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Abstract: In atomic and many-particle physics, Green functions often occur as propagators to formally
represent the (integration over the) complete spectrum of the underlying Hamiltonian. However,
while these functions are very crucial to describing many second- and higher-order perturbation
processes, they have hardly been considered and classified for complex atoms. Here, we show how
relativistic (many-electron) Green functions can be approximated and systematically improved for
few- and many-electron atoms and ions. The representation of these functions is based on classes
of virtual excitations, or so-called excitation schemes, with regard to given bound-state reference
configurations, and by applying a multi-configuration Dirac-Hartree-Fock expansion of all atomic
states involved. A first implementation of these approximate Green functions has been realized in the
framework of JAC, the Jena Atomic Calculator, and will facilitate the study of various multi-photon
and/or multiple electron (emission) processes.

Keywords: atom; atomic cascade; atomic Green function; atomic structure; excitation scheme; ion;
multi-photon; relativistic; second-order

1. Introduction

Various non-linear (second- as well as higher-order perturbation) processes have
been observed during the past years but could often not be calculated in good detail for
many ions, atoms or molecules of interest. Well-known second-order processes of this
sort include, for instance, the multi-photon absorption and emission [1–3], the resonant [4]
and two-photon ionization [5,6], the radiative and double Auger emission of atoms [7,8]
and molecules [9], their (single-photon) double ionization [10–12] or the Rayleigh and
Raman scattering of light [13–15], to name just a few. Until the present, however, most of
these processes are not yet (well) understood quantitatively since, in perturbation theory,
each additional order (beyond the first-order) typically requires an implicit summation
(integration) over the full spectrum of the system. For complex atoms, and even more
for molecules, this summation can be performed only approximately—and rather crude
approximations, such as the independent-particle model or the restricted summation
over just a few intermediate levels, were often made in the literature right from the
very beginning.

As in first-order perturbation theory, most observables of such (non-linear) second-
and higher-order processes are typically expressed in terms of so-called transition or scat-
tering amplitudes that connect an initial bound state |i〉 of the atom or molecules with
some final state | f 〉. For the—elastic or inelastic—scattering of light on atoms or ions, for
example, these transition amplitudes take the slightly simplified form [16]

M = ∑
ν

〈
f
∣∣∣O (emission)

∣∣∣ν〉 〈ν
∣∣∣O (absorption)

∣∣∣i〉
Ei + h̄ ωi − Eν

, (1)
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and which can be readily interpreted—the absorption of one photon first brings the atom
into an intermediate state |ν〉, and from which a second photon is subsequently re-emitted.
Here, O denotes the electron-photon interaction (operator), Ei and Eν the total energies of
the initial and intermediate states, and h̄ ωi refers to the energy of the incident photon [17].
Moreover, the absorption and re-emission of the photons (may) need to be interchanged
quantum-mechanically due to the complex-conjugated part of the interaction operators,
leading to so-called crossed-term diagrams in many-body perturbation theory, and often
only selected multipole components of the radiation field are considered. In practice,
however, the summation (integration) remains the most challenging part of all numerical
computations owing to large number of terms, while the (formal) need of free-free matrix
elements in the construction of the intermediate states may hamper such an approach
even further. It is this summation that can be captured by means of an approximate Green
function and that lies in the focus of the present work. In addition, amplitudes quite
similar to expression (1) also occur with | f 〉 ≡ |i〉 for a number of other atomic and
molecular properties, such as the static and dynamic polarizabilities of an atom [18], the
electric and magnetic susceptibilities [19], dispersion coeffients [20], shielding constants of
nuclear moments, and at various places elsewhere. For molecules, furthermore, atomic
continuum functions have been found relevant for estimating molecular Auger rates [21],
angle-differential cross sections [22], or for testing ionization continuum models [23].

Both the frequent application of atomic Green functions and their inherent complex-
ity make the intelligible access to and use of these functions very desirable. Of course,
such a direct handling of the many-electron Green functions requires, first of all, their
decomposition into building blocks that are suitable for atomic structure theory. Here,
we shall describe how such approximate (relativistic) Green functions can be formulated
within a symmetry-adopted basis of configuration state functions (CSF), and provided
for practical computations. These approximate Green functions have been implemented
moreover within the framework of the Jena Atomic Calculator (JAC), an open-source Julia
package for doing relativistic atomic computations. This JAC toolbox [24,25] is based on
the multi-configuration Dirac-Hartree-Fock (MCDHF) method [26], and it was designed
right from the beginning for dealing with quite different requests in atomic (and partly
molecular) theory.

In this work, the representation of approximate atomic Green functions is based on
classes of virtual excitations with regard to given bound-state reference configurations,
and by making use of a MCDHF expansion of all atomic states involved. Below, we shall
explain how the—formally-defined—many-electron Green function can be decomposed
quite readily into parts with well-defined symmetry and completeness properties. After a
short theoretical account of a few selected properties of Green functions in Section 2, and
especially on useful excitation schemes for atoms and ions with complex shell structures,
emphasis is placed in Section 3 upon the representation and implementation of these
functions in terms of proper data structures. These data structures are designed in order to
support the application of the approximate (Green) functions for different atomic processes
and for most, if not all, atoms or ions across the periodic table. As an example, we also
show the (generation of an) approximate Green function for the two-photon excitation and
ionization of atomic neon, along with a short discussion of its further application. Finally, a
brief summary and conclusions are given in Section 4. Atomic units are used throughout
in this work if not stated otherwise.

2. Theoretical Background
2.1. Dirac’s One-Electron Spectrum

For hydrogenic ions, the Coulomb-Green function has been frequently applied in the
literature, both in the non-relativistic and relativistic atomic theory. Several representations
are known especially for the radial part of these functions within position space [27,28].
For the Dirac Hamiltonian H (Dirac) = c (ααα · p) + β c2 + V(r) and the Coulomb potential
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V(r) = − Z/r , the Coulomb-Green function is given by a 4× 4-matrix, which satisfies
the equation (

H (Dirac)(r) − ε − c 2
)

Gε(r, r′) = δ(r− r′) I 4 .

