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Molecular profiling of driver events in metastatic
uveal melanoma
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Metastatic uveal melanoma is less well understood than its primary counterpart, has a

distinct biology compared to skin melanoma, and lacks effective treatments. Here we gen-

omically profile metastatic tumors and infiltrating lymphocytes. BAP1 alterations are over-

represented and found in 29/32 of cases. Reintroducing a functional BAP1 allele into a

deficient patient-derived cell line, reveals a broad shift towards a transcriptomic subtype

previously associated with better prognosis of the primary disease. One outlier tumor has

a high mutational burden associated with UV-damage. CDKN2A deletions also occur, which

are rarely present in primaries. A focused knockdown screen is used to investigate over-

expressed genes associated withcopy number gains. Tumor-infiltrating lymphocytes are in

several cases found tumor-reactive, but expression of the immune checkpoint receptors TIM-

3, TIGIT and LAG3 is also abundant. This study represents the largest whole-genome analysis

of uveal melanoma to date, and presents an updated view of the metastatic disease.
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Uveal melanoma (UM) is a rare form of melanoma but the
most common intraocular cancer in adults1. Enucleation
or brachytherapy can provide good local control but in

50% of patients metastases develop, most frequently to the liver
and with lethal outcome2,3. The genetics of UM has primarily
been studied in the primary tumors of the eye, such as in the
landscape study by the TCGA consortium4. Recurrent mutations
in GNAQ or GNA11 are common, whereas mutations in PLCB4
and CYSLTR2, downstream and upstream of GNAQ/11, are seen
in occasional cases5–8. These driver mutations are all lar-
gely mutually exclusive. Additional recurrent mutations have
been found in EIF1AX, SF3B1, and BAP1, where the latter con-
notes poor prognosis and development of metastatic disease9,10.
The development of metastatic UM can also be predicted using
gene expression analyses, where Class I transcriptional sub-
type tumors have an excellent prognosis but Class II is strongly
associated with metastasis11. However, additional prognostic
subgroups can also be determined4,12–14.

Patients with UM metastases are not predicted to respond to
the same targeted therapies as patients with cutaneous melanoma
since UM does not have BRAF mutations. Moreover, retro-
spective analyses of outcome following the use of immune
checkpoint inhibitors have demonstrated poor response rates at
multiple centers2. At our center, we are using isolated hepatic
perfusion with melphalan to treat patients with liver metastases of
UM. During the surgical procedure leading to the perfusion
treatment, there are possibilities of procuring fresh biopsies for
the generation of PDX models, tumor-infiltrating lymphocyte
(TIL) cultures and for genomics studies of metastases (Fig. 1a).
Here, we describe a profiling of 32 metastatic UM tumors using
whole-genome sequencing and also characterize infiltrating
lymphocytes, providing molecular insight into the genomic events
and immunology involved in late-stage UM.

Results
Recurrently mutated genes in UM metastases. In total, 32
metastases of UM, 6 subcutaneous, and 26 from the liver (Sup-
plementary Table 1), were collected and subjected to whole-
genome sequencing and 28 of them to poly-A+ RNA sequencing.
Twenty-eight of the tumors were pathologically designated as
originating from the choroid, one in the ciliary body and one in
the iris, whereas two cases did not have information about pri-
mary uveal location available. All liver metastases came from
patients that were untreated at the time of biopsy and 24 of them
had been enrolled in the SCANDIUM phase III trial15. All
cutaneous biopsies except one came from patients previously
treated with chemotherapy (IHP, dacarbazine, and/or taxanes).

Variant calling with MuTect 216 revealed mutations in BAP1,
GNA11, GNAQ, SF3B1, CYSLTR2, and PLCB4 (Fig. 1b, Supple-
mentary Fig. 1a, b and Supplementary Data 1), which are
recurrently altered in UM5–9. We discovered no mutations in
EIF1AX, which are associated with a good prognosis9. In all, 29/32
(91%) of metastases were found to have BAP1 mutations. These
were paired with loss of chromosome 3 in the vast majority of
cases (Fig. 1b). In one case, loss of heterozygosity on 3 occurred in
a copy number neutral manner (Supplementary Fig. 1c). Notably,
BAP1 was also the subject of alterations not detected by standard
variant calling, including one large deletion spanning the first
three exons. In another case, an intronic event far from the
nearest splice site was associated with novel splicing events and
intron retention at the point of the mutation (Fig. 1c). A third
tumor contained a 48 bp fully intronic homozygous deletion that
again did not occur at a splice site, but associated with mis-
splicing and intron retention clearly tied to the event (Fig. 1d).
These two alterations most likely created new intronic splice sites.

