression of two alloantigenic forms of the
RT1.A' molecule, namely A'+ and A' - , in the presence of
the cim° (dominant) and cimb (recessive) alleles, respectively.
A preliminary experiment indicated that the biosynthesis of
the two forms also differed.
We describe here the control cim exerts on the biosynthesis

of RT1.A' both in lymphocytes from the recombinant rat
strains and also in rat and mouse cell lines transfected with
a cDNA encoding RTLA', and discuss the possible modes
of action of this novel MHC locus in relation to the recent
identification of two genes mapping to the same region as
cim, and which are homologous to the ATP-binding cassette
family of membrane transporter proteins (17, 18) .

Materials and Methods
Animals.

	

All rats were bred and maintained in the Immunology
Department, Babraham, Cambridge. The MHC haplotypes of the
strains used are given in Table 1 .

Media . Cells were maintained in RPMI 1640 (Flow laborato-
ries, Irvine, UK) supplemented with 5% FCS (Imperial Laborato-
ries, Andover, UK). Cultures were incubated at 37°C in a humidified
atmosphere of 5% COZ in air.

Monoclonal Antibodies.

	

Of the three rat anti-RT1.A' mAbs
used in this study, R3/13 (IgG2b) and R2/15S (IgG2a) are alloan-
tibodies derived from AO anti-DA (RTI° anti-RT1 ,) immuniza-
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tions, while MAC 30 (IgG2c) was derived from a PVG-RTI' anti-
PVG.R8 immunization . R3/13 recognizes the P site, and R2/15S
and MAC 30 recognize the S site of RTLA' (19) . The anti-
RT1.A° mAb YR5/12 (IgG2b) was obtained from an AO anti-
PVG (RT1° anti-Rn') immunization . All these mAbs are listed in
reference 20. The mouse anti-rat class I mAb MRC OX-18 was
also used (21) . The mouse anti-rat transferrin receptor mAbMRC
OX-26 (22) was a gift from Dr. A. Williams, MRC Cellular Im-
munology Unit, Oxford, UK.

Transfectant Cell Lines.

	

The transfection of murine L cell fibro-
blasts with the RTLAI cDNA 3.3/1 has been described previously
(23) . The C58 cell line (full name, W/FuC58NT/D) is derived from
a thymoma induced in a Wistar/Furth rat ; the history of this cell
line is detailed in reference 24 . For C58 cells, the 3.3/1 cDNA was
subcloned into the eukaryotic expression vector pMSD and the cells
transfected by electroporation with pMSD 3.3/1 and the selection
plasmid pMSD-HGPRT Cells were selected in medium containing
hypoxanthine, aminopterin, and thymidine (HAT), and sorted for
expression of RTLA' by flow cytometry.

Pulse Chase Labeling.

	

ConAlymphoblasts, generated by incu-
bation of lymph node cells for 48 h at 2-3 x 106 cells/ml in
RPMI, 5% FCS containing 5 lAg/ml ConA(Sigma Chemical Co.,
Poole, UK), were labeled for 10 min with 25-50 P,Ci c-[35 S]me-
thionine (Amersham International, Bucks, UK) after a 30-min prein-
cubation in methionine-free MEM (Gibco Laboratories, Paisley,
UK). Incorporation was terminated by the addition ofa 10- to 20-
fold excess of unlabeled methionine. Aliquots of cells wereremoved
at the indicated timepoints, the cells pelleted, and immediately lysed
in 200 ill of lysis buffer (2% [vol/vol] NP-40,150mM NaCl, 1 mm
MgCl2, 1 mM PMSF, 20 mM Tris-HCI, pH 8.0) . After a 30-min
incubation on ice, the lysates were spun at 11,600 g for 10 min
to remove debris, and stored at -20°C until immunoprecipitation .

Immunoprecipitation .