Here, ααα and β are the well-known Dirac matrices, I 4 the 4× 4 unit-matrix, and
where—as usual in atomic structure theory—the rest energy m c 2 is not incorporated into
the (total) electronic energy ε of the hydrogenic atom or ion. Solutions to this equation
are often discussed in the literature in terms of the Whittaker or the Kummer functions
of the first and second kind, but they can also be formally expressed by means of their
spectral decomposition

Gε(x, x′) = ∑
ν

∫
ψν (x) ψ+

ν (x′)
εν − ε

= ∑
nν [εν ]κνmν

∫ 〈x|nνκνmν〉 〈nνκνmν|x′〉
εν − ε

, (2)

and where x = (r, σ) denote the spatial and spin coordinates of the electron, while nν[εν]
indicates the summation over the discrete and the integration over the contineous part of
the spectrum. Often, moreover, a radial-angular representation of the atomic spectrum
with quantum numbers ν ≡ (nνκνmν) is utilized, and as displayed on the right-hand
side of Equation (2). Whereas the wave functions of the Dirac Hamiltonian are readily
implemented for all energies, for example, the bound and free-electron states [29], the Green
functions are often provided only for bound-state energies (ε < 0) [30], even though a
representation of the radial Green function in an analytical Sturmian basis has been worked
out as well and can be applied quite readily [31].

As seen from the radial-angular (spectral) decomposition (2), already a single-electron
Green function generally implies three infinities owing to the spatial degrees of freedom of
the electron. In practice, therefore, any summation over the quantum numbers (nνκνmν)
needs to be truncated at some principal quantum number n (max) as well as to some proper
list of angular momentum quantum numbers |κ| (max) . Often, this truncation is done
implicitly by choosing a finite, for instance B-spline, basis for the numerical solution of the
one-electron Dirac equation and, hence, a pseudo-representation of the full spectrum. For
N-electron atoms and ions, in contrast, the 3 N infinities of the associated Green functions
are indeed a (very) serious challenge, and any truncation of these infinities must be based
on good physical insight into the particular application as well as into other approximations
that need to be done in order to keep computations feasible.

2.2. Approximate Many-Electron Green Functions

Formally, of course, the Green function calculus is known as a very powerful and
extensive mathematical machinery for solving inhomogeneous boundary-value problems.
However, any detailed discussion of this machinery is well beyond the scope of this work.
Instead, here we shall take a pragmatic viewpoint, namely, that any properly truncated
spectral decomposition

GE(x1, x2, ...; x′1, x′2, ...) ≡ GE(X; X′) = ∑
ν

∫ 〈X|αν Jν Mν〉 〈αν Jν Mν|X′〉
Eν − E

, (3)

based on relativistic and approximate, many-electron atomic state functions (ASF)
〈X|ανJν Mν〉 in position space X = x1, x2, ... , also represents a (relativistic) approxi-
mate Green function of an atom or ion. Here, J ≡ JP is a short-hand notation of the
total angular momentum J and the parity P of the many-electron state, while M refers
to the projection of the angular momentum, and α to all other quantum numbers that
are needed in order to determine the states uniquely. This compact notation resembles
expression (2) but enables us to readily include the coupling (fine-structure) of the electrons
and to enlarge the many-electron Green functions in a systematic manner without any
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change in the underlying classification of the atomic levels. In practice, of course, this
notation just “moves” the inherent complexity of all many-electron Green functions and
the evaluation of transition amplitudes into the construction of the symmetry-adopted
CSF bases [26,32], their diagonalization [33,34] as well as the computation of the (so-called)
angular coefficients [35]. Apart from the truncation of the 3 N quantum numbers in sum-
mation (3), therefore, the term approximate also refers to the representation of the ASF
〈X|ανJν Mν〉 as well as to the detailed pole structure (in the complex plane) in order to
account for (additional) boundary conditions. Here, we need not to discuss these issues in
much further detail as they are central to all (relativistic) atomic structure codes.

With this pragmatic view in mind, any well truncated summation (3) will be seen
here as an approximate many-electron Green function as long as the asymptotic behaviour
(of the electron waves with positive energy), the symmetry and completeness of the ASF
in this expansion can be properly explained. While the one-electron orbitals are readily
generated for any (self-consistent) central-field potential, the symmetry of the atomic
states |αν Jν Mν〉 arises, as usual, from the diagonalization of a properly chosen Hamil-
tonian matrix, and whose set-up and computation may significantly be simplified by
using a symmetry-adopted basis of CSF. This approach has been realized especially in the
MCDHF method for several decades [36,37], and is employed also within the JAC program
below [24,25]. The “completeness” of the (various spectra of) ASF is of course elusive but
can be explained quite similar as for any restricted or complete active-space method [38,39].
Finally, the asymptotic behaviour of the atomic states for rN → ∞ is mainly relevant for
the (auto-) ionization [40,41] and electron capture processes [42], and especially if angle-
and polarization-resolved properties are considered for the free electron [43,44]. Further
work will need to be done in order to understand this asymptotic behaviour in good detail.

The rotational symmetry and parity of the ASF |αν Jν Mν〉 split each approximate
Green function into separate channels (continua) of well-defined symmetry J ≡ JP , and as
shown in Figure 1b. This figure compares the single- and many-electron spectra (continua)
of atoms and ions with complex shell structure and briefly explains the role of the (total)
symmetry of the states. Analogue to the one-electron Coulomb-Green function (2), an
infinite number of channels generally occur for every atom or ion, and including channels
of both parities, P = ± 1 . In practice, however, only a few of these channels (continua)
are usually relevant for any non-linear interaction process, either because of the symmetry
of the underlying interaction operators or due to further limitations in the theoretical
description. For the two-photon excitation and ionization of a 1s electron from neon-like
ions [5,45], for example, Figure 1 displays the JP = 1− symmetry channel due to a
E1E1 excitation as well as the 2− channel if, in addition, one wishes to account for E1M2
multipole excitations.