A previous study has described a mutation that activates a cryptic
splice site within an exon in BAP117. To our knowledge, no cases
have been described for de novo splice-site-generating intronic
mutations in UM; only cases that disrupt canonical splice sites at
the exon–intron boundary18. As BAP1 loss predicts metastasis3,
this highlights the need to also investigate intronic non-splice site
mutations as candidates for loss-of-function events, which exome
or targeted sequencing may not be sufficient to reveal.

Among the three patients where BAP1 mutations could not be
established, two had SF3B1 mutations. We also detected
mutations in SF3B1 that occurred outside the common hotspots
K666 or R625. These included K700E and an in-frame deletion at
V577. The first has to our knowledge not been described in UM,
but is frequent in other cancer types, including breast cancer19,
chronic lymphocytic leukemia20, and pancreatic adenocarci-
noma21. Some SF3B1 mutations also co-occurred with BAP1
mutations, illustrating that mutual exclusivity between these
events is imperfect5.

In the third tumor without BAP1mutation, we did not discover
mutations in either SF3B1 or EIF1AX. BAP1 nuclear staining was
also confirmed with immunohistochemistry (Supplementary
Fig. 4d). This tumor (UM28) was also the only one inferred to
be tetraploid (Supplementary Fig. 1d, e), and had frequent wide
copy number losses, affecting chromosomes 1p, 3, 4q, 6q, 8p, 9,
11, 14, and 16. Mutated genes in these regions included YEATS2
and ZMAT3 on chromosome 3 and AKT1 on chromosome 14.
Lack of BAP1 mutations is characteristic for tumors of the class I
subtype, among which only a small subset tends to metastasize.
Those that do metastasize have been shown to be distinguishable
through elevated PRAME expression13. This particular tumor
displayed the second highest levels of PRAME expression
(Supplementary Fig. 1f), suggesting that it could have originated
from such a class I tumor.

In addition, we found two metastases with mutations in the
tumor suppressor TET2, in one case leading to a stop-gain. A
third tumor had a frame-shift deletion in TET1. TET1 and TET2
exert epigenetic control via DNA demethylation22,23. Some
metastases also had mutations in genes that interact with BAP1,
including ASXL2 and FOXK224 (Supplementary Data 1). These
mutations were not present in TCGA primary UM samples
(Supplementary Fig. 1g, h).

Mutational signature of UV damage in UM. The causes that
underlie UM are to date largely unknown, and despite risk factors
implying a potential role for UV radiation, no clear evidence has
emerged to date and the field is divided on whether this can be a
driving factor6,14,25–27. The pattern of trinucleotide substitutions
across the genome can be informative about underlying muta-
tional processes. Therefore, we estimated the relative contribu-
tions of established mutational signatures28 to the total
mutational burden in the tumors.

Consistent with previous observations6,14, the dominating
signatures were S1, S3, S5 (COSMIC nomenclature), and to a
lesser extent S16. S3 has been associated with defective DNA
double-stranded break repair, whereas S1 and S5 are termed
clock-like and associate with aging28,29 (Fig. 1e). However, one
tumor had a distinctly different profile, dominated by contribu-
tions from S7 (~63%), with a bias toward the untranscribed
strand (q < 0.05, Poisson test), more closely resembling cutaneous
melanomas sequenced concurrently (Fig. 1e, f). S7 is known to
arise as a consequence of UV radiation-induced damage28. We
could exclude a sample mix-up from the presence of the same
GNA11 Q209L mutation and BAP1 frame-shift deletion in RNA,
together with transcriptomic classification against ~10,000
tumors from TCGA (Supplementary Fig. 2a–c).
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Fig. 1 Mutations in metastatic uveal melanoma (UM). a Overview schematic of the study. Thirty-two samples were subjected to whole-genome
sequencing and 28 to RNA sequencing. Eighty tumors from TCGA were compared in copy number analyses. TILs from 15 tumors were used for antigen-
reactivity assays and 5 of these, as well as 3 other tumors were used for single-cell analyses of TIL phenotypes. b Mutations in genes recurrently altered in
UM. Chromosome 3 status is indicated. c Intronic non-splice site point mutation in BAP1, associated with aberrant splicing. d Intronic large deletion in BAP1
associated with aberrant splicing. e Estimated contributions of COSMIC mutational signatures. Samples and signatures are ordered by agglomerative
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We hypothesized that this unexpected signature could be
explained owing to the tumor having originated in the iris
(Supplementary Fig. 2d–g), a site from which only 3–5% of cases
arise3, compatible with an absence of iris melanomas and UV
evidence in the TCGA UM cohort4. To confirm this, we managed
to obtain a second iris UM sample from a patient without
metastasis, which again revealed a prominent UV pattern
(Fig. 1g). Thus, although rare, UM can evidently be induced by
UV damage if manifest in the iris. Interestingly, this associated
with an elevated amount of so called neoantigens, peptide
sequences predicted to be immunogenic (Supplementary Fig. 2h).

