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Abstract

Purpose of the Review The main goal of this article is to discuss how the development of state-of-the-art technology has made it
possible to address fundamental questions related to how the renin-angiotensin system (RAS) operates within the brain from the
neurophysiological and molecular perspective.

Recent Findings The existence of the brain RAS remains surprisingly controversial. New sensitive in situ hybridization tech-
niques and novel transgenic animals expressing reporter genes have provided pivotal information of the expression of RAS genes
within the brain. We discuss studies using genetically engineered animals combined with targeted viral microinjections to study
molecular mechanisms implicated in the regulation of the brain RAS. We also discuss novel drugs targeting the brain RAS that
have shown promising results in clinical studies and trials.

Summary Over the last 50 years, several new physiological roles of the brain RAS have been identified. In the coming years,
efforts to incorporate cutting-edge technologies such as optogenetics, chemogenetics, and single-cell RNA sequencing will lead

to dramatic advances in our full understanding of how the brain RAS operates at molecular and neurophysiological levels.
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Introduction

The physiological relevance of the renin angiotensin system
(RAS) in blood pressure regulation and electrolyte homeosta-
sis is well established and undisputable. The RAS is tradition-
ally described as a hormone system, which promotes arterial
blood pressure elevation primarily by inducing vasoconstric-
tion, sodium retention, and aldosterone release. The sustained
overactivation of the RAS could lead to hypertension, a dis-
ease affecting almost half of US American adults [1]. The
activation of the endocrine RAS is initiated upon the release
of renin from juxtaglomerular cell granules into the circula-
tion. By catalyzing the cleavage of angiotensinogen to release
angiotensin I peptide, renin acts as the rate limiting enzyme of
the RAS, at least in humans. Thus, it is not surprising that
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there are a number of complex mechanisms regulating renin
expression and secretion [2]. The subsequent conversion of
angiotensin (ANG)-I to ANG-II is catalyzed by angiotensin
converting enzyme (ACE) which is localized to endothelial
cells and is abundant in the lungs. Most of the functions in-
ducing blood pressure elevation are mediated through binding
of ANG-II to angiotensin type 1 receptor (AT|R), whereas,
binding of ANG-II to angiotensin type II receptors (AT,R)
has been reported to generally oppose the actions of AT{R.
Other peptides of the RAS, such as ANG-(1-7) and
alamandine, also act to counter regulate the action of ANG-
IT at AT|R [3, 4]. Drugs targeting the RAS are effective as
treatments for hypertension and other diseases including heart
failure, chronic kidney disease, diabetic nephropathy,
Marfan’s syndrome, and some autoimmune diseases [5—10].
However, it is unclear why these drugs are effective even in
patients exhibiting low or normal circulating renin activity
[11, 12]. The answer to this observation may lie in the exis-
tence of an independent autocrine/paracrine RAS acting local-
ly within several tissues, including the brain.

The existence of the brain RAS, which was initially pro-
posed by Bickerton and Buckley in 1961, has changed the
traditional view of the RAS [13]. Since the discovery that
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central ANG-II induces a potent pressor response, several new
functions of the brain RAS have been identified. Central ad-
ministration of ANG-II elicits potent dipsogenic responses,
induces sodium intake, triggers sympathetic outflow to the
kidney and other organs, and recently, evidence has
established that the brain RAS modulates metabolic function
primarily through distinct nuclei within the hypothalamus
[14-17]. Most of these effects can be attenuated by adminis-
tration of RAS blockers or by genetically ablating AT|R in
specific brain regions or cell types [18-20].

Resistant hypertension, in which high blood pressure re-
mains above 140/90 mmHg despite use of 3 or more antihy-
pertensive drugs (including a diuretic), accounts for approxi-
mately 10% of patients with essential hypertension [21].
Resistant hypertension and sympathetic overactivity have
been linked to brain RAS overactivation [22]. Thus, novel
drugs targeting the brain RAS might be useful to treat resistant
hypertension and/or diseases associated with elevated sympa-
thetic outflow such as heart failure [23]. This article aims to
bring the reader up-to-date on the important new findings and
the currently controversial topics in the field. Then, novel
translatable strategies to attenuate the upregulation of brain
RAS activity in human resistant hypertension will be also
discussed.