	

Immunoprecipitations of class IMHCmol-
ecules were performed with antibodies coupled to Sepharose 4B
(Pharmacia Fine Chemicals, Uppsala, Sweden). Cell lysates were
precleared for 1 h at 4°C with 20 ill (packed volume) of Sepharose
coupled with an irrelevant mAb. RTLAI was then isolated with
20 i1 of R3/13-Sepharose or MAC30-Sepharose for 1-2 h at 4°C.
In sequential immunoprecipitations of class I molecules from the
same lysate, after isolation of the RTLAI signal, 20 i1 of MRC
OX-18-Sepharose was added or, for RTLA°, 5 ug of affinity
purified YR5/12 was added to the lysate for 45 min followed by
20 P,1 ofsheep anti-rat Ig-Sepharose . The immunoadsorbents were
then washed twice in buffer (0.5% [vol/vol] NP-40, 0.5 M NaCl,
10 mM EDTA, 100 mM Tris-HCI, pH 8.0) and boiled for 2 min
in 20 ill of SDS sample buffer (2.3% [vol/vol] SDS, 5% [vol/vol]
2-ME, 10% [vol/vol] glycerol, 0.6 M Tris-HCI, pH 6.8) .

For the immunoprecipitation of the rat transferrin receptor, cell
lysates were precleared with 50 ill formalin-fixed Staphylococcus aureus
cells (10% [vol/vol]), followed by the addition of 150 ill MRC
OX-26 tissue culture supernatant for 1 h at 4°C. A further 50 P1
ofS. aureus cells was then added for 1 h at 4°C, and the immune
complexes were washed three times in buffer (0.5% [vol/vol] NP-
40,150 mM NaCl, 5 mM EDTA, and 50 mM Tris-HCI, pH 7.4),
followed by boiling in sample buffer as above.

Samples were analyzed by SDS-PAGE on 11% gels. These were
treated with Amplify (Amersham International), dried, and fluo-
rographed at -70°C.

EndoglycosidaseHDigestion .

	

After washing, the immunoadsor-
bents, in a volume of 20 ill, were supplemented with 2 Ill of a
10% (vol/vol) stock of 2-ME and 4 ill of a 0.1% (wt/vol) SDS
solution . They were then boiled for 1 min and cooled on ice. 8
mU ofendoglycosidase H (endo H) (Boehringer Mannheim, Lewes,

UK)was then added (control samples receiving PBS) and the diges-
tion allowed to proceed at 37°C for 14 h. Digestion was termi-
nated by the addition of 15 ill of SDS sample buffer and boiling
for 2 min. Samples were analyzed by SDS-PAGE as above.

Flow Cytornetry.

	

Transfectant cells were distributed at 5 x 105
cells/well in a 96-well round-bottomed microtiter plate in a volume
of 50 ill of PFN (PBS, 0.1% sodium azide, 2% FCS) . 50 ul of
mAbsupernatant ofR3/13, R2/15S, andMAC30 was then added
for 45 min at 4°C. Plates were washed three times with 200 ill/well
PFN by centrifugation, and the cell pellets resuspended in 50 P1
of FITC rabbit anti-rat Ig (Dako Ltd., Bucks, UK) for 45 min
at 4°C. The plates were washed as before and the cells fixed in
a 1% (vol/vol) formaldehyde solution . Flow cytometry was per-
formed on a FACScan® (Becton Dickinson & Co., Mountain View,
CA) with 10,000 cells being analyzed per sample.

Cytotoxic T Cell Assays.

	

CTL assays were performed as previ-
ously described (16) . Briefly, cytotoxic responses against the cell
surface A'' and A' - forms of RTLAI were generated in MLC
using cells from primed animals. PVG.R1 and PVG.R19 animals
were primed against A'+ and A' - , respectively, by injection of a
lymph node cell suspension in PBS, 0.1 ml being injected into five
subcutaneous sites on the back . Lymphnode responder cells from
primed animals were then cultivated with 2,000-rad gamma-
irradiated stimulator cells (is'Cs source; Atomic Energy of Canada,
Ottawa, Canada) in 200 ill of medium at a concentration of 1.5
x 106 responder cells/ml and 106 stimulator cells/ml in 96-well
plates. The medium was supplemented with 10% rat Con A su-
pernatant, 25 mM ct-methyl mannoside (Sigma Chemical Co.),
and 2.5 x 10 -5 M 2-ME . Cells were incubated for 5 d, harvested,
and assayed for cytolytic activity.