While the decomposition of the atomic Green function into symmetry blocks (channels)
is quite straightforward to do, the explicit representation of the ASF 〈X|αν Jν Mν〉 in
expression (3) requires much further care. For this representation, the proper couplings
of all electrons need to be considered in the set-up and computation of this Hamiltonian
matrix. This is particularly true if some atomic process leads to a multiple ionization
(or capture) of electrons, such as the double Auger emission. The distinction of different
approaches in the construction of the Hamiltonian matrix will be further discussed below.
Here, let us just resume that any symmetry channel (continuum) of the Green function
is practically equivalent to the set of atomic eigenvectors {Eν, |αν JM〉} with fixed total
symmetry (J, M) , and which formally belongs to both, the bound-state spectrum of
the atom (Eν < 0) as well as to its continuous part (scattering states; Eν ≥ 0 ), and
with 1, 2, ... or, possibly, even more electrons within the continuum. All these levels are
normally constructed from a single set of one-electron orbitals, and which need first of all
to be chosen in such a way to represent the bound-state levels of the given configurations
reasonably well. From these sets of atomic eigenvectors, the second and higher-order
transition amplitudes can then be obtained by just evaluating the corresponding many-
electron matrix elements, quite analogue as in first-order perturbation theory.
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Figure 1. Comparison of the single- and many-electron spectra (continua) of atoms and ions with complex shell structure.
In the relativistic theory, the (a) single-electron energies (solid and dashed blue lines) follows from the solution of the
Dirac equation in a proper central-field potential V(r) , and which are designated in the (standard) 1s, 2s, 2p1/2, 3/2, ...
subshell notation, analogue to the hydrogenic atom. Above of the ionization threshold, ε = 0 , there is a single-electron
continuum (light blue box) for each symmetry (κ, m) , and which is formally often captured by means of a finite summation
(integration) over the pseudo-states. (b) For many-electron atoms, quite similar, the bound-state solutions (solid and dashed
blue lines) are still diagonal in the total symmetry J ≡ JP of the atomic state functions but now requires a proper coupling
(and construction) of the CSF; see text for further details. Again, a many-electron continuum (light red boxes) is associated
with each symmetry (J, M) , although at slightly different threshold energies with regard to the ground-state level. While
the subshell occupation (red circles in the left panel) of the many-electron states just refer to the single-electron spectrum,
only their total symmetry (and energetic order) are relevant for the classification and distinction of the many-electron
continua. The selected occupation and symmetries in both panels refer to neon-like ions with a 1s22s22p6 1S0 ground level.
For the 1s22s22p6 1S0 + 2 h̄ ω → 1s2s22p63d 3D1,2,3 two-photon absorption of these ions, the dominant E1E1 transition
amplitude (1) is based on the JP = 1− symmetry channel, while the 2− channel need to be taken into account, in addition,
if the E1M2 multipole excitations are considered as well. Other channels (continua) are not relevant for the example from
Section 3.2.

The many-electron Green function (3) is closely related also to the (potential) scattering
of atoms

H
∣∣Ψ+

〉
= E

∣∣Ψ+
〉
,

based on some properly chosen many-electron Hamiltonian H , the collision energy E and
by including suitable scattering boundary conditions as indicated by the + sign above.
A formal solution to this Schrödinger equation is given by the well-known Lippman-
Schwinger equation in terms of the initial state |Ψo〉 and the many-electron Green operator
G+

E [46].

∣∣Ψ+
〉

= |Ψo〉 +
1

E − H + iη
V |Ψo〉 + ... ≡ |Ψo〉 + G+

E V |Ψo〉 + ... , (4)

and where V describes the interaction (potential) as seen by the atom. Here, the small
positive parameter η > 0 ensures that the boundary conditions of an overall outgoing
wave are taken into account. In single-electron excitation and (auto-) ionization processes,
in contrast, these boundary conditions are usually treated less formally, although quite
similar, in terms of the scattering phases of the incoming or outgoing electrons [40,47,48].
Alternatively, ansatz (4) can be combined also with an optical potential [49], and which
(may) help avoid the cumbersome procedure of adjusting the boundary conditions for
many-electron atoms.
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2.3. Selection of Subspaces

Having an approximate Green function characterized by a (finite) number of symmetry
channels, that is, properly constructed sets of many-electron ASF with well-defined symme-
try J and energetic order, we just need to deal with those subspaces (of the many-electron
Hilbert space) that have to be taken into account for a particular application. Obviously,
the selection and construction of these subspaces requires some physical understanding
of the underlying atomic process. For most processes, this construction can be made by
specifying suitable schemes (classes) of virtual excitations or de-excitations with regard
to some reference configurations (or states). For a careful and systematic construction,
moreover, it is desirable to start from a set of reference configurations and to generate
virtual excitations due to a few simple rules. Of course, these rules should distinguish
also how and to which extent correlations among the bound and continuum electrons are
taken into account within the particular Green function representation. Table 1 displays
and briefly explains a few of these excitation schemes which help control the generation of
approximate Green functions and which have been implemented in the JAC program below.
These schemes are based on the atomic shell model and, especially, on the well-known
concept of (non-relativistic) electron configurations. They are used to describe how the
shell occupation can be modified and how many of the electrons may be released into
the continuum. In other words, each approximate Green function can be classified also
in terms of the (maximum) number of free electrons as well as a pre-specified excitation
scheme. This scheme is then applied in order to generate all (non-relativistic) configurations
that are considered in the associated many-electron (CSF) basis.

Table 1. Useful excitation schemes for the construction of approximate Green functions (channels).

Excitation Scheme & brief Explanation and Implementation.

(De-)excitation of a single electron from a set of (non-relativistic) reference configurations: This includes all possible
excitations and de-excitations of a single electron into configurations with the same number of electrons, but with
up to one (free) electron in the continuum. Further restrictions can be formulated for the shells that are taken into
account for excitations; cf. the data structure DeExciteSingleElectron and Table 2.
(De-)excitation of two electrons from a set of (non-relativistic) configurations: Analogue to above but by including
all possible excitations and de-excitations of up to two electrons. These configurations then enables one to represent
N-electron scattering states with either one or two free electrons within the continuum; cf. DeExciteTwoElectrons.
Add a single electron to a set of configurations: This scheme generates all possible configurations with one additional
electron but without any further replacement of the occupied orbitals in the reference configurations. Further
restrictions can be formulated for the shells that are taken into account for the excitations of the additional electron;
cf. AddSingleElectronWithoutHoles.
Remove a single electron from a set of configurations: Generates all configurations with one electron less in any of
the given subshells; cf. RemoveSingleElectron.
Remove two electrons from a given set of configurations: Analogue as above but with two electrons less in any (pair
of) subshell; cf. RemoveTwoElectrons.