Role of Renin in the Generation of ANG-II
Within the CNS

Although more than 50 years of research supports the impor-
tant role of the brain RAS in modulating several physiological
functions, it is not completely clear how angiotensin peptides
are generated within the central nervous system (CNS). There
is extensive evidence indicating that angiotensinogen is highly
expressed in astrocytes and in some specific populations of
neurons, which suggests that the extracellular space of the
CNS has abundant renin substrate [19, 24-28]. The distribu-
tion of the two main ANG-II receptors, AT{R and AT,R, was
mapped initially by autoradiography and subsequently con-
firmed by either in situ hybridization or utilizing transgenic
mice expressing reporter genes under the control of either
ATR or AT,R promoters [29, 30, 31<]. AT,R is highly
expressed in most of the circumventricular organs such as
the subfornical organ, the organum vasculosum laminae
terminalis (OVLT), and the area postrema. However, the ele-
vated expression of AT|R in some regions behind the blood-
brain barrier such as the paraventricular nucleus of the hypo-
thalamus (PVN), the nucleus tractus solitarius (NTS), the ros-
tral and caudal ventrolateral medulla (RVLM and CVLM,
respectively), the medial preoptic nucleus (MnPO), and some
neurons within the arcuate nucleus (ARC) suggests a role for
ANG-II as a neuromodulator. Expression of AT,R in the brain
predominates over AT ;R expression during fetal development
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[32]. However, recent studies from De Kloet et al. utilizing
bacterial artificial chromosome transgenic AT,R-enhanced
green fluorescent protein (eGFP) reporter mouse confirmed
the presence of AT,R in adult brains particularly in neurons
and/or fiber terminals in circumventricular organs, hypotha-
lamic nuclei, and the hindbrain [30].

Although most of the components of the RAS have been
identified in the brain, the lack of a reliable method to detect
renin in small neuroanatomical structures had led some to ques-
tion whether the central generation of ANG-II requires renin.
Indeed, renin-independent ANG-II generating biochemical
pathways involving tonin and cathepsin D have been proposed
[33-36]. Others have performed experiments which they inter-
pret as a refutation of the brain RAS [37]. The difficulties in
measuring renin stem from several factors. First, considering
that renin is the rate-limiting enzyme for the generation of
ANG-I, and given the elevated bioavailability of
angiotensinogen in the extracellular space of the brain, it is
expected renin must be tightly controlled and secreted from
specific cells within selected neuroanatomical nuclei.
Supporting this, minimal elevation of ANG-II levels in discrete
neuroanatomical regions is expected to elicit extremely pro-
found effects. Indeed, evidence indicates that ablation or stim-
ulation of angiotensinergic signaling within a few cells in the
brain leads to extremely prominent cardiovascular and meta-
bolic phenotypes [38—40]. Second, we and others have de-
scribed the existence of an alternative renin isoform termed
renin-b, which is the predominant transcribed renin isoform
in the brain, but is absent in other tissues [41, 42]. Renin-b
lacks the signal peptide and the first third of the pro-segment
which implies that (1) renin-b protein is catalytically active and
(2) is predicted to remain in an intracellular compartment [43].
This observation was particularly compelling as an intracrine
RAS had been previously proposed [44, 45]. Notably, evidence
that ANG-II can be generated intracellularly in presynaptic
neurons and subsequently released to the synaptic terminal up-
on presynaptic depolarization would provide a strong argument
to define ANG-II as a neurotransmitter. To test the hypothesis
that renin-b is involved in the generation of intracellular ANG-
II in the brain, we generated transgenic mice lacking the alter-
native renin-b, while renin-a was preserved [46]. Paradoxically,
mice lacking renin-b exhibited a mild increase in blood pres-
sure during the light cycle, which was attenuated by intra-
cerebroventricular infusions of AT;R blockers or ACE inhibi-
tors [47¢]. These data indicate that intracellular renin-b might
play a regulatory role on the brain RAS rather than generating
intracellular ANG-II as initially proposed [46]. Even though
our data do not support the existence of an intracellular
ANG-II generating mechanism, they neither disprove it.

