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Background: Pneumonia can be anatomically classified into lobar, lobular, and interstitial types, with each 
type associated with different pathogens. Utilizing artificial intelligence (AI) to determine the anatomical 
classifications of pneumonia and assist in refining the differential diagnosis may offer a more viable and 
clinically relevant solution. This study aimed to develop a multi-classification model capable of identifying 
the occurrence of pneumonia in patients by utilizing case-specific computed tomography (CT) information, 
categorizing the pneumonia type (lobar, lobular, and interstitial pneumonia), and performing segmentation 
of the associated lesions.
Methods: A total of 61 lobar pneumonia patients, 60 lobular pneumonia patients, and 60 interstitial 
pneumonia patients were consecutively enrolled at our local hospital from June 2020 and May 2022. All 
selected cases were divided into a training cohort (n=135) and an independent testing cohort (n=46). To 
generate the ground truth labels for the training process, manual segmentation and labeling were performed 
by three junior radiologists. Subsequently, the segmentations were manually reviewed and edited by a 
senior radiologist. AI models were developed to automatically segment the infected lung regions and 
classify the pneumonia. The accuracy of pneumonia lesion segmentation was analyzed and evaluated using 
the Dice coefficient. Receiver operating characteristic curves were plotted, and the area under the curve 
(AUC), accuracy, precision, sensitivity, and specificity were calculated to assess the efficacy of pneumonia 
classification.
Results: Our AI model achieved a Dice coefficient of 0.743 [95% confidence interval (CI): 0.657–0.826] 
for lesion segmentation in the training set and 0.723 (95% CI: 0.602–0.845) in the test set. In the test set, 
our model achieved an accuracy of 0.927 (95% CI: 0.876–0.978), precision of 0.889 (95% CI: 0.827–0.951), 
sensitivity of 0.889 (95% CI: 0.827–0.951), specificity of 0.946 (95% CI: 0.902–0.990), and AUC of 0.989 
(95% CI: 0.969–1.000) for pneumonia classification. We trained the model using labels annotated by 
senior physicians and compared it to a model trained using labels annotated by junior physicians. The Dice 
coefficient of the model’s segmentation improved by 0.014, increasing from 0.709 (95% CI: 0.589–0.830) to 
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Introduction

Pneumonia is an inflammatory and infectious condition 
of the lungs caused by various pathogens such as bacteria, 
viruses, fungi, or other microorganisms (1,2). It is a 
significant public health issue, leading to high rates of 
morbidity and mortality worldwide, especially in young 
children, the elderly, and individuals with compromised 
immune systems (3,4). Timely detection and appropriate 
treatment are vital to mitigate pneumonia’s public health 
impact. In this context, medical imaging techniques, 
particularly chest X-rays and computed tomography (CT) 
scans, are crucial tools in diagnosing pneumonia and 
monitoring treatment progress (5,6).

Interpreting CT images can be challenging due to the 
intra-lesion variability and inter-lesion similarity in different 
types of pneumonia. Furthermore, manual diagnosis of CT 
scans is a time-consuming and subjective process that can 
vary significantly among physicians with different levels 
of expertise. Hence, there is a critical need for automated, 
objective methods for pneumonia segmentation and 
classification. One potential solution is the development 
of an automated system using advanced deep learning 
techniques for pneumonia segmentation and type 
interpretation. This approach could improve the efficiency 
of pneumonia diagnosis.

Artificial intelligence (AI), particularly convolutional 
neural networks (CNNs), has shown immense potential 
in improving pneumonia detection, classification, and 
segmentation in medical imaging (7,8). Research has 
indicated that CNNs can effectively differentiate coronavirus 
disease 2019 (COVID-19) from other types of pneumonia 
using CT images (9). U-Net and its variants have shown 
significant potential in segmenting pneumonia lesions from 
medical images (10-12). The no new U-Net (nnU-Net), a 
self-configuring method, automatically adapts the U-Net 
architecture based on input data, enhancing performance 
across various biomedical image segmentation tasks (13,14). 