Target Con A lymphoblasts and transfectant cell lines were la-
beled with 50 pCi of sodium "Cr-chromate (Amersham Interna-
tional) for 1 h at 37°C, washed three times in RPMI, 5% FCS,
and counted.

Effector cells were counted and adjusted to 1.5 x 10' cells/ml,
and serial threefold dilutions prepared . 100 141 of effector . cells plus
100 ill of labeled targets at 105 cells/ml were dispensed into mi-
crotiter wells. Control wells for spontaneous release (SR) values

Table 1.

Strain

Details ofMHCSubregions ofStrains Used in this Study

RT1 subregions
RTI

	

cim
haplotype A B D C allele"

Independent inbred
PVG

	

c

	

c c c c b
MHC congenic
PVG-RTI'(LEW) 1

	

1 1 1 lvi a
MHC recombinants
PVG.R1

	

rl a c c c b
PVG.R8

	

r8

	

a u u u b
PVG.R19

	

r19 a a a c a
PVG.R20

	

r20 c c c avl b

- cim maps close to the class II MHCRTI .B locus with the RTl- and
RTl1 haplotypes being cim-, and the RTIu and RTV haplotypes being
cimb .

914

	

Class I Major Histocompatibility Complex Transport and Antigenicity



received loo u1 of targets plus 100,ul of medium . Plates were in-
cubated at 37°C for 5 h, then 100 Al of supernatant was harvested
from each well and counted by gamma scintillation . All samples
were performed in triplicate . Specific lysis was calculated from the
formula: 100x [(experimental counts - SR)/(total input counts
- SR)] .

Results

Intracellular Transport ofRT1.Aa.

	

By immunoprecipitating
class I molecules from detergent lysates of IIS-methionine
pulse-labeled Con A lymphoblasts, we compared the kinetics
of processing of the major rat class I molecule RTLAa in
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a cim a strain, PVG.R19 (RTI.AaBaD°C`), and a cimb strain,
PVG.R8 (A°BND°C") . Processing during intracellular trans-
port is indicated by the increase in relative molecular. mass
of the class I heavy chain from rv46,000 to "47,000 in the
course of the chase phase, an event that is associated with
the transition from high-mannose to complex-type oligosac-
charides and the subsequent addition of sialic acids to these
complex-type structures in the trans-Golgi (4, 9, 25) . Fig .
1 A illustrates that processing of RTLA° in PVG.R8 cells
is very slow compared with PVG.R19 cells . Slow processing
is also seen in the cimb recombinant PVG.Rl (AaRDICI) but
not in the cim° strains PVG-RTI° and DA (both A°BaD°C°°')
(16 ; and S.J . Powis and G.W. Butcher, unpublished observa-

Figure 1 . Pulse chase analysis of
RTLAa immunoprecipitated from
MHC recombinant rat Con A blasts.
(A) PVG.R19 cells show an increase in
the relative molecular massof the heavy
chain (46,000) beginningbefore 30 min
of chase and being complete at 90 min
ofchase. PVG.R8 cells show only par-
tial processing to the higher relativemo-
lecular mass form at 90 min ofchase.
(B and C) Pulse chase immunoprecipi-
tate samples were treated with (+) or
without (-) endo H. PVG.R19 cells
process the class I heavy chain to an
endo H-resistant form beginning -15
min of chase (B) . PVG.R8 cells retain
endo H-sensitive heavy chains for >120
min of chase (C). (D) (PVG-RTII x
PVG.Rl)Fl cells (1 x Rl) and
(PVG.R1 x PVG.R19)Fi cells (RI x
R19) show normal transport kinetics,
demonstrating trans-action of cim- car-
ried by the RTl1 and r19 haplotypes. (B
and C) Theendo H-resistant band im-
mediatelybelow the class I heavy chain
represents a frequent contaminant band
in internal labeling experiments. This
band comigrates with actin purified
from rat platelets (data not shown) .