Excite one electron and capture another one: Generates all configurations with one electron excited with regard
to the reference configurations, and with another electron captured in given high-n` subshells. This increases the
number of electrons by one; cf. ExciteByCapture.
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Table 2. Selected data structures of the JAC toolbox that are relevant for the generation of approximate Green functions.

Data Structure & Brief Explanation.

AbstractExcitationScheme: defines an abstract and a number of concrete data types to distinguish between differ-
ent schemes for generating configuration lists as they frequently occur in Green function and cascade computations;
see Table 1 for details.
AbstractGreenApproach: defines an abstract and a number of concrete data types for approximating a many-
electron Green function by diagonalizing the Hamiltonian matrix in a CSF basis with well-defined total symme-
try J . This abstract type presently comprises the concrete data types SingleCSFwithoutCI, CoreSpaceCI, and
DampedSpaceCI; see text for further explanations.
AbstractRepresentationType: defines an abstract data type to work with and discriminate between different
atomic representations in JAC. A present, valid concrete types are MeanFieldBasis to generate a set of mean-field
orbitals as well as an associated mean-field basis; CiExpansion to generate a configuration-mixed representation of
all levels from a given set of reference configurations; RasExpansion to generate a restricted active-space expansion;
and GreenFunction to generate an approximate (many-electron) Green functions. Further representations (concrete
types) of this abstract data type might be added in the future.
GreenChannel: defines a data structure for a single symmetry channel of an approximate Green (function) expan-
sion; cf. Figure 3.
GreenExpansion: defines a data structure to generate an approximate Green (function) expansion as associated
with a given set of reference configurations, excitation scheme and a selected approach for the representation of the
(pseudo-) ASF; see also the middle panel of Figure 2 and the example in Section 3.3.
GreenSettings: specifies additional parameters that help control the computation and generation of an approxi-
mate Green (function) expansion; cf. lower panel in Figure 2.

For example, the excitation of a single electron from a given set of (non-relativistic)
configurations includes all those configurations with a replacement of one electron from an
occupied subshell into another occupied or yet unoccupied shell. Although the number of
electrons of the generated configurations is still the same as before, up to one free electron
may now occur in the N-electron scattering states. Indeed, several of these excitation
schemes have been implemented below in order to specify and generate suitable (lists of)
CSF bases for the selected channels with total symmetry J . Apart from the construction of
approximate Green functions, the same or quite similar excitation schemes are required
also for the computation of atomic cascades [50–52], or the construction of restricted
active spaces [53], in order to incorporate inter-electronic interactions in a balanced but
user-controlled manner.

The use of excitation schemes classifies each Green function first of all in terms of
electron configurations, that is, in terms of occupation numbers of subshells (n`) , such as
the 1s22s22p6 ground configuration of neon-like ions. Of course, further restrictions can
still be placed upon the principle and orbital angular momentum quantum numbers, and
they are often needed in order to keep the size of the CSF basis feasible. These restrictions
have to be specified separately. Below, we shall typically fix a maximum principle quantum
number n(max), up to which subshells can be occupied, although the associated (pseudo-
) orbitals might belong also to the continuum, if a finite one-electron basis is applied.
In contrast, the orbital angular momenta ` ∈ [`1, `2, ...] need to be given explicitly
to allow the subshells to be restricted to just one or a few partial waves. The detailed
contribution of these one-electron orbitals (basis) to a particular Green function channel
with total symmetry J follows however only from the coupling of the corresponding—
now relativistic—subshells (nκ) , and where the relativistic angular momentum quantum
number κ = ∓(j + 1/2) for j = ` ± 1/2 already includes the spin degree of freedom.
For reference configurations with several open shells, moreover, the number of the so-
generated CSF becomes often quite large (say, >10 4) already for moderate n(max), and even
for each single symmetry J , and this rapid increase then limits the excitation schemes that
remain practical for further computations.
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struct AtomicState.Representation ... a data structure for defining the representation of an
atomic state. Such a representation refers to either a mean-field basis (for some given
configurations), the approximate wave function of one or several levels, an approximate
Green function, or something else.

+ name ::String ... to assign a name to this representation.
+ nuclearModel ::Nuclear.Model ... Model, charge and parameters of the nucleus.
+ grid ::Radial.Grid ... The radial grid to be used for the computation.
+ refConfigs ::Array{Configuration,1} ... List of references configurations, at least 1.
+ repType ::AbstractRepresentationType ... Specifies the particular type of representation.

struct AtomicState.GreenExpansion <: AbstractRepresentationType ... defines a structure to
generate an approximate Green (function) expansion as associated with a given set of
reference configurations, an excitation scheme and a selected approach for the
representation of the (pseudo-) ASF.

+ approach ::AbstractGreenApproach ... Approach used to approximate the (pseudo-) ASF.
+ excitationScheme ::AbstractExcitationScheme ... Applied excitation scheme w.r.t. the refConfigs.
+ levelSymmetries ::Array{LevelSymmetry,1} ... List of total symmetries J^P.
+ NoElectrons ::Int64 ... Number of electrons.
+ settings ::GreenSettings ... Settings for the Green (function) expansion.

struct AtomicState.GreenSettings ... specifies the parameters that help control the generation
of an approximate Green (function) expansion.

+ nMax ::Int64 ... maximum principal quantum numbers of the (single-electron)
excitations that are to be included into the representation.
+ lValues ::Array{Int64,1} ... List of (non-relativistic) orbital angular momenta for which
excitations (partial waves) are to be included.
+ printBefore ::Bool ... True if a short overview is to be printed before.

Figure 2. Definition of the data structures AtomicState.Representation (upper panel) to select and specify a
representation of an atom or ions, based on a set of reference configurations. One particular representation
is the AtomicState.GreenExpansion (middle panel) that specifies an approximate Green function in terms of an
excitation scheme and a selected approach for the computation of the (pseudo-) ASF. Finally, the data struc-
ture AtomicState.GreenSettings (lower panel) enables the user to control the particular size of the approximate
Green function.