Although AI has achieved notable diagnostic outcomes in 
past studies, most of the current research focuses primarily 
on differentiating between one or a limited number of 
pneumonia types (15-17). In real-world clinical scenarios, 
multiple pneumonia types may be detected during CT 
screenings; as such, a multi-class pneumonia identification 
solution would be advantageous for clinical use. However, 
given the numerous pneumonia pathogens, achieving 
simultaneous identification of a wide array of pneumonia 
types remains a formidable challenge.

Pneumonia can be anatomically classified into lobar, 
lobular, and interstitial types, each associated with different 
pathogens (18-22). Lobar pneumonia is characterized 
by the involvement of an entire lobe of the lung, usually 
caused by bacterial pathogens, such as Streptococcus 
pneumoniae, Klebsiella pneumoniae, and Legionella species (19). 
Bronchopneumonia, also known as lobular pneumonia, is 
characterized by patchy consolidation involving multiple 
bronchopulmonary segments, often caused by bacteria 
such as Haemophilus influenzae or Staphylococcus aureus (20). 
Interstitial pneumonia is characterized by inflammation 
and consolidation in the interstitium of the lung, which 
can be caused by viral infections (21) such as influenza or 
COVID-19 (22), as well as other non-infectious conditions. 
Utilizing AI to determine the anatomical classifications of 
pneumonia and assist in refining the differential diagnosis 
may offer a more viable and clinically relevant solution.

Our study aimed to develop a multi-classification model 
capable of detecting pneumonia in patients using case-
specific CT data, classifying the type of pneumonia (lobar, 
lobular, or interstitial), and segmenting associated lesions. 
To achieve this, we assembled a multiclass chest CT dataset 
encompassing three types of pneumonia: lobar, lobular, and 
interstitial. To our knowledge, this is the first multiclass CT 
dataset of pneumonia based on anatomical classification. 
Each CT scan and image were meticulously re-examined 
by experienced radiologists. Utilizing a 3-dimensional (3D) 
model and a multi-task learning approach, we endeavored 

0.723 (95% CI: 0.602–0.845), and the AUC improved by 0.042, rising from 0.947 to 0.989.
Conclusions: Our study presents a robust multi-task learning model with substantial promise in enhancing 
the segmentation and classification of pneumonia in medical imaging.
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to fully leverage spatial data and improve the speed of model 
processing data and providing results, to increase the model’s 
stability. Therefore, the current study aimed to provide 
radiologists with valuable decision-making supporting 
tools for more efficient or accurate detection and diagnosis 
pneumonia. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-945/rc).

Methods

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The study was approved by 
the Institutional Ethics Board of the Third Hospital of Peking 
University (No. M2022854). As this was a retrospective study, 
the need for signed informed consent was waived. 

Study participants

A total of 977 patients were identified by searching chest 
CT reports from June 2020 to May 2022 in our picture 
archiving and communication systems (PACS) database 
for the following keyword: pneumonia. The inclusion 
criteria were as follows: (I) chest CT scans showed patchy 
infiltrative shadows or interstitial changes in the lungs 
before antibiotic therapy; (II) patients met at least 1 of the 
following conditions: (i) newly developed or worsening 
cough with sputum production, possibly with chest pain, (ii) 
fever, (iii) moist rales identified upon lung auscultation, or 
(iv) peripheral blood leukocyte count greater than 10×109/L  
or less than 4×109/L. Among the total of 613 patients who 

met the inclusion criteria, 432 were excluded from this 
study for the following reasons: (I) severe tuberculosis, lung 
tumor, non-infectious interstitial lung disease, pulmonary 
edema, pulmonary atelectasis, pulmonary embolism, 
pulmonary eosinophilic infiltrates, pulmonary vasculitis, 
or diffuse parenchymal lung disease; (II) a history of lung 
surgery or chest radiotherapy; (III) low-quality image; or 
(IV) absence of lung window thin-section CT images.