Figure 2 .

	

Pulse chase analysis of the TfR . PVG.R8 and PVG.R19 Con
A blasts display identical, rapid transport kinetics for the TfR doublet
as immunoprecipitated by MRC OX-26 .

tions) . Note that all immunoprecipitates contain substantial
quantities of Dam, indicating that the assembly of these two
components is either complete, or at least well advanced in
the cimb strains .
Endo H treatment of pulse chase immunoprecipitates of

RTLA3 demonstrates that in PVG.R19 cells (cim") the heavy
chain acquires complex-type structures (endo H resistant) coin-
cident with the increase in relative molecular mass but that
in PVG.R8 cells (cimb) the heavy chain retains high-mannose
glycans (endo H sensitive) for an increased length of time
(Fig . 1, B and C) . PVG.R1 cells (cimb) show the same pat-
tern of endo H sensitivity as PVG.R8 cells (data not shown) .
This suggests that in PVG.R1 and PVG.R8 cells the RTLA'
antigen is not transported from an early compartment such
as the ER or cis-Golgi with the same kinetics as that ob-
served for PVG.R19 cells . The lack of processing of the class
I heavy . chain is not due to a global cellular deficiency in
glycosylation since pulse chase analysis of the transferrin
receptor (TfR) shows that the Mr 90,000 molecule is pro-
cessed at identical rates in both PVG.R8 and PVG.R19 cells
(Fig. 2) . Furthermore, the RTLA' molecules on the cell sur-
face of PVG.R1 and PVG.R8 cells are of the same relative
molecular mass as those from PVG.R19 cells when analyzed
by cell surface iodination and immunoprecipitation, and are
not sensitive to digestion by endo H (data not shown) . There-

Figure 3 .

	

Allele specificity ofRTLAI retention caused by cimb . RTLAa
and RTLAc were sequentially immunoprecipitated from lysates of pulse
chased (PVG.R20 x PVG.Rl)F l cells (R20 x Rl), using the mAbs MAC
30 and YR5/12. RTLA- displays slow transport, whereas RTLAc dis-
plays normal transport kinetics.

fore, the slow processing of RT1.A' in association with cimb,
as depicted in Fig . 1, A, B, and C, represents retention of
the class I antigen during intracellular transport, although
a transit of RT1.Aa molecules through the maturation path-
way sufficient to populate the cell surface does occur. How-
ever, this kinetic effect of cim on RTLAa is presumably
responsible for the previously noted reduced expression of
RT1.Aa by PVG.Rl cells (26) .

Tans-acting Rescue ofRT1.Aa Transport.

	

The cim° and cimb
alleles were originally defined by their controlling effect on
the alloantigenic specificity of RTLA' as defined by CTLs,
cim° and cimb determining the A°+ and A- forms respec-
tively (16) . The above results suggest that these alleles also
have a profound effect on the rate of intracellular transport
of RT1.Aa . In our previous study we showed in F t hybrids
between cim° and cimb strains that the cima-dependent
RT1.Aa+ antigenic phenotype alone was expressed ; in other
words, by this criterion, cim° was dominant over cimb . By
analyzing Fl hybrids with the cimb recombinant strain
PVG.Rl, we were able to use the expressed antigenic form
of RTLAI to determine the cim genotype of various parental
MHC haplotypes. The correlation of fast and slow processing

Figure 4 .