The brain is one of the most vascularized systems because it
receives 8.6-20.4% of total cardiac output; thus, distinguishing
renin levels generated within brain tissues (autocrine/paracrine)
from the circulating renin (endocrine) is extremely challenging
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[48]. Despite evidence that renin activity and ANG-II have
been identified in the cerebrospinal fluid (CSF) and brain tis-
sues from nephrectomized animals, those who resist the exis-
tence of the brain RAS postulated that samples must be con-
taminated with traces of trapped blood [49—57]. Following this
rationale, Van Thiel and colleagues attempted to provide evi-
dence that the brain lacks the capacity to generate ANG-II by
measuring renin activity (angiotensin-generating activity) in
brain structures before and after organ buffer perfusion [37].
It is not surprising that there was a significant decrease in renin
activity within several brain structures after buffer perfusion
because (1) the brain has blood, and (2) neurons unlikely store
renin within granules as do specialized renal juxtaglomerular
cells. Indeed, the most direct and accurate conclusion from this
study was that the brain indeed contains blood. It is surprising
the authors decided to ignore their own data that renin activity
remained at detectable levels in some buffer-perfused tissues
including the brainstem. This is particularly interesting because
in a double-transgenic mouse in which enhanced green fluores-
cence protein (GFP) is expressed under the control of the renin
promoter and (-galactosidase is controlled by the
angiotensinogen promoter, we identified unique renin-
expressing cells in close proximity to angiotensinogen-
expressing cells specifically within the RVLM, a brainstem
nucleus [58, 59].

It is of utmost importance that one contrasts a classical
endocrine system and views the brain RAS as a neuroendo-
crine, autacoid, or neurotransmitter system where single neu-
rons or small collections of neurons mediate output from the
CNS. Thus, cellular, neuroanatomical, and molecular specific-
ities are the key aspects to be considered when neuroendocrine
systems, such as the brain RAS, are studied. It remains unfor-
tunate that equivocal interpretations from experiments lacking
sensitivity and neuroanatomical selectivity, those which are
not required when studying the classical RAS, re-emerge from
time to time to question the existence of the brain RAS [60]. In
the final section of this article, we will discuss how the devel-
opment of state-of-the-art technology to study precise molec-
ular signaling and neuronal circuits within the CNS are appro-
priate to elucidate the key mechanisms regulating generation
and action of angiotensin peptides within different neuroana-
tomical regions.

Activation of Renin by Prorenin Receptor

The proteolytic activation of prorenin that normally occurs in
secretory granules in renal JG cells is unlikely to occur in
extrarenal tissues, including the brain [61]. Thus, it has been
proposed that activation of renin in extrarenal tissues requires
its binding to ATPase H(+)-transporting lysosomal accessory
protein 2, also known as the prorenin receptor (PRR), encoded
by the ATP6ap2 gene. PRR has the unique capability to bind

prorenin and induce its activation without prosegment remov-
al [62]. PRR is highly expressed in neurons and some microg-
lia cells and has been detected in several brain regions impli-
cated in cardiovascular and autonomic control including the
subfornical organ (SFO), paraventricular nucleus (PVN), nu-
cleus of the solitary tract (NTS), and the rostral ventrolateral
medulla (RVLM) [63e, 64]. Despite initial reports indicating
that PRR might be involved in hypertension through local
generation of ANG-II, other roles that are independent of
RAS activation have been described (reviewed in [65]). For
instance, the transmembrane domain of the PRR interacts with
the vacuolar H(+)-ATPase and plays an important role in ly-
sosomal function and neuronal development [66]. In humans,
a unique mutation (¢.321C>T, p.D107D) in the PRR locus is
associated with X-linked mental retardation and epilepsy [67].
Although many RAS-independent functions of PRR are well
defined in kidney, the RAS-independent functions of PRR in
the brain are not completely understood [49, 66, 68—70].