The final cohort consisted of 181 patients. Among them, 
61 cases were diagnosed as lobar pneumonia, 60 cases as 
lobular pneumonia, and 60 cases as interstitial pneumonia. 
Figure 1 illustrates typical CT image slices for these three 
pneumonia types. The selected cases were divided into 
a training cohort and an independent test cohort. The 
training cohort consisted of 135 cases, with 45 cases each 
of lobar pneumonia, lobular pneumonia, and interstitial 
pneumonia. For training, a 5-fold cross-validation method 
was used, with each part of the training dataset being 
involved in both training and validation. The independent 
testing cohort comprised 46 cases, including 16 cases of 
lobar pneumonia, 15 cases of lobular pneumonia, and  
15 cases of interstitial pneumonia.

Patient demographic statistics are summarized in Table 1.  
The flowchart for the participant selection is shown in 
Figure 2.

CT image data acquisition

CT scans were obtained with equipment from different 
manufacturers using standard imaging protocols. The 
acquisition and reconstruction parameters of these scans are 

A B C

Figure 1 Typical CT image slices for three types of pneumonia. (A) Lobar pneumonia: this type of pneumonia manifests as a region of 
consolidation (lung tissue filled with liquid instead of air) within a specific lobe or lobes. (B) Bronchopneumonia (also known as lobular 
pneumonia): this variant appears as patches scattered throughout the lungs, especially around the bronchi (the airways connecting the 
trachea to the lungs). (C) Interstitial pneumonia: this form primarily impacts the walls of the alveoli and other lung structures responsible for 
gas exchange. It usually presents as interstitial infiltrates, which can resemble a fine mesh or have a “ground-glass” appearance in the images. 
CT, computed tomography.

https://qims.amegroups.com/article/view/10.21037/qims-23-945/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-945/rc
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summarized in Table 2. CT images were reconstructed with 
a 512×512 matrix and a slice thickness of 1 mm.

AI model

CT image annotation 
Firstly, three junior radiologists (W.G., with 7 years;  
M. L., with 5 years; and Q.Z., with 4 years of chest image 
diagnostic experience) independently segmented different 
cases according to the three types of pneumonia patterns 
shown in Figure 1 within the dataset using the ITK-SNAP 
software (ITK-SNAP, University of Pennsylvania, PA, 

USA). Then, a specialist (X.W., with 20 years of chest CT 
diagnostic experience) manually reviewed and modified 
the segmentations in ITK-SNAP software. These manual 
segmentations were used as the ground truth to optimize and 
evaluate the quality of the automatic segmentation model. 
The experienced radiologists’ segmentation outcomes served 
as the gold standard. Subsequently, two AI models were 
developed respectively based on annotations from the three 
junior radiologists and the specialist (a senior radiologist).

Network framework of deep learning algorithms
All cases used thin-layer image data (approximately  
300–700 layers per patient). Initially, we acquired the CT 
data and used the threshold method to extract the lung 
parenchyma’s mask (Figure 3A,3B). We then utilized this 
mask’s boundary values to crop the original data and identify 
the 3D volume of interest (VOI), representing the specific 
region of the lungs under examination (Figure 3C). Once 
isolated, this data underwent resampling and normalization 
before being fed into a specialized neural network known 
as a 3D U-net (Figure 3D). This network was designed to 
process data in chunks, known as subvolumes, each with 
its own width, height, and depth. Similar to 2-dimensional 
(2D) methods, we input these subvolumes sequentially, 

The training cohort (n=135) was 
divided into training and validation data 
via five-fold cross-validation method:

• Lobar pneumonia =45;
• Lobular pneumonia =45; 
• Interstitial pneumonia =45

Testing cohort (n=46): 
• Lobar pneumonia =16;
• Lobular pneumonia =15; 
• Interstitial pneumonia =15

Patients who underwent chest CT 
scans diagnosed with pneumonia from 

June 2020 to May 2022
(n=977)

Exclusion (n=432):
(I) Severe lung disease that may 

affect the diagnosis of pneumonia;
(II) A history of lung surgery or chest 

radiotherapy;
(III) Low-quality image;
(IV) Absence of lung window thin-

section CT images

A total of 613 patients met inclusion 
criteria

Final study cohort 
(n=181)

Figure 2 The flowchart for the participant selection. CT, computed tomography.