	

Antigenic and biosynthetic characteristics of RTLA- in cells transfected with the RTLAI cDNA 3.3/1. (A) Flow cytometric analysis
of the mouse fibroblast L cell transfectant Ltk-3 .3/1 and the rat thymoma C58-3.3/1 using the anti-RT1.Aa mAbs R2/15S ( . . .), R3/13 (.. .), and
MAC 30 (--- ) . The solid line indicates staining with second stage anti-rat FITC alone. (B) CTL analysis of the Ltk-3.3/1 and C58-3.3/1 transfectant
cell lines. PVG.R19 anti-PVG.R1 (R19 anti-Rl) and PVG.R1 anti-R19 (Rl anti-R19) CTL were tested for their ability to lyse the transfected cell
lines Ltk-3 .3/1 (0), C58-3.3/1 (O), the untransfected control lines Ltk (A) and C58 (" ), and the rat con A blasts PVG (0), PVG.R1 (/), and
PVG.R19 (-N-) . Lysis of the transfected cell lines by R19 anti-R1 (anti-Aa - ) but not R1 anti-R19 (anti-A-) CTL indicates expression of the A--
alloantigenic form of RTLAI. (C) Pulse chase analysis of C58-3.3/1 transfectants and untransfected C58 cell lines. RTLAa was immunoprecipitated
from C58-3.3/1 cells using MAC 30-Sepharose (left), and exhibits slow transport . MRC OX-18-Sepharose was then used on the same lysate to isolate
RTIw class I molecules, which show normal transport (right) similar to the MRC OX-18-Sepharose signal isolated from untransfected C58 cells (center) .
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(D) Pulse chase analysis ofLtk-3.3/1 cells . RTLA° was immunoprecipitated from pulse-labeled Ltk-3.3/1 cells using MAC 30-Sepharose. The control
track (C) indicates presumed actin contamination. RTLA= is processed with normal kinetics in the mouse cells despite displaying the A- alloanti-
genic form at the cell surface.



rates of RTLA' with the expression of A" and Aa - , respec-
tively, prompted us to examine the transport of RT1.Aa in
cells from Fl hybrids between the PVG.R1 strain and PVG-
RT1 1(LEW), a strain carrying the dominant cim° allele in the
RT1 1 haplotype. In Fig. 1 D, where the MAC 30 (noncross-
reactive on RTLA1 ) has been used to immunoprecipitate the
RT1.Aa molecule from (PVG-RT11[LEW] x PVG.Rl)F,
cells, it can be seen that RT1.Aa is transported at a rate
similar to that observed for PVG.R19 cells (see Fig. 1 A) .
Therefore, through trans-action of the dominant cim° allele
carried by the RT1 1 haplotype, normal transport kinetics
are returned to the RTLA' class I antigen . Similarly, in
(PVG.R1 x PVG.Rl9)Fi cells, normal transport of the class
I antigen occurs, with little if any of the heavy chain being
retained in the low relative molecular mass form (Fig. 1 D) .

Retention ofRT1.A Is Class I Allele Specific

	

As described
above, in conjunction with the cimb allele, RTLA2 is sub-
ject to retention within the ER or cis-Golgi . We next asked
whether another allotype of RTLA would also be subject
to retention in the presence ofcimb . Pulse chase analysis was
therefore performed on cells from an Ft hybrid expressing
two different RTLA allotypes in a homozygous cimb con-
text . (PVG.R20 x PVG.Rl)F1 cells (cimb/cimb, AIB'DcC°°'
x A°BIDICI), which express Aa - as determined by CTL
analysis (16a), were chosen for this experiment . RTLAI and
RT1.A° were immunoprecipitated sequentially from the same
lysate using the RTLA2-specific mAb MAC 30 and the
RT1.A°-specific mAb YR5/12 . As shown in Fig. 3, RT1.Aa
was subject to the cimb-dependent retention, whereas RT1.A°
was transported with typical rapid kinetics . Similar results
have been obtained for MHC heterozygous cells bearing the
RTLA° allotype. Thus, the cimb-dependent retention phe-
nomenon is specific for the RTLAa allelic product .