For a given set of configurations, the number of CSF is of course geometrically fixed
owing to the coupling (rules of the equivalent electrons) within each subshell as well as
the coupling of the various subshell states. In fact, the construction of such CSF bases is
a standard task in atomic structure theory. We here make use of symmetry-adopted CSF
|α JM〉 with well defined angular momentum and parity as implemented, for example,
in the GRASP [36] and RATIP codes [54]. Apart from the geometrical construction of
the CSF basis, however, the particular representation of the atomic states may still differ
significantly from each other because of the use of various (approximate) Hamiltonians in
the set-up of the energy matrices, the limitations of the one-particle basis or the way, how
the matrix elements are computed with CSF that are embedded in the continuum. We shall
discuss below a few suitable approaches for the computation of these ASF and, hence, the
representation of the symmetry channels (continua) with fixed J , though further work
is likely needed to better understand how different approximations will affect the use of
these Green functions in different applications.

3. A First Implementation of Approximate Green Functions
3.1. Finding a Language for Many-Electron Atoms

The inherent complexity of all (many-electron) Green functions, outlined above, al-
ready suggests that a modern and efficient (computer-) framework is needed in order to
deal with selected, or perhaps even most, of the atoms and ions across the periodic table.
Today, Julia [55,56] is known as such a framework and programming language that was
designed for bringing together (high) performance and productivity, and that enables
the user to gradually learning fresh concepts in scientific computing [57]. Indeed, Julia
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includes a number of very powerful features that are common to so-called productivity
languages, such as dynamic types, optional type annotations, type-specializing, just-in-time
compilation of code, dynamic code loading as well as garbage collection.

The JAC toolbox [24,25] from above is entirely implemented in Julia and provides
tools for performing atomic (structure) calculations of different kind and complexity. In its
original design, we first of all aimed for developing a high-level language that (i) is simple
enough for both, seldom as well as more frequent use of this toolbox, (ii) emphasizes the
underlying physics, and (iii) avoids most technical slang that is often unnecessary but
rather common to most electronic structure codes. These goals are all relevant also for
the generation and application of approximate Green functions. Therefore, let us now
describe how (instances of) approximate Green functions can be generated within JAC

and subsequently applied in order to obtain the cross sections, rates or other properties
of interest. In Section 2.2, we already saw that each Green function comprises different
channels (continua) with well-defined total symmetry J, and which each refers to a set of
atomic levels {E(J)

ν ,
∣∣∣α(J)ν M(J)

〉
}, ν = 1, ..., ν (J) , all of the same total symmetry J. Using

this notation, an approximate Green function is then given by an array (list) of k such
channels and formally written as[{
E (J1)

ν ,
∣∣∣α(J1)

ν M(J1)
〉

, ν = 1, ..., ν(J1)
}

,
{

E (J2)
ν ,

∣∣∣α(J2)
ν M(J2)

〉
, ν = 1, ..., ν(J2)

}
, ...
]

⇐⇒ GE = ∑
ν

∫ |αν Jν Mν〉 〈αν Jν Mν|
Eν − E

≡
Jk

∑
J

J

∑
M=−J

ν (J)

∑
ν

|αν JM〉 〈αν JM|
E (J)

ν − E
. (5)

In more detail, the i-th channel of an approximate Green function is represented by a
list of many-electron (pseudo-) levels

{
E (Ji)

ν ,
∣∣∣α(Ji)

ν M(Ji)
〉

, ν = 1, ..., ν (Ji)
}

. Moreover, all
channels are based on the same excitations, for example, the same set of (nonrelativistic)
configurations, and have up to n = n (max) electrons within the continuum. Obviously,
such a list of many-electron levels is directly applicable also for subsequent numerical
computations.

3.2. Data Structures for the Representation of Green Functions

Properly designed data structures are a key for defining useful objects (building blocks)
for the computation and their straightforward data transfer within a program. For this
reason also, JAC [24] is built upon a rather large number of well-designed data structures,
which enable one to describe (and deal with) the electronic structure and processes of atoms
and ions with complex shell structures. A few prominent examples are an Orbital to
represent the quantum numbers and radial components of (one-electron) orbital functions,
an (atomic) Basis to specify a whole set of CSF, or a Level for a full representation of
a single ASF: E, |α JM〉 . Other data structures, such as an Atomic.Computation are
employed to describe and control the calculation of atomic level structures, their properties
as well as various processes among these levels. These data structures, already available
in JAC, need to be extended here in order to support the generation and application of
approximate Green functions.

In JAC, an approximate Green function is generated by means of a GreenExpansion,
as shown in the middle panel of Figure 2. This (Green) expansion is a special type of an
atomic Representation from the module AtomicState, cf. the upper panel of Figure 2.
Here, a representation generally refers to the quantum-mechanical—and typically also
numerical—formulation of either an atomic mean-field basis, a set of state functions or
just an approximate Green function (within this work), and from which all the desired
properties of an atom or ion can be derived. Apart from a name (string), such a numerical
representation asks the user for the nuclear model, the (radial) grid for all computations,
a list of reference configurations as well as the selected type, here a GreenExpansion <:
AbstractRepresentationType. For this Green expansion, moreover, we then have to des-
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ignate an approach::AbstractGreenApproach, a suitable excitationScheme::Abstract
ExcitationScheme (with regard to the given reference configurations) as well as the list of
total LevelSymmetry’s and the number of electrons within the system. The numerical gen-
eration of the Green functions can be further controlled by the settings::GreenSettings
as shown in the lower panel of Figure 2. These settings enable the user to control the
particular size and to truncate the number of ASF in each Green function channel by:

• a maximum principal quantum number n (max) for all virtual orbitals, and which
applies to all symmetry blocks κ from the single-electron spectrum;

• selecting a list of orbital angular momenta [`1, `2, ...] as considered for virtual excita-
tions by the given (de-) excitation scheme.

Another truncation is made implicitly by the excitation scheme itself owing to its
(maximum) number of free electrons. A few useful excitation schemes were shown in
Table 1 and briefly explained in Section 2.3, though further schemes might be added in
the future if they will facilitate new applications of the JAC toolbox. At present, we have
restricted ourselves to Green function representations with either no or just one electron in
the continuum, in line with the computation of the standard radial integrals in JAC. All
subfields of the data structures in Figure 2 are specified quite analogue to the description
in Section 2 and will facilitate the use of these functions in other applications.