Table 1 The demographic characteristics of the patient population

Characteristics Training cohort Testing cohort P value

Number of patients 135 46 –

Age, mean ± SD, years 43.7±19.44 49.8±17.89 0.062

Sex, N (%) 0.079

Male 59 (43.7) 27 (58.7)

Female 76 (56.3) 19 (41.3)

SD, standard deviation.
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later combining their results to achieve a comprehensive 
segmentation map. In this process, we classified three 
different types of pneumonia as distinct segmentation 
tasks, assigning each a unique label. The network then 
produced the CT scan’s segmentation results, incorporating 
the type of pneumonia into the segmentation results label 
(Figure 3E). Finally, we performed post-processing on these 
segmentation results, restoring them to their original image 
size (Figure 3F). This methodology assists in identifying the 
shape and type of lesion, which in turn aids physicians in 
their diagnostic process.

3D SE-U-Net network architecture
The 3D SE-U-Net network structure diagram is shown 

in Figure 4. The network structure consisted of three 
parts: encoder, decoder, and skip connection. The 
encoder consisted of four downsampling modules, each 
containing two 3×3×3 pixels convolution layers (Conv3D), 
each of which was immediately followed by an instance 
normalization (IN) layer, a leaky rectified linear unit (leaky 
ReLU), and a squeeze and excitation (SE) module. At the 
end of the downsampling module was a 2×2×2 pixels max 
pooling layers with a step size of 2 pixels. The decoder 
structure was similar to the encoder, except that the max 
pooling layer was replaced by a 2×2×2 pixels transposed 
convolution layer. Skip connection connected the feature 
maps before the max pooling layers at the same depth with 
the output feature maps of the transposed convolutional 

Table 2 Chest CT acquisition parameters

CT scanners Siemens SOMATOM Definition Siemens SOMATOM go. Top United Imaging uCT 790

Scan number 61 81 39

Tube voltage, kVp 110–120 120 120

Tube current Automatic mA modulation Automatic mA modulation Automatic mA modulation

Pitch 1.2 1.0 1.1875

Detector configuration, mm 64×0.6 64×0.6 80×0.5

Resolution 512×512 512×512 512×512

Section thickness, mm 1 1 1

CT, computed tomography.

Segmentation results of 
different pneumonia3D SE-U-net structure

Cropped slicesLung masksCT slices

Return to the 
original shape

A B C D

E F

Figure 3 The network framework of deep learning algorithms. (A) Original thin-section chest CT data; (B) lung parenchyma’s mask; (C) 
cropped the original data; (D) training of 3D SE-U-net network; (E) the segmentation results label of pneumonia; (F) original parenchyma 
images. CT, computed tomography; 3D, 3-dimensional; SE, squeeze-and-excitation.
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Input

3×3×3 Conv-IN-Leaky ReLU

SE module

Skip connection

Deep supervision

2×2×2 Max Pooling 

2×2×2 Transposed Conv 

1×1×1 Conv + Softmax

Figure 4 The 3D SE-U-Net network structure. 3D, 3-dimensional; SE, squeeze-and-excitation; ReLU, rectified linear unit.

layer in the upsampling module. 
We added spatial and channel SE modules (23) to enable 

the model to adaptively learn the importance of each 
channel and position and adjust the channel and position 
contributions in the feature map according to the needs of 
the task. This attention mechanism helped the network to 
better focus on important feature channels and positions, 
thereby improving model performance.

In the upsampling of the 3D U-Net model mentioned 
above, except for the two bottommost layers, deep 
supervision (24) was added to each layer. By adding two 
additional auxiliary classifiers as network branches to 
supervise the backbone network, the shallow layer can be 
trained more fully to prevent the gradient disappearance 
and the convergence speed being too slow.