Transport and Antigenicity of RTI.Aa in Tansfected Cell
Lines. With the aim of cloning cim by complementation
in 2 transfecann system, we have introduced the recently de-
rived RTLA' cDNA 3.3/1 (23) into several in vitro cell
lines. Data are presented here for one rat transfectant cell line,
C58-3.3/1, the host cell being RTl u (cimb) ; and for one
mouse transfectant, Ltk-3.3/1 . Fig. 4 A indicates the expres-
sion of 3.3/1 product on the cell surface of the transfectant
cell lines Ltk-3.3/1 and C58-3.3/1, detected by flow cytom-
etry using three mAbs to two distinct epitopes on the
RT1.Aa antigen (19) .

Utilizing the ability to raise effector CTL populations
directed at Aa+ in the combination PVG.R1 anti-R19, and
against Aa - in the reciprocal system PVG.R19 anti-PVG.Rl
(16a) the transfectants were analyzed to determine which form
of RTLAI they expressed. PVG.R19 anti-PVG.R1 effectors
(anti-Aa -) killed both the rat and mouse transfected cell lines
along with the positive control PVG.R1 targets (Fig . 4 B) .
Neither of the untransfected cell lines were killed, nor were
the control targets PVG (Rn') or PVG.R19 . In the reci-
procal CTL combination, PVG.R1 anti-PVG.R19 effector cells
(anti-Aa+) killed only the positive control PVG.R19 targets,
and neither of the transfectants . Thus, the alloantigenic status
of RTLAa when expressed in the mouse H-2k haplotype L
cells and the rat RTlu haplotype C58 cell line is A,- . The

same result has also been obtained for RT1.Aa transfectants of
the rat RTI" haplotype Y3 cell line, and the mouse BW5147
cell line (H-2k) (data not shown) . mAb blocking studies in-
dicate that the CTL are directed at the RT1.Aa antigen on
the transfectants (data not shown) . It is important to note
here that the 3.3/1 cDNA was obtained from the cima, Aa+-
expressing DA rat strain . Thus, this class I gene can be ex-
pressed in the two antigenic forms A" and Aa_ depending
on the host cell genotype .

Pulse chase analysis of the C58-3.3/1 line showed slow
transport of RT1.Aa while the endogenous RT1° class I
molecules were transported rapidly (Fig. 4 C) . The differen-
tial transport kinetics of the two class I allelic products in
the same cimb rat transfectant cell was thus consistent with
the behavior of RT1.Aa and RT1.A° in the cimb (PVG.R20
x PVG.R1)Fi hybrid cells described in the previous section .
Furthermore, in the rat transfectant cells, the typical cimb-
dependent slow transport kinetics were associated, as expected,
with the cimb-dependent RT1.Aa- antigenic phenotype .
However, when the same experiment was performed on
Ltk-3.3/1 cells, we were surprised to observe a rapid rate of
transport for RTLAa (Fig. 4 D), which, for the first time,
separated the Aa - alloantigenic phenotype from the "slow
kinetics" phenotype. Similar results were obtained in the pre-
viously described mouseBW 3.3/1 cell line (data not shown),
indicating that this result is not due to the nonlymphoid origin
of the Ltk cell line.

Discussion
MHC class I and class II molecules are cell surface glyco-

proteins that present antigens to T lymphocytes bearing specific
receptors . Presentation is presumably achieved by the pep-
tide antigen binding noncovalently to a groove formed be-
tween two ci-helices on the upper surface of the class I mole-
cule (5) . It now seems likely that the majority of MHC class
I molecules acquire their peptide antigens in the endoplasmic
reticulum soon after biosynthesis (6, 8), thereby providing
a means by which the immune system can screen for intracel-
lular pathogens .
The mechanism of peptide loading is probably one cause