In mice where neuronal PRR was ablated at embryonic day
~18.5 (neuron filament promoter-CRE crossed with PRR-
floxed mice; Neth-PRRKO), central generation of ANG-II
in response to intracerebroventricular administration of re-
combinant prorenin was attenuated. To study the role of neu-
ronal PRR in the pathogenesis of hypertension, Feng’s lab
utilized the model of low-renin hypertension induced by
deoxycorticosterone acetate (DOCA) infusion and high die-
tary sodium. Intracerebroventricular infusion of ACE inhibitor
prevents and reverses high blood pressure, demonstrating that
production of ANG-II in the brain is required for DOCA-salt
hypertension even though circulating RAS activity is sup-
pressed [71]. Moreover, two separate studies have shown that
central infusion of an AT;R blocker mimics the effects of
central delivery of ACE inhibitors [72, 73]. Thus, it is well
accepted that the blood pressure elevation in DOCA-salt hy-
pertension is strongly driven by a neurogenic mechanism in-
volving activation of the brain RAS [74].

Li et al. reported that the selective ablation of PRR in neu-
rons attenuated the elevation of blood pressure in DOCA-salt
hypertension when 0.9 M NaCl was the only fluid offered
[75]. In contrast, experiments where DOCA-treated Neth-
PRRKO mice were exposed to two-bottle choice paradigm
for the assessment of sodium preference revealed that the ab-
lation of PRR in neurons is insufficient to decrease blood
pressure but suppressed DOCA-induced saline intake [76].
These data suggest expression of PRR in specific brain re-
gions controlling drinking behavior, such as the SFO is of
physiological relevance. Recently, Souza and colleagues ex-
amined the role of PRR in the PVN, a key integratory nucleus
involved in blood pressure control [77]. In this study, PVN-
targeted ablation of PRR was induced in PRR-floxed mice by
bilateral stereotactic microinjection of adeno-associated virus
(AAV)-CRE-GFP. The reduction of PRR expression in the
PVN by less than 50% was sufficient to attenuate DOCA-
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salt induced blood pressure elevations, cardiac and vasomotor
sympathetic over-activity, and improved cardiac parasympa-
thetic function [63¢]. In addition, live-cell calcium recordings
utilizing a novel calcium biosensor (GCaMP6) revealed PVN-
targeted ablation of PRR attenuates calcium influx in response
to ANG-II in DOCA-salt hypertension. Despite the growing
evidence indicating the importance of PRR in the CNS to
control cardiovascular function, there is no generalized con-
sensus whether the underlying mechanisms require local
ANG-II generation. It is likely that both ANG-II-dependent
and ANG-II-independent mechanisms might occur simulta-
neously at different degrees depending on the neuroanatomi-
cal localization and cell types, as well as different physiolog-
ical and pathological circumstances [78].

There is a growing interest in the soluble PRR fragment
(sPRR) which arises from the proteolytic cleavage of PRR by
furin or site-1 protease to generate a 10-kD transmembrane/
cytoplasmic fragment and a 28-kD soluble PRR form [79,
80]. Growing evidence supports that elevation of circulating
sPRR levels are associated with high blood pressure, chronic
kidney disease, preeclampsia, and obstructive sleep apnea
[81-84]. However, the biological function and the physiologi-
cal relevance of sSPRR were completely unknown until recently.
Many functions of sPRR controlling renal function have been
reported. For instance, SPRR exerts antidiuretic actions in part
by inducing frizzled 8-dependent stimulation of aquaporin 2
expression in the collecting duct [49]. Studies specifically
aiming to elucidate the role of sPRR in the CNS have not been
reported. Recently, Gatineau et al. demonstrated that the selec-
tive deletion of adipose tissue PRR elevates systolic blood pres-
sure concomitant with increased circulating SPRR levels in high
fat diet-fed mice [85¢]. In males, systemic infusion of recombi-
nant mouse epitope tagged sPRR resulted in blood pressure
elevation and this increase was attenuated by ganglionic block-
ade, but not administration of AT;R blockers, indicating that
autonomic dysfunction, but not circulating RAS overactivation,
is a key mechanism underlying sPRR-mediated blood pressure
elevation in obese male mice. In contrast, infusion of SPRR in
females failed to induce autonomic dysfunction but it induced
elevated vasopressin levels and plasma renin indicating the ex-
istence of sex differences in sPRR-mediated responses [86].
Given that the source of vasopressin is exclusively from the
PVN and supraoptic nucleus (SON), these observations support
that sPRR is biologically active in the CNS and elevations of
sPRR in the brain might be implicated in certain forms of neu-
rogenic hypertension linked to obesity.