AI model training and prediction
During training, we used a 5-fold cross-validation method to 
divide the cohort into five equal parts, rotating as validation 
sets to identify the optimal hyperparameters and train the 
model. The independent testing cohort was not used for 
either training or internal validation. During training, data 
augmentation methods such as random rotation, random 
scaling, random elastic transformation, gamma correction, 
and mirroring were used to increase the amount of training 
data and improve the generalization ability of the model. The 
trained models were used for predicting target CT images, 
and the Dice scores were respectively calculated both in the 
validation and the test dataset.

Statistical analysis

The data were subjected to normality and homoscedasticity 
tests via a Q-Q (quantile-quantile) plot and Levene’s test, 
respectively. For variables following a normal distribution, 
an independent sample t-test was deployed. The chi-
square test was employed for inter-group comparisons 
of categorical variables. The diagnostic efficacy of the 
AI models for pneumonia was evaluated using a receiver 
operating characteristic (ROC) curve. The test dataset 
was used to compare diagnostic performance based on 
sensitivity, specificity, and accuracy, thus facilitating 
classification into lobar, lobular, or interstitial pneumonia. 
Additionally, the area under the curve (AUC) for each model 
was computed to assess overall classification performance. 
The software SPSS 25.0 (IBM Corp., Armonk, NY, USA) 
was used for conducting demographic statistics. The open-
source statistical software Python version 3.6.5 (Python 
Software Foundation, Wilmington, DE, USA) was deployed 
for the analysis and evaluation of the AI model and its 
diagnostic performance. P values of less than 0.05 (2-sided) 
were deemed statistically significant.

Results 

Segmentation of lung infection region 

We used the original nnU-Net as a benchmark to compare 
the accuracy of single-task segmentation and multi-
task segmentation, as well as the accuracy of our model 
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compared to the benchmark for multi-task segmentation. 
Single-task segmentation refers to the use of lobar 
pneumonia, lobular pneumonia, or interstitial pneumonia 
alone for segmentation tasks. Examples of the infection 
region segmentation for lobar, lobular, and interstitial 
pneumonia patients in CT are shown in Figure 5. The 
segmentation performance contrast is depicted in Table 3. 

The original nnU-Net yielded a Dice coefficient of 

0.841 [95% confidence interval (CI): 0.769–0.913] in the 
validation set for single-task segmentation, yet it declined 
significantly to a Dice coefficient of 0.670 (95% CI: 
0.575–0.766) in the test set. When adopting a multi-task 
learning approach and introducing a classification task, the 
Dice coefficient in the validation set fell to 0.655 (95% CI: 
0.562–0.748), whereas in the test set, it improved modestly 
to 0.683 (95% CI: 0.564–0.803). Our model achieved more 

Table 3 The segmentation performance of artificial intelligence models

Model Validation Dice (95% CI) Test Dice (95% CI)

Original nnU-Net 0.841 (0.769–0.913) 0.670 (0.575–0.766)

Original nnU-Net + classify 0.655 (0.562–0.748) 0.683 (0.564–0.803)

Our model 0.743 (0.657–0.826) 0.723 (0.602–0.845)

Lobar only 0.855 (0.786–0.924) 0.840 (0.764–0.917)

Lobular only 0.654 (0.560–0.747) 0.638 (0.358–0.918)

Interstitial only 0.730 (0.643–0.817) 0.627 (0.468–0.785)

Average of three 0.746 (0.661–0.831) 0.701 (0.605–0.799)

nnU-Net, no new U-Net; CI, confidence interval.
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Figure 5 Examples of CT image segmentation pertaining to infection regions in cases of lobar (A-D), lobular (E-H), and interstitial 
pneumonia (I-L). CT, computed tomography.
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substantial improvements, with a Dice coefficient of 0.743 
(95% CI: 0.657–0.826) in the validation set and 0.723 (95% 
CI: 0.602–0.845) in the test set, which was significantly 
superior to the original nnU-Net (P=0.033<0.05), leading 
to more accurate lesion segmentation. It also surpassed 
the average Dice coefficients of the three models, thereby 
corroborating the effectiveness of multi-task learning.