of the long evident complexity of MHC class I biosynthesis .
Recent evidence suggests that, over and above the require-
ment for a2m to be present, both antigenic peptides and
MHC-encoded factors are necessary for assembly and efficient
transport to occur (4, 7, 11, 12) . The evidence presented here
details important characteristics ofthe cim locus in the MHC
of the rat . The two alleles of cim exert profoundly different
effects when expressed in conjunction with a major class I
antigen of the rat, RTLAa. The dominant allele cim° allows
normal intracellular transport of RT1.Aa, and determines ex-
pression of the Aa+ alloantigenic form of the molecule at
the cell surface. The recessive cimb allele, when homozygous,
is associated with slow RTLAa transport and with the ex-
pression of the Aa- alloantigenic form. That the cim gene
can act in trans is demonstrated by the rescue of rapid trans-
port kinetics for RTLA2 by the cim° allele carried by the
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RT1 1 haplotype (Fig . 1 D) (27) combined with expression
of the Aa+ alloantigenic form .
The inefficient transport of RTLA' caused by cimb is also

class I allele specific. Fl cells that are cimb homozygous and
express both RTLA' and RTLAI: only display retention of
the RT1.A' molecule (Fig. 3) . This class I allele specificity
is also demonstrated in a rat cell line of the RT1 N haplotype
that expresses RTLA' due to a transfected cDNA (Fig. 4 C) .
What clues does the abnormal phenotype of A'- , cimb

cells such as PVG.R1 and PVG.R8 provide as to the function
of the cim gene product in class I MHC assembly? Two fea-
tures of our data are informative :

cim Activity Is Sensitive to Polymorphic Residues in RTI.A
Since most class I polymorphism is invested in the al-ca2

domains (28), it is likely that this portion of the molecule
is responsible for the class I allele dependency of cim . We en-
visage two general schemes compatible with present and
previous (16) data whereby al-a2 polymorphism might im-
pinge on cim activity.

Scheme A.

	

The cim gene product binds directly to the
class I molecule at a site containing allele-specific amino acid
residues . The cirn° and cimb products differ with respect to
this interaction . As a result of this binding, the allelic cim
products are in a position to influence differentially the na-
ture of the peptides that are bound in the "peptide-binding
groove". This influence could either be indirect, via tertiary
structural modification of the groove, or direct, via interac-
tion of the cim product with peptides as they try to enter
the molecular assembly. If successful entry of peptide is fol-
lowed by release of the bound class I molecule from the cim
product, then the latter could engage in multiple rounds of
binding and release . Retention of RTLA2 for unusually long
periods in the ER of PVG.R1 or PVG.R8 cells could result
from abnormal interaction of the cimb product with the
RTAA' heavy chain, e.g., a long dissociation time brought
about either by an excessively high binding energy or dis-
ruption of the mechanism of peptide entry and cim release .

Scheme B.

	

The cim product makes peptides available for
MHC class I assembly without itself interacting directly with
the class I molecule . The products of the two cim alleles de-
liver two different sets of endogenous peptides (p) to the as-
sembling class I heavy chains (H) and 02M (L). The class
I allele specificity could result if, for instance, the spectrum
of peptides provided by cimb was physicochemically ill-suited
to the peptide binding site of RTLA' while being appro-
priate to RTLA°, RT1.A°, RTLA°, etc. In the presence of
cimb (homozygous), the delay in RTLA2 biosynthesis would
result from relative peptide starvation, and transit out of the
ER would be delayed if complete (HLp) molecules were fa-
vored for exit .
Scheme A is compatible with the notion that the cim

product fulfills a "chaperonin"-like function in class I assembly
(29), while the view of cim in scheme B is consistent with
either the peptide transporter hypothesized by Townsend et
al. (30), modified to include selective transport properties,
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or with allelically determined endopeptidases of distinct se-
quence specificity engaged in the provision of peptides .