Once an approximate Green function has been specified in terms of the Representation
above, it can be readily computed just by typing [58] .

generate(rep::AtomicState.Representation)

This function call then returns a list of GreenChannel’s as displayed in Figure 3. As
seen from this figure, each channel is internally represented as a Multiplet of (pseudo-
state) ASF, all of which share the same symmetry::LevelSymmetry and all of which are
directly applicable for numerical computations.

struct AtomicState.GreenChannel ... defines a data structure for a single symmetry channel of an
approximate Green (function) expansion.

+ symmetry ::LevelSymmetry ... Level symmetry of the Green (function) channel.
+ gMultiplet ::Multiplet ... Multiplet of (pseudo-state) levels of this symmetry.

Figure 3. Definition of the data structure AtomicState.GreenChannel in JAC that help retain the representation of a single
channel (continuum) of the approximate Green function (5).

In practice, each of these channels typically includes a rather large number of pseudo-
ASF (levels) in order to properly represent the (complete) continuum with total symmetry
J . Indeed, the set-up and computation of these multiplets, including the full diagonal-
ization of the associated Hamiltonian matrix, is computationally the most demanding
part in the generation of approximate Green functions. Therefore, several approaches are
distinguished within JAC in order to determine how the requested sets of many-electron
levels

{
E (Ji)

ν ,
∣∣∣α(Ji)

ν M(Ji)
〉

, ν = 1, ..., ν(Ji)
}

with Ji ∈ [J1, J2, ...] are to be generated and
how much of the electron-electron interaction should to be taken into account in order to
represent both, the bound and continuous part of the channel. Three such approaches are
presently designed and (partly) supported by the JAC toolbox [cf. middle panel of Figure 2].
They make use of a:

(a) Diagonal CSF basis without any configuration interaction (SingleCSFwithoutCI):
This is a fast, though very rough, approximation, in which each CSF with total
symmetry J just represents a single level E (Ji)

ν ,
∣∣∣α(Ji)

ν

〉
of the spectrum. In this simple

approximation, however, only the diagonal matrix elements of the Hamiltonian need
to be computed.
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(b) Basis that includes configuration interactions only between bound-state orbitals
(CoreSpaceCI): For each channel J , a full Hamiltonian matrix is diagonalized
for all those CSF that are built only from bound-state orbitals, while just the diagonal
matrix elements are estimated for computed for all other CSF with at least one free
electron, ε > 0 .

(c) Full Hamiltonian, but where the electron-electron interaction is damped (DampedSpaceCI)
in the radial coordinate r by a user-specified convergence factor e−τ r . This con-
vergence factor applies to both, the bound and free-electron orbitals. For a proper
choice of τ, however, this factor mainly affects the interaction with the continuum
(and between pseudo-state which are embedded within the continuum). The use of
such a damping function in the Slater integrals (and, possibly also in the Breit integrals—
although this has not been realized so far) ensures that the bound-bound, bound-free
and free-free interactions are formally treated on equal footings.

Further approaches for the (generation of the) Green function channels might be
considered in the future if the need arises due to newly emerging applications.

3.3. Example: Two-Photon Excitation and Ionization of Atomic Neon

The two-photon absorption or decay of atoms are well-known second-order processes,
although they are still slightly simpler than most other nonlinear processes, since they
combine two bound states with no free electron, neither in the initial nor final state. The
two-photon absorption, for instance, is described by a transition amplitude [1],

M(M2,M1)(αiJi → α f J f ) = ∑
J

∑
ν

〈
α f J f

∥∥∥O (M2, absorption)
∥∥∥ανJ

〉 〈
ανJ
∥∥∥O (M1, absorption)

∥∥∥αiJi

〉
Ei + h̄ ω1 − Eν

, (6)

quite similar to Equation (1), and with a second term in which the photons are exchanged
(1 ↔ 2) . In this form of the transition amplitude, we now make the symmetry of the
initial, intermediate and final levels more explicit, and also omit the magnetic quantum
numbers (by using reduced matrix elements instead) as the associated summation can be
treated algebraically by means of Wigner symbols and the Wigner-Eckart theorem. In the
amplitude (6), moreover, the multipoles M ∈ {E1, M1, E2, ...} are shown explicitly as
they naturally arise from the standard decomposition of the radiation field in the electron-
photon interaction. The summation (integration) over the intermediate states also shows
the expansion into Green function channels of well-defined symmetry J, and for which
the summation over ν = 1, ..., ν(J) has to be performed separately for each channel. It is
this comprehensible re-writing of the (many-electron) transition amplitudes that makes
a simple access to the (numerical) Green function channels so useful. From this or some
similar form of the transition amplitudes, moreover, the symmetries J of the necessary
Green function channels can be read-off easily. For example, the 1s22s22p6 1S0 + 2 h̄ ω →
1s 2s22p63d 3D1,2,3 two-photon absorption of neon-like ions will be dominated by the
M(E1, E1)(1S0 → 3D1,2,3) amplitude via the J = 1− Green function channel, and which
should include (at least) the 1s→ np 1/2, 3/2 excitations, in line with the excitation scheme
DeExciteSingleElectron [cf. Table 1]. Apart from the bound-state (Rydberg) excitations
1s → 3p, 4p, ... , this scheme should include a good representation of the εp 1/2, 3/2 one-
particle (pseudo-) spectrum, and as readily obtained within a finite (B-spline) basis. If,
in addition, one wishes to take into account also M(E1, M2) transition amplitudes, the
J = 2− Green function channel will be required as well, and which should then include
the excitations into 1s→ n f 5/2 as well.