Model performance

The diagnostic performance of the model is shown in  
Table 4. The ROC curve analysis results are shown in  
Figure 6. Our model achieved an AUC of 0.989 (95% CI: 

0.969–1.000), accuracy of 0.927 (95% CI: 0.876–0.978), 
precision of 0.889 (95% CI: 0.827–0.951), sensitivity of 
0.889 (95% CI: 0.827–0.951), and specificity of 0.946 (95% 
CI: 0.902–0.990) in the internal test queue. Additionally, 
although the diagnostic performance for lobar pneumonia 
decreased slightly in comparison to specialized single-task 
models, it was significantly improved for both lobular and 
interstitial pneumonia. 

Influence of senior doctors on model performance 
enhancement

Our model was initially trained using data annotated by 
junior doctors. Subsequently, the training was continued 
on this pre-existing model using labels annotated by senior 
doctors. This 2-step training process led to an enhancement 
in the model’s performance. Specifically, the Dice 
coefficient of the model’s segmentation improved by 0.014, 
increasing from 0.709 (95% CI: 0.589–0.830) to 0.723 (95% 
CI: 0.602–0.845). Additionally, the AUC also witnessed an 
increase of 0.042, rising from 0.947 to 0.989. The ROC is 
displayed in Figure 7.

Discussion

In the present study, we have developed and rigorously 
evaluated an AI model with the primary aim of identifying 
pneumonia and further categorizing it  into lobar 
pneumonia, lobular pneumonia, and interstitial pneumonia. 
The robust performance metrics exhibited by our model 
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Inters ROC curve (area =0.922)

Figure 6 ROC curves of the artificial intelligence models. ROC, 
receiver operating characteristic; ori, original.

Table 4 The diagnostic performance of the artificial intelligence models

Model Accuracy (95% CI) Precision (95% CI) Sensitivity (95% CI) Specificity (95% CI)

The original nnU-Net

Lobar 0.934 (0.885–0.982) 0.842 (0.771–0.913) 1.000 (1.000–1.000) 0.900 (0.841–0.959)

Lobular 0.869 (0.802–0.935) 0.846 (0.775–0.917) 0.733 (0.646–0.820) 0.935 (0.887–0.983)

Interstitial 0.891 (0.830–0.952) 0.857 (0.788–0.926) 0.800 (0.722–0.878) 0.935 (0.887–0.983)

Average 0.899 (0.839–0.958) 0.848 (0.778–0.918) 0.844 (0.773–0.915) 0.923 (0.871–0.975)

Our model

Lobar 0.978 (0.949–1.000) 0.941 (0.895–0.987) 1.000 (1.000–1.000) 0.966 (0.930–1.000)

Lobular 0.913 (0.858–0.968) 0.866 (0.799–0.932) 0.866 (0.799–0.932) 0.935 (0.887–0.983)

Interstitial 0.891 (0.830–0.952) 0.857 (0.788–0.926) 0.800 (0.722–0.878) 0.935 (0.887–0.983)

Average 0.927 (0.876–0.978) 0.889 (0.827–0.951) 0.889 (0.827–0.951) 0.946 (0.902–0.990)

nnU-Net, no new U-Net; CI, confidence interval.
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underscore its potential in assisting the identification and 
classification of pneumonia based on thin-section chest 
CT images. Such a tool, based on our findings, could be 
instrumental in providing valuable insights for a more 
precise diagnosis of pneumonia types. Additionally, this tool 
has the potential to optimize the clinical workflow, leading 
to expedited patient care and improved health outcomes.