Advances on the Protective Arm of the Brain
RAS

It has been proposed that many of the effects of ANG-(1-7) in
the CNS oppose many of the AT;R-mediated actions of ANG-
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IT in the brain [87]. ANG-(1-7) induces its effects mainly
through Mas receptor activation, although it has been reported
to also act through AT,R [88]. Other studies proposed that
Mas receptors form heterodimers with AT,R in astrocytes
[89]. Teixeira et al. recently reported that ANG-(1-7) binds
to AT R but fails to engage its canonical G protein signaling
[90]. Instead, ANG-(1-7) triggers 3-arrestin recruitment and
intracellular signaling, suggesting it may have the properties
of a biased agonist for AT|R. Several synthetic AT|R biased
agonists have been designed, but the existence of an endoge-
nous functional biased ligand for ATR has not been reported.
ANG-(1-7) can be generated from the direct cleavage of
ANG-II by angiotensin converting enzyme 2 (ACE2), but
ACE2 can also catalyze the conversion of angiotensin I to
Angiotensin-(1-9), which subsequently is converted to
ANG-(1-7) by ACE or neutral endopeptidase [91].
Downregulation of ACE2 and suppression of central
ANG-(1-7) levels are thought to be one of the underlying
mechanisms causing low renin hypertension [20, 92].

In recent years, significant progress has been achieved par-
ticularly on the molecular mechanisms controlling brain
ACE2 activity. Lambert et al. described a process termed
“ACE2 shedding” in which a disintegrin and metalloprotease
17 (ADAM17) catalyze the cleavage of membrane anchored
ACE2 [93]. However, advances on the physiological and
pathophysiological role of ADAMI17-mediated ACE2 shed-
ding in the brain have only been recently demonstrated. Xia
and Sriramula et al. demonstrated that neuron-targeted over-
expression of ACE?2 is sufficient to ameliorate elevated blood
pressure, autonomic dysfunction, and vasopressin release in
response to DOCA-salt hypertension [94]. Moreover, brain-
targeted ablation of ADAM17 utilizing central infusions of
siRNA suppressed DOCA-salt induced hypertension concom-
itant with blunted reduction of ACE2 activity in the hypothal-
amus and cerebrospinal fluid, indicating that ACE2 shedding
by ADAM17 in the brain is a relevant mechanism contribut-
ing to neurogenic hypertension. New evidence indicates that
activation of AT R is required for ADAM17-mediated ACE2
shedding possibly via reactive oxygen species and phosphor-
ylation of extracellular signal-regulated kinase in neurons
[92]. It has been previously shown that a reduction of ACE2
expression in the RVLM is a contributing factor in the devel-
opment of hypertension in spontaneously hypertensive rats
[95]. Mukerjee et al. provided evidence of the importance of
ACE2/ADAMI17 pathway in pre-sympathetic neurons within
the PVN [96°]. Interestingly, ACE2 is expressed in
GABAergic inhibitory neurons projecting onto the hypothal-
amus. Thus, ACE2 is thought to maintain a normal
GABAergic inhibitory tone to the presympathetic neurons in
the PVN in normal physiological conditions, while disinhibi-
tion of this pathway might lead to hypertension. In contrast,
ADAM17 is expressed in single-minded family basic helix-
loop helix transcription factor 1 (Siml)-positive excitatory
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neurons within the PVN and promotes excitatory activity.
Ablation of ADAMI17 in the PVN blunts pressor responses
to acute PVN-targeted microinjection of ANG-II. This accu-
mulating evidence suggests the importance of the opposing
roles of ACE2 and ADAMI17 in modulating of sympathetic
activity and central control of blood pressure. Finally, it has
been recognized that ADAM17 has a role in processing the
proinflammatory cytokine, tumor necrosis factor alpha
(TNF-o). Indeed, upregulation of the brain ADAMI17 was
associated with elevated TNF-o implicating that attenuation
of TNF-a-related mechanisms could be mediating part of the
phenotype observed in mice lacking hypothalamic ADAM17.
Numerous reports suggest elevation of TNF-o and activation
of inflammatory cells (microglia) within certain brain regions
triggers hypertensive responses [97-99]. Therefore, future
studies are expected to clarify whether TNF-« plays a regula-
tory role in ACE2 activity and other RAS components.