In JAC, we can readily obtain these approximate (Green function) channels for neon-
like ions by the following short Julia script:
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name = "Approximate Green function for neon-like ions."
refConfigs = [Configuration("1s^2 2s^2 2p^6")]
levelSymmetries = [LevelSymmetry(1, Basics.minus), LevelSymmetry(2, Basics.minus)]
greenSettings = GreenSettings(15, [0, 1, 2, 3], 0.01, true, LevelSelection())
greenExpansion = GreenExpansion(AtomicState.DampedSpaceCI(), Basics.DeExciteSingleElectron(),
levelSymmetries, 10, greenSettings)
#
rep = Representation(name, Nuclear.Model(18.), Radial.Grid(true), refConfigs, greenExpansion)
gChannels = generate(rep)

As explained in Section 3.2, here, we just need to provide a name (string), the nuclear
model, the (radial) grid parameters and the configurations as general input for all (atomic)
Representation’s in JAC. For neon-like ions, we enter the 1s22s22p6 configuration and
the Basics.DeExciteSingleElectron() scheme in order to include all excitations of a
single electron into subshell (n`) with n ≤ n(max) = 15 and ` = 0, 1, 2, 3 . This
specification makes then use of all orbitals 1s, 2s, 2p, ..., 15s, 15p, 15d, 15 f into which
virtual excitations are taken into account due to the replacement of a single electron,
starting from 1s22s22p6 . We also compute and diagonalize the full Hamiltonian for
each channel, as designated by AtomicState.DampedSpaceCI(), but with a convergency-
accelerating factor e−0.01 r . With this input, the Green function expansion is formally
specified and can now be readily generated. Figure 4 shows parts of the output that
is printed to screen (or, more precisely, the standard out stream). The program first
computes a self-consistent field (SCF) for all levels from the reference configurations, here
the 1s22s22p6 1S0 ground level of neon-like Ar8+ ions. It then generates (and displays)
the list of non-relativistic configurations owing to the given excitation scheme. The SCF
also determines the relativistic orbitals from the one-electron (pseudo-) spectra that are
taken into account. The computationally most demanding part refers, however, to the
set-up and diagonalization of the Hamiltonian matrix that, in turn, is carried out for each
channel, and where the concrete number of levels arise from the coupling of the equivalent
and non-equivalent electrons. Here, we restrict the CSF basis to quite a moderate size
(≥100), although much larger bases could be obtained by increasing n(max) or by allowing
other one- and two-electron excitations. After the generation of all channels, the variable
gChannels contains a list (array) of these Green function channels, and which each provide
a multiplet that is suitable for a numerical summation (integration) over the associated
many-electron levels as needed for the amplitude (6).

The quality of the generated Green functions can be checked first of all by means of the
(total) energies of the atomic levels (Eν, |ανJν Mν〉) , that form the individual symmetry
channels. These energies can be readily extracted from the final GreenChannel’s and com-
pared with experiment (as far as available). Table 3 compares the excitation energies of the
low-lying levels from the Green function channel J = 1− with data from NIST [59]. These
energies are compared for three computational models for generating this channel by using
different approximations and settings. The use of a (I) diagonal CSF basis with n(max) = 15
and ` = [0, 1, 2] ; (II) the same but for the full Dirac-Coulomb Hamiltonian; and (III) the
Dirac-Coulomb Hamiltonian, again, but by including additional excitations with regard
to the 1s22s22p6 reference configuration. Model (III) already results in a rather large
representation of the Green function channel J = 1− with a total of 1532 ASF. Further rela-
tivistic corrections due to the Breit interaction or even quantum-electrodynamical estimates
could be added to this representation, in principle, but will need further work to better
understand their benefits for different applications of these approximated Green functions.
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:
Compute CI matrix of dimension 1 x 1 for the symmetry 0^+ ... done.

Eigenenergies:

Level J Parity Hartrees eV [eV]

1 0 + -5.566535609167560e+03 -1.514731492551343e+05 -1.514731492551343e+05

:

Generated list of (non-relativistic) configurations that contribute to the representation:
-------------------------------------------------------------------------------------
(1) 1s^2 2s^2 2p^6
(2) 1s^2 2s^2 2p^5 3s^1
(3) 1s^2 2s^2 2p^5 3p^1
:
(154) 1s^1 2s^2 2p^6 15f^1
-------------------------------------------------------------------------------------

Relativistic orbitals:

--------------------------------------------------------------
Subshell isBound energy [a.u.] energy [eV] st-grid
--------------------------------------------------------------
2p_1/2 true -2.89862828e+02 -7.88756930e+03 true
2p_3/2 true -2.77420779e+02 -7.54900390e+03 true
2s_1/2 true -2.99926381e+02 -8.16141253e+03 true
1s_1/2 true -1.37180820e+03 -3.73288024e+04 true
:
15d_5/2 true -2.12612200e+00 -5.78547263e+01 true
--------------------------------------------------------------

Construct a basis with 117 CSF for J^P = LevelSymmetry[1 -] with 93 subshells: 1s_1/2 2s_1/2 ... 15f_5/2 15f_7/2
Compute a Green function multiplet in JAC.AtomicState.DampedSpaceCI() approach ... done with 117 levels
Construct a basis with 115 CSF for J^P = LevelSymmetry[2 -] with 93 subshells: 1s_1/2 2s_1/2 ... 15f_5/2 15f_7/2
Compute a Green function multiplet in JAC.AtomicState.DampedSpaceCI() approach ... done with 115 levels

Green function channels:

Channel with 1 - symmetry, 117 levels and energies [Hartree]: -497.6930270255412 ... -381.5279896305534
Channel with 2 - symmetry, 115 levels and energies [Hartree]: -497.7270475478186 ... -381.5278187718539

Figure 4. Selected printout from the example in Section 3.3.

Table 3. Excitation energies Eν − Eo of the seven low-lying levels from the Green function channel
J = 1− . Energies are shown relative to the 1s22s22p6 1S0 ground level and are compared with data
available from the NIST Atomic Spectra Database [59]. Results are shown for three computational
models. The use of a (I) diagonal CSF basis with n(max) = 15 and ` = [0, 1, 2] ; (II) the same but for
the full Dirac-Coulomb Hamiltonian; and (III) the Dirac-Coulomb Hamiltonian but by including
additional (double) excitations with regard to the 1s22s22p6 reference configuration. See text for
further explanations.

Excitation Energies [eV]

Level I II III NIST [59]

2s22p53s 3P1 254.21 253.26 252.66 252.0784
1P1 256.67 255.81 255.23 254.3889

2s22p53d 3P1 293.60 292.49 291.80 291.5371
3D1 297.36 296.43 295.85 295.2012
1P1 301.48 300.88 300.17 298.9385

2s22p54s 1P1 337.68 337.23 336.66 335.280
3P1 340.64 339.43 338.87 337.361

Our example above displays the generation of the J = 1−, 2− channels, although
still in a rather crude approximation. A better representation of the continuum could be
obtained by:
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• Including a larger set of virtual excitations; here, the excitation scheme DeExciteT-
woElectrons() also incorporates double excitations and, hence, further electronic
correlations.