CNNs are one of the representative algorithms for deep 
learning and have achieved very good results in medical 
image processing tasks. For many traditional tasks in 
medical imaging such as classification, segmentation, and 
detection, CNNs are one of the go-to choices due to their 
proven efficacy (25). This is consistent with our research 
goal of distinguishing pneumonia based on anatomical 
classification. Generative learning refers to algorithms 
or models that learn to generate new samples/data that 
resemble a given set of training samples. Gulakala et al. (26) 
developed a progressively growing generative adversarial 
network (PGGAN) for generative learning and obtained 
high resolution X-ray images to achieve rapid diagnosis 
of COVID-19 infections, which resulted in 40% lighter 
models as compared to the state-of-the-art models (ResNet 
and DenseNet) and a 5% increase in test accuracy. 
Accuracy in generative models is more subjective as refers 
to how well the model generates data that resembles 
real data, but they do not provide an “accuracy” in the 
same sense as classification tasks. If used for tasks such 
as data augmentation in medical imaging, the accuracy 
of the subsequent model (e.g., a classifier) would be a 
more relevant metric than the accuracy of the generative 

model itself (27). Our study chose the 3D U-Net model 
for segmentation and diagnosis of pneumonia based on its 
following advantages: 3D U-Net model preserves the 3D 
spatial context of volumetric data, making it more suitable 
for tasks where the relationship between volumetric 
regions is crucial; 3D U-Net has a symmetric contracting 
path (encoder) and expansive path (decoder), which allows 
high-resolution feature maps in the decoder. This aids 
in precise localization for segmentation tasks. 3D U-Net 
employs skip connections between the encoder and 
decoder parts, enabling the network to use features from 
multiple resolutions. This helps in capturing both global 
and local information. Given the right augmentations 
and the depth of the network, 3D U-Net can achieve 
good performance even with a limited amount of labeled  
data (28).

Segmentation of lung infection region

In this study, we developed a multi-stage AI system with a 
primary focus on extracting the region of lung infection, 
which is a key step in pneumonia diagnosis. The original 
nnU-Net displayed a significant drop in Dice coefficient 
from 0.841 (95% CI: 0.769–0.913) in the validation set 
to 0.670 (95% CI: 0.575–0.766) in the test set. This drop 
reveals the model’s limited generalizability and suggests 
potential overfitting during the training phase (13,29). 
However, by incorporating a multi-task learning approach 
and adding a classification task, we observed a complex 
dynamic between the model’s performance on the validation 
and test datasets. Although the Dice coefficient on the 
validation set decreased to 0.655 (95% CI: 0.562–0.748)—
a trade-off in single-task performance—the model’s 
generalizability modestly improved, with the test set Dice 
coefficient rising to 0.683 (95% CI: 0.564–0.803) (30).

Our proposed model further improved these outcomes, 
achieving a Dice coefficient of 0.743 (95% CI: 0.657–0.826) 
in the validation set and 0.723 (95% CI: 0.602–0.845) 
in the test set, indicating superior performance in lesion 
segmentation. Machado et al. (31) utilized 2D Inf-Net 
for auto-segmentation of COVID-19 and other types of 
pneumonia using CT scans. The mean F1 score of the 
auto-segmentation algorithm was 0.72, similar to our 
results. Moreover, our model surpassed the average Dice 
coefficients of the three models, validating the efficiency of 
the multi-task learning approach. These findings not only 
underline the potential of multi-task learning in developing 
more robust and generalizable models but also illuminate 
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the challenges of balancing multiple tasks. They underscore 
the need for optimization strategies that ensure that 
performance across all tasks aligns with the “do no harm” 
principle for responsible machine learning in healthcare (32). 
Future research will aim to refine these multi-task learning 
strategies to nurture models that maintain high levels of 
accuracy, precision, sensitivity, and specificity—all critical 
factors for reliable diagnostic applications.