Copy number changes overrepresented among metastases. UM
is characterized by highly recurrent copy number aberrations
affecting entire chromosome arms4. All metastases had gain of
chromosome 8q, known to co-occur with monosomy 3 in poor-
prognosis tumors14,30 (Fig. 2a). A number of arm-level changes
were also significantly overrepresented in the metastatic tumors
compared with tumors studied by TCGA (Fisher’s exact test, q <
0.05). These were loss of 17p, 6q, and chromosome 3, as well as
gain of 8q and 5p (Fig. 2a, b, Supplementary Data 2). Previous
studies have also found loss of 6q and 8p to be overrepresented in
metastatic tumors14,30. Sequencing of matched primary tumors
for UM16 and UM24 showed that gain of 5p in UM16 and loss of
6q in UM24 were late events only present in the respective
metastases, whereas 8q gain and loss of 3 was present already in
the primaries in both cases (Fig. 2c). Loss of 6q has previously
been found to associate with metastasis31. Overall, genomic losses
tended to be more frequent in these metastases than observed in
TCGA tumors.

Focal events were very rare. Notably, however, we discovered
somatic focal deletions affecting CDKN2A and the nearby gene
MTAP in two samples (Fig. 2d, Supplementary Fig. 3a, b).
CDKN2A encodes the tumor suppressors p16INK4a and p14ARF

and is commonly deleted in cutaneous melanoma32. The
deletions here were homozygous and hemizygous respectively.
While CDKN2A expression was still present in the hemizygous
case, a subsequent patient-derived xenograft (PDX) model
established from this tumor (Supplementary Fig. 4) showed full
loss of expression, even extending to other nearby genes (Fig. 2e,
Supplementary Fig. 3a). This suggests that either a pre-existing
clone with a homozygous deletion or a second loss event was
selected for as the tumor established itself in this new
environment, supporting CDKN2A loss as a late event that may
be relevant in the metastatic setting33.

Gene expression associated with recurrent copy number events.
To understand how the recurrent chromosomal events in UM
affect the transcriptome and to rank genes by a potential to
influence tumor behavior, we searched for consistent correlations
between the copy number and gene expression in both this data
set and TCGA UM, and ordered them by their degree of known
protein–protein interactions from the Human Protein Reference
Database (HPRD), followed by association with observed survi-
val. The top candidates per region are shown in (Fig. 2f, Sup-
plementary Data 3). An analysis using the “chemical and genetic
perturbations” collection in MSigDB showed that regions of gain
were enriched for the category genes upregulated in class II UM
(q < 6.11 × 10−14), whereas regions of loss were enriched for
genes downregulated in class II34 (q < 5.49 × 10−11). The class II
transcriptional subtype is one of the two major subdivisions of
UM, strongly associated with metastasis34. Pathway enrichment
analysis revealed processes that included transcriptional regula-
tion, stress responses, immune signaling, and developmental
biology (Fig. 2g, Supplementary Data 3).

Top ranked genes in loss regions included CASP9, an early
activator of apoptosis35 and the aforementioned CDKN2A.
Candidates in gain regions included MAPK14 (p38α), a kinase
that operates at the intersection of cell cycle progression, stress
signaling, immune responses, and differentiation36, and the very
recently proposed UM oncogene PTK2 (FAK)37, a focal adhesion
associated kinase known for being activated upon matrix–integrin
interactions and thereby mediating survival signals that prevent
detachment-associated apoptosis (anoikis)38,39. A small RNAi
screen in three cell lines, directed against a list of genes selected
based on gain candidates, in a cell line derived from the UM22
tumor demonstrated that a majority of siRNA pools negatively
affected proliferation (cell count) or viability (ATP production) to
a similar or higher level than an siRNA against GNAQ (Fig. 2h,
Supplementary Fig. 3c, d, Supplementary Data 3). Thus, these
recurrent arm-level copy number changes contribute to shaping
the transcriptomic subtypes of UM and regulate genes that may
conceivably contribute a fitness advantage.