• An improved computation of the Hamiltonian matrix [33]; apart from a better account
of the electron-electron interaction, this refers first of all to the treatment of the CSF,
that are embedded into the continuum, and eventually also to the negative continuum,
if one needs to go beyond the no-pair Hamiltonian.

• Enlarging the number of (pseudo-) orbitals in the representation of the one-electron
spectra; this is done by increasing n (max) for all channels or by a larger number
of orbital angular momenta in the construction of the configuration lists. The user
can affect the number and energetic position of the one-electron (pseudo-) orbitals
by choosing proper grid parameters, although a direct preference of certain energy
intervals is less obvious to achieve for these orbitals [60].

• Providing a better continuum for the channels; here concepts and the experience from
(restricted) active-space computations might be helpful in the future.

• Supporting the hyperfine splitting or other symmetries owing to the additional occur-
rence of external fields already into the Hamiltonian, that is, into the representation of
the corresponding (pseudo-) states.

• Adopting more advanced approaches, such as the K-matrix scattering theory [61], in
order to make the Green functions applicable also to general scattering problems.

While all of these items indicate possible improvements in the representation (and
usually also a sizeable increase in the number of ASF) for each channel, more often than
not, they are unfeasible in practice. It generally requires physical insight and, perhaps,
some prior experience of the user with the computation of the given process to properly
select the input for the generation of approximate Green functions. Further work will likely
be needed in order to better understand how the current limitations in the set-up of these
functions can be softened, and how they can be made suitable for the accurate computation
of nonlinear processes.

3.4. Use of Approximate Green Functions

Various (nonlinear) processes and related properties have been mentioned in the
introduction above and formally require a single or multiple summation over a complete
spectrum of the atom or ion of interest. Table 4 displays a few selected second-order
properties and (atomic) processes whose transition amplitude request for the summation
over different continua. They are briefly explained from a physics perspective in this
table, while further details about their cross sections, rates, angular distributions, and so
forth, still need to be worked out, and this applies especially for the evaluation of these
transition amplitudes within the framework of the MCDHF method. Moreover, several of
these processes involve free electrons, either in the initial and/or final state. Very little is
known so far about the proper description of all processes, for which two or more electrons
belong to the continuum. While the given classification of the (approximate) Green function
channels might indeed help to deal with these processes also quantitatively, further work
on the computation of the continuum-continuum matrix elements will be required and
may perhaps even restrict the use of such summations.
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Table 4. Selected (second-order) properties and atomic processes that require a summation over one or several many-electron
continua, i.e., a simple access to a proper representation of Green function channels.

Property or Process & Brief Explanation.

Frequency-dependent (ac) polarizability: The polarizability of an atom in level (αJ) generally describes its
response to the radiation field in second-order perturbation theory, that is, due to the absorption and re-emission of
(laser) photons. For a sufficiently weak time-harmonic (ac) electric field, one often distinguishes between the scalar,
vector and tensor polarizabilities in open-shell atoms.
Second-order Zeeman shift: This shift describes the dominant frequency correction to the Zeeman splitting in
time-periodic (ac) laser fields and is known to play a major role in atomic-clock studies.
Two-photon absorption & decay: Simultaneous absorption or emission of two photons of identical or different
frequencies in order to (de-) excite an atom from an initial to some fine level. This is a non-linear optical process since
the (absorption) rate is proportional to the square of the light intensity, W (2) ∝ I2 . In multi-photon absorption,
more generally, the rate for an N-photon absorption is W (N) ∝ IN .
Two- and multi-color photoionization: In this process, the absorption of two or more photons leads to the emission
of one or several electrons. This process has been considered in both, the weak and strong-field regime, and it
comprises the two-photon direct and sequential double ionization.
Rayleigh-Raman scattering: The elastic Rayleigh and inelastic Raman process can be described in second-order
perturbation theory in terms of two-photon amplitudes for a transition from levels |αi Ji〉 →

∣∣∣α f J f

〉
, quite analogue

to the amplitude (6).
Radiative Auger emission: This process results in the simultaneous emission of an electron and a photon, which
share the transition energy, and mainly occurs for inner-shell excited atoms and ions.
Single-photon double ionization: This ionization process refers to the simultaneous emission of two electrons
due to the absorption of one photon: A + h̄ω → A2+ + e−1 + e−2 . This double ionization has been modeled also by
(single-electron) knock-out and shake-off processes, although a detailed description should be based on second-order
transition amplitudes, with the inter-electronic interaction as one of the perturbations.
Double Auger decay: This decay process gives rise to the simultaneous emission of two electrons from an inner-
shell excited atom or ion; the double Auger rate amounts for inner-shell transitions to about 10 % of the single
autoionization rate. This process provides valuable information about the inter-electronic correlations.
Radiative double-electron capture: The simultaneous capture of two electrons in ion-atom collisions may lead to
the emission of energetic photons but require to properly understand the role of inter-electronic interactions.
Pair production and annihilation: This second-order quantum-electrodynamical process generally requires the
integration over the complete spectrum of the ion but can be estimated by means of approximate Green functions.

4. Conclusions

In this work, we have shown how relativistic (many-electron) Green functions can
be approximated and systematically enlarged to few- and many-electron atoms and ions.
The representation of these approximate functions is based on different classes (schemes)
of virtual excitations with regard to a set of bound reference configurations as well as
on the MCDHF expansion of all atomic states involved. A first implementation of these
approximate Green functions has been realized within the framework of JAC, the Jena
Atomic Calculator, and will facilitate further studies on multi-photon and multiple electron
(emission) processes.

While the approximate Green functions can be readily decomposed into channels
(continua) of well-defined symmetry J , the detailed representation of these channels
require special care. Often, the size of the associated CSF basis increase very rapidly and
limits the (number of) excitations schemes that remain feasible for practical applications.
Further work is necessary also to address questions about the continuous part of the
spectrum, especially if two or more free electrons contribute to the many-electron basis. In
the implementation above, these questions and the associated difficulties can be answered
(distinguished) by just using different approaches (::AbstractGreenApproach). With
the given classification of the Green functions, we hope to stimulate a more elaborate
discussion and use of approximate atomic Green functions in the future.
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