Association of the MHC Class 1 Heavy Chain and (32m
to Form an HL Complex Occurs Readily in the Aberrant
Combination ofcimb and RT1.A' Found in the PVG.RI
and PVG.R8 Rat Strains

All of our immunoprecipitates of A,- contain substantial
quantities of #zm, irrespective of the specific mAb used,
suggesting that the "defect" in these cases is at a stage subse-
quent to association of H and L. This would imply a reac-
tion sequence: (a) H + L # HL; (b) HL + p 4- HLp; the
latter step involving the cim product. As Townsend et al . (7)
have pointed out, however, several potential reaction sequences
may be available during MHC class I assembly and the
pathways used may be influenced by the availability of the
reactants. Scarcity of peptide may therefore result in associa-
tion and accumulation of HL (without p) by default, even
though the reaction H + p Z-' Hp might be the predomi-
nant first step in "normal" circumstances. It is therefore prema-
ture to assume that cim cannot interact, directly or indirectly,
with the free H chain, despite the phenotype ofPVG.R1 and
PVG.R8 .

In those cell lines of human and murine origin in which
defective class I assembly has recently been studied (11, 12,
30), it seems clear that the defect(s) involved severely impairs
the transport of class I molecules and their ability to act as
antigen-presenting molecules. Although no mapping data are
available for the defect in the murine RMAS cell line, the
class II linkage of the defect in the human .174 cell line is
compatible with our mapping of cim, which appears to lie
between RTI.Hoi (DPa-like) and RT1.Ba (DQa-like) (16a).
If we consider for the time being that the RMAS, .174, and
cim phenomena are due to the action of a single gene system,
then the mutant cell lines can perhaps be classified as cim"" 11,
while the cimb, RTLA' combination should be considered
as intermediate between cim""« and an optimal wild-type
condition, since it is clear that A'- can act as a restriction
element (Fig . 4 B) (16) . It is interesting to speculate that there
may be other cim-related genes mapping within the MHC.
Indeed, the antigenicity of Qa-1 in the mouse is under the
influence of an allelic genetic system with features resembling
cim, but mapping to the H-2D region (13), and recent obser-
vations on the expression of HLA-B27 in transgenic mice show
H-2D region control of expression (14) .
An interesting feature apparent when comparing the cim/

RTI.A° system in rats and the Qdm/Qa-1 system in mice (13)
is that in both cases the modifying gene maps relatively close
to the locus for the class I antigen it serves. This raises the
possibility that natural selection may favor certain cis allelic
combinations ofRT1.A and cim . The biosynthetic inefficiency
of the RT1.A°, cimb combination found in the laboratory
recombinant haplotypes r1 and r8 compared with RTI.A°,
cim° in the parental a haplotype may be sufficient for selec-
tion to operate, and recalls the inferiority of some trans cf
cis combinations of MHC class II a and J3 chains uncovered
by Germain et al. (31).



The final area of experimentation that warrants discussion
here is the expression of MHC class I genes or cDNAs in
host cells of different species . In an intriguing series of ex-
periments, Alexander and associates (12, 33, 34) studied the
expression of mouse class I molecules after transfection of
human mutant cell lines (.174 and T2) . Whereas these cells
were defective in the expression of endogenous or transfected
HLA class I molecules, they could express mouse class I mol-
ecules at "normal" levels . Subsequent analysis, however, has
indicated that the mouse molecules that reach the surface of
T2 are aberrant in that they fail to present endogenous pep-
tides, and like the small numbers of HLA class I molecules
that are detectable on the cell, are apparently "empty" (peptide-
free) molecules (12, 34) . Thus, the cim""° genotype of T2
consistently determines failure to present peptide, but does
not correlate fully with transport kinetics or cell surface ex-
pression ofMHC class I. This description shows close parallels
with the results of trans-species transfections reported here
(Fig . 4) . When the rat RT1.Aa cDNA 3.3/1 was expressed
in mouse L cells, the CTLdefined A,- phenotype (normally
associated with cim') was found, unexpectedly, to be as-
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