Reversal of transcriptomic subtype upon BAP1 reintroduction.
We next asked to what extent BAP1 mutations could influence
the transcriptome of metastatic UM. For this purpose, we used
the UM22 cell line, which had been established from one of the
metastases grown as a PDX, and which had a homozygous frame-
shift deletion in BAP1, but no copy number loss on chromosome
3 (Supplementary Fig. 1c, Supplementary Fig. 4, and Supple-
mentary Fig. 5a). Mutations do not always cause a complete loss
of the BAP1 protein and in UM22 the mutation generated a
translation stop before the nuclear localization signal. Therefore,
the protein resided predominantly in the cytoplasm, as opposed
to the nucleus, where it is commonly found in BAP1 wild-type
tumors (Supplementary Fig. 4b, c). A functional copy of BAP1
was introduced using a retroviral vector and RNA-seq performed
on this and an empty vector control sample (Fig. 3a). Immuno-
histochemistry (IHC) and RNA-seq alignments showed success-
ful integration and expression of the wild-type BAP1 allele
(Fig. 3b, c, Supplementary Fig. 5b–e). A differential expression
analysis between the two conditions revealed a large tran-
scriptomic response, with 518 genes downregulated and 990
upregulated at an absolute log2 fold change >1 and q < 0.05
(6707 in total without fold change cutoff, Fig. 3d, Supplementary
Data 4). SLC7A11, identified by Zhang et al.40 as a mediator of
ferroptosis-suppressive effects of BAP1, was significant albeit not
as strongly regulated (log2 fold change=−0.82, q= 5.42 × 10−19).
Pathways enriched among downregulated genes upon reintro-
duction included GPCR signaling, neurotransmitter receptor
transmission, interferon α/β signaling and chemokine activity.
Upregulated pathways most prominently included post-
transcriptional and translational mechanisms (Fig. 3e).

Notably, we observed significant regulation of 9 out of 12 genes
used as discriminating features in a classifier that distinguishes
between the high-risk class II versus class I subtypes41, some of
which are melanocyte lineage markers and a few of which have
also been found compatibly regulated upon silencing10 (Fig. 3d).
These genes were all expressed in the inverse fashion expected for
class II tumors, with CDH1, ECM1, and HTR2B decreasing upon
BAP1 reintroduction and LMCD1, LTA4H, MTUS1, ROBO1,
SATB1, and FXR1 increasing, whereas the remaining three genes,
RAB31, ID2, and EIF1B, were not significant. RT-qPCR
measurements confirmed the RNA sequencing data for all genes
but FXR1 (Fig. 3f).

To investigate whether the apparent transcriptomic shift
towards the class I subtype was limited to these few discriminat-
ing genes or representative of a broader change, we performed a
gene set enrichment analysis on the whole list of differentially
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Fig. 2 Copy number analysis. a Copy number profiles of each tumor. Differences in color intensity depend on copy number amplitude and tumor purity.
b Broad copy number changes enriched in the metastases (n= 32) compared with TCGA tumors (n= 80). Two-tailed Fisher’s exact tests with adjustment
for multiple testing using the Benjamini–Hochberg method. c Two primary tumors compared with matched metastases. d Focal deletions of CDKN2A in two
samples. e RNA-seq from the UM9 metastasis and corresponding PDX showing the region with focal CDKN2A deletion. f Genes in recurrent arm-level copy
number aberrations ranked by associations between gene expression and copy number that were consistent in this cohort and TCGA tumors, and further
ranked by protein–protein interaction network degree from the Human Protein Reference Database (HPRD), and additionally by presence of any
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expressed genes using the “chemical and genetic perturbations”
collection from MSigDB42. We found that a signature of genes
lowly expressed in class II UM34 was significantly enriched
among upregulated genes (q < 0.00031), and that genes highly
expressed in class II were enriched among downregulated genes
(q < 0.012), showing that this trend is indeed broader (Fig. 3g,
Supplementary Data 5). This shift towards the class I subtype
upon BAP1 reintroduction implies that the inverse drives the cells
towards the metastatic class II transcriptional subtype, which
characteristically has BAP1 alterations. We performed proteomics
by mass spectrometry analysis of three replicates from both
conditions, and found this theme to be similarly recapitulated
among differentially expressed proteins (Supplementary Fig. 5f–h,

Supplementary Data 6). Moreover, 2358 of the genes (q < 0.05)
also differed between BAP1 mutated and wild-type TCGA tumors
in a way that corresponded to changes observed when
reintroducing the gene (Supplementary Fig. 5i–l), further illus-
trating that genes relevant for in vivo differences between the
subtypes are altered in the experiment.