Model performance

This study further assessed our model’s performance in 
distinguishing three distinct types: lobar, lobular, and 
interstitial pneumonia. The model exhibited remarkable 
diagnostic efficacy, reflecting an AUC of 0.989, accuracy of 
0.927 (95% CI: 0.876–0.978), precision of 0.889 (95% CI: 
0.827–0.951), sensitivity of 0.889 (95% CI: 0.827–0.951), 
and specificity of 0.946 (95% CI: 0.902–0.990) in the 
internal testing cohort. To the best of our knowledge, 
there currently exist no other datasets that focus on the 
anatomical classification of pneumonia in chest CT scans. 
Prior research has primarily focused on differentiating 
specific types of pneumonia. For instance, Zheng et al. (33)  
developed a deep learning model that leveraged CT 
images to differentiate between COVID-19, bacterial 
pneumonia, typical viral pneumonia, and healthy controls. 
This model attained an overall accuracy of 0.94 and an 
AUC of 0.96. Similarly, Li et al. (9) employed a ResNet50 
model to differentiate COVID-19 from non-pneumonia 
or community-acquired pneumonia, achieving per-
scan sensitivity and specificity rates of 90% and 96%, 
respectively. 

The diagnostic performance of our model for lobar 
pneumonia showed a slight decline compared to specialized 
single-task models. This observation aligns with existing 
literature suggesting that task-specific models can sometimes 
surpass generalized models. However, this marginal decrease 
does not significantly impact the model’s overall diagnostic 
capacity, given its impressive general performance metrics. 
Importantly, our model showed a significant improvement 
in diagnosing both lobar and interstitial pneumonia. This 
finding is encouraging, considering the inherent complexity 
and overlapping symptoms of these conditions that make 
traditional diagnostic methods challenging (34). Despite 
its multi-task orientation, our model effectively identifies 
nuanced features associated with lobar and interstitial 
pneumonia, thereby enhancing its diagnostic potential for 
these conditions.

Influence of senior doctors on model performance 
enhancement

Our results illuminate the influence of senior doctors’ 
involvement in model training, underlining the value of 
their expertise in the iterative process of machine learning 
model development. We implemented a 2-step training 
process, initially incorporating junior doctors before 
integrating annotations from senior doctors. This process 
led to an improvement in model performance, signifying 
the critical role of domain expertise in developing effective 
machine learning models for healthcare. The 2-step training 
approach, which integrates insights from both junior and 
senior doctors, offers a potential pathway to refine model 
performance. Future research could explore the possible 
benefits of extending this approach, such as integrating 
multidisciplinary expertise or using a tiered annotation 
strategy. Nevertheless, we must balance these potential 
improvements against the additional time and resources 
required for senior clinicians’ multiple annotation rounds.

Limitations

This study recognizes several limitations. Firstly, the small 
sample size from a single institution potentially limits 
the findings’ broad applicability and generalizability. We 
recommend that future studies increase the sample size 
and include external validation to improve the model’s 
versatility across diverse clinical settings. Secondly, the 
model’s improved performance, partly due to the inclusion 
of senior doctors’ annotations, introduces variability. 
Differences in expertise between less experienced and 
seasoned clinicians could lead to unevenness within the 
training dataset, potentially affecting the proposed model’s 
overall transferability. Thirdly, although the AI model we 
developed demonstrates a superior ability to identify distinct 
types of pneumonia, it is important to remember that CT 
scan findings should be interpreted alongside the patient’s 
clinical history, physical examination results, and laboratory 
data. Although the correlation between pathogens and 
pneumonia’s anatomical categorization is useful, overlap 
exists, indicating that different pathogens might sometimes 
produce identical CT patterns. Future studies could benefit 
from using AI-identified CT features and types as labels 
and combining these with clinical data for comprehensive 
model construction. This integrated approach may enable 
more precise pathogenic diagnosis of pneumonia, ultimately 
providing more effective clinical support.
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Conclusions

Our study presents a robust multi-task learning model 
with substantial promise in enhancing the segmentation 
and classification of pneumonia in medical imaging. Our 
findings indicate that the model possesses the capability 
to accurately detect pneumonia lesions and classify them 
according to their anatomical type. Notably, the model’s 
performance was influenced positively by the involvement 
of senior doctors in the iterative training process. This 
multi-level expert involvement in the model’s development 
emphasizes the importance of domain expertise in machine 
learning for healthcare. The successful classification 
of various pneumonia types could prove invaluable for 
clinicians, potentially facilitating more accurate diagnoses 
and informing tailored treatment decisions.
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