Novel Drugs to Modulate the Brain RAS
and Potential New Clinical Applications

A quarter of hypertensive patients exhibit low-renin hyperten-
sion [100]. It has been suggested that low-renin hypertension is
in part driven by elevated angiotensinergic signaling in the brain
[71, 101]. Therefore, the development of novel drugs modulat-
ing the brain RAS might represent an effective solution to treat
resistant hypertension coincident with elevated sympathetic ac-
tivity and suppressed circulating renin activity. Two decades
ago, Llorens-Cortes’s laboratory demonstrated that the conver-
sion of ANG-II into angiotensin III (ANG-III) in the brain is
catalyzed by aminopeptidase A (APA), a zinc metalloprotease
[102]. Importantly, ANG-III has been hypothesized to be the
major biologically active peptide of the brain RAS. This is based
on the observation that inhibition of the brain APA completely
prevents elevated blood pressure in models of neurogenic hy-
pertension with elevated brain RAS [103].

It took years to translate the observation that pharmacolog-
ical inhibition of APA can be used as a therapeutic tool to treat
resistant hypertension in humans. Recently, a new multicenter,
open-label, phase II study was released evidencing the effica-
cy of a brain penetrating inhibitor of APA, firibastat (previ-
ously named RB150), in reducing blood pressure in over-
weight patients of multiple ethnic origins without angioedema
[104-]. Moreover, an additional pilot double-blinded random-
ized placebo-controlled study in hypertensive patients demon-
strated that blood pressure in firibastat-treated patients trended
to be decreased compared to placebo controls without affect-
ing systemic RAS activity [105]. Firibastat is the first oral
medication that may target the brain RAS with promising
clinical application. Current efforts in designing new brain-
penetrating APA inhibitors led to a 10-fold more potent new
prodrug, NI956/QGC006, which has been shown to exert

powerful antihypertensive effects in rats treated with
DOCA-salt [106].

In recent years, multiple pleiotropic roles of the brain RAS,
namely neuroinflammation, autophagy, ER stress, and mito-
chondrial dysfunction, have emerged. These findings resulted
in considerable advances in utilizing brain RAS blockade or
RAS modulation as a therapeutic strategy to treat diseases
beyond neurogenic hypertension. This is specifically relevant
in stroke and cerebrovascular diseases, Alzheimer’s disease,
cognitive dysfunction, Parkinson disease, aging, and others
[107—-115]. Numerous other new molecules or administration
routes to target the brain RAS are currently under investiga-
tion. For instance, new classes of AT{R biased agonists, which
can selectively activate (3-arrestin without activating the clas-
sical G protein-coupled signaling, might represent potential
tools to modulate angiotensin signaling within the brain. For
example, Carvalho-Galvao et al. demonstrated that intra-
cerebroventricular infusion of TRV027, a (-arrestin-biased
AT R-agonist effectively attenuated autonomic dysfunction
and decreased arterial pressure in spontaneously hypertensive
rats (SHR) [116]. Thus, the development of brain-penetrating
AT R-biased agonists would be a promising strategy to treat
resistant hypertension. Finally, Torika et al. demonstrated that
intranasal administration of telmisartan is effective at reducing
brain inflammation and ameliorating the progression of
Alzheimer’s disease in mice indicating that novel routes of
administration can also be employed to inhibit the brain
RAS without systemic off targets effects [117].

Novel Technology to Study the Brain RAS

The development of several cutting-edge technologies to study
the CNS predicts that we might witness a profound advance in
this field in the near future. Several laboratories are currently
utilizing novel in situ hybridization techniques with significant-
ly higher specificity and sensitivity. These are powerful tools to
identify the anatomical and cellular localization of cells ex-
pressing components of the RAS within the CNS and to query
the molecular and/or neural significance of these cells by
multiplexing with different probes. We used RNAscope® tech-
nology to confirm the abundance of AGT and the presence of
ATR and PRR in discrete cells within the brain. Using this
same technique, we and others have identified the distribution
of RAS genes in specific NeuN+ neurons, GFAP+ astrocytes,
and Iba-1+ microglia cells in the SFO, PVN, ARC, and the
RVLM (unpublished). In addition, the development of an ex-
tensive array of transgenic mice carrying conditional alleles of
RAS genes as well as mice expressing tamoxifen-inducible
and/or cell-specific CRE recombinase expression facilitates fur-
ther exploration of novel molecular and physiological functions
of the RAS within specific cell types within the brain. Novel
and previously generated animals expressing CRE recombinase
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under the control of specific promotors including AT;R-CRE or
Ren1-CRE mice, which can be crossed with mice expressing
CRE-dependent TdTomato (or other reporter genes) as well as
mice expressing a fluorescent reporter gene under the control of
RAS genes such as AT,R-eGFP or AT;,R-EGFP (NZ44), al-
low fluorescent labelling of cells expressing RAS genes [30,
31., 118, 119].

Significant progress has been made in developing tech-
niques to identify the distinct roles of specific neurons in the
brain. These techniques include optogenetics and Designer
Receptors Exclusively Activated by Designer Drugs
(DREADD), a chemogenetic technique, in which neuronal ac-
tivity can be stimulated or suppressed in specific brain nuclei
utilizing light or designer drugs, respectively. Using these tech-
niques, several laboratories recently showed the distinct roles of
specific cells within selected nuclei controlling cardiovascular,
metabolic, and autonomic function. For instance, De Kloet el
al. recently reported that optogenetic stimulation of AT|R ex-
pressing neurons in the PVN promotes blood pressure elevation
and activation of the hypothalamic-pituitary-adrenal axis [31¢].
Similarly, Nation et al. utilized DREADD:s to study the role of
SFO neurons in thirst and salt appetite [120+]. Stimulation of
neuronal firing and activation of Gq signaling in mice receiving
SFO-targeted microinjection of a virus (AAV2-CaMKII-HA-
hM3D(Gq)-IRES-mCitrine) to induce selective neuronal ex-
pression of Gaq via a designer receptor (hM3D) that is exclu-
sively activated by clozapine N-oxide, resulted in strong
dipsogenic responses and preference to 0.3 M saline. The com-
bination of these novel techniques with the array of transgenic
mice described above are powerful tools to inquire the re-
sponses to stimulating or inactivating different neuronal circuits
in the CNS.

Finally, emerging “omics” techniques are becoming more
accessible and reliable to study the transcriptome profile in
different neuronal populations. There is particular interest in
single-cell and single-nuclear RNA sequencing technology to
identify different clusters expressing RAS genes to evaluate
the molecular signature of cells. Although studies utilizing
these techniques to specifically evaluate the brain RAS are
not yet available, Sapouckey recently reported an in silico
re-analysis of hypothalamic single-cell RNA sequencing
datasets revealing that AT|R is expressed in a specific cluster
of neurons expressing both Agouti-related peptide (AgRP)
and leptin receptors [121¢]. This seminal discovery may illu-
minate the underlying mechanisms by which the brain RAS
controls resting metabolic rate and sympathetic activity in
obesity-related hypertension.

Conclusion

Although the RAS in the brain has been studied for decades,
interesting and seminal discoveries continue to be made to this
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day. These include assessing the functional significance of
newly identified components of the RAS (such as prorenin
receptor), the action of unconventional RAS peptides (such
as ANG III), enzymes which modify RAS components (such
as ADAM17), and new therapeutic tools to combat neurogen-
ic hypertension. New technologies are making it easier to
answer old questions—what is the localization of angiotensin
receptors—and investigate new ones—what are function of
specific subsets of AT;R-containng neurons? New genomic
technologies such as single cell sequencing will provide novel
platforms to understand the diversity of neuronal types which
respond to RAS activation or mediate downstream RAS
signaling.
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