Beyond this, BAP1 restoration also downregulated the TIM-3
immune checkpoint ligand-related genes HMGB1 and PTDSS1 as
well as the TIGIT and CD96 ligands PVR and PVRL2,
implying higher expression levels in BAP1-deficient UM
cells (Fig. 3h, Supplementary Data 4). Mass spectrometry
protein measurements confirmed this for all except PVRL2
(Supplementary Fig. 5h). Similarly, in TCGA UM samples, all
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Fig. 3 Reintroduction of BAP1 into a deficient tumor. a Schematic representation of the experiment. Cell lines from a PDX model established from tumor
UM22 were transduced with either BAP1 wild-type containing viral vectors or empty vectors and subjected to RNA sequencing. b BAP1 protein levels in
empty vector controls and BAP1-reintroduced cells. The BAP1 wild-type cell lines MP-41 and 92-1 are shown for comparison of expressed BAP1 levels with
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except PVRL2 were expressed in a compatible manner (Supple-
mentary Fig. 5l).

Tumor-reactive T cells present in UM metastases. Having
observed regulation of immune-related pathways in UM cells, we
next investigated the phenotypes of TILs isolated from metas-
tases. We performed flow cytometry of cryopreserved single-cell
preparations of tumors and found that fractions of CD8+ and
CD4+ T cells differed between biopsies from different patients
(Fig. 4a). Expression of PD-1 and CD39 have been proposed to
mark tumor-reactive T cells as opposed to bystander tissue resi-
dent cells43. High fractions of PD-1+CD39+CD8+ T cells were
found in a subset of samples (Fig. 4a, gating strategy in Supple-
mentary Fig. 6a, b). Antigen specificity can be detected by flow
cytometry using tumor-associated antigen peptide:HLA dex-
tramers. Most of the obtained biopsies contained too few cells to
enable detection of many different melanoma-associated antigens.
However, upon receipt of the biopsies we had also expanded so
called young TILs (yTILs) from many samples in IL-2 containing
media, e.g., for use in studies of adoptive T-cell transfer in mel-
anoma PDX models44,45. Eight out of fifteen HLA-A2:01-positive
patients’ yTIL cultures had MART-1 dextramer or gp100 dex-
tramer positive cells (Fig. 4b, Supplementary Fig. 6d, Supple-
mentary Data 7). To gain insight into the heterogeneity of
clonotypes of TCRs we profiled eight yTIL cultures by single-cell
RNA and TCR sequencing. In all eight yTIL cultures single-cell
sequenced we observed CD8+ T cell clones that expressed
PDCD1 (PD-1) and ENTPD1 (CD39) (Fig. 4c). Expression-
based clusters were formed both by cell type and T cell receptor
clonotype (Supplementary Fig. 7a–c), the latter partially explained
by different activation states (Supplementary Fig. 7d, e, Supple-
mentary Fig. 8). Besides PD-1 and CD39 (Fig. 4c, Supplementary
Fig. 6c, Supplementary Fig. 7d, e), other inhibitory receptors were
also prominently expressed in both biopsies and yTILs: TIM-3
was high in both, whereas TIGIT was higher in yTILs than in
biopsies (Fig. 4d, Supplementary Figs. 8–10). Moreover, LAG3
was also expressed in some yTILs (Supplementary Fig. 8b). Col-
lectively our data suggest presence of tumor-reactive TILs in UM
tumors, large intra-patient heterogeneity and expression of
immune checkpoint proteins. Expression of TIM-3 and, to a
lesser extent TIGIT, and potentially ligands related to these, could
indicate means of immune evasion in UM that are different from
cutaneous melanoma.

Discussion
Metastatic UM currently entails a very poor outcome owing to
the lack of effective treatment options3. Genetics of the primary
disease confined to the eye has already been investigated in sev-
eral hallmark studies4–6,9,10. However, only a few metastatic
samples have been sequenced with exome or whole-genome
sequencing and our study has the largest sample cohort
sequenced to date with whole-genome sequencing. A history of
primary UM and lack of therapeutic efficacy of surgery makes
biopsy and surgical removal of metastatic samples uncommon. By
obtaining biopsies of liver metastases from patients in the
SCANDIUM trial or cutaneous metastases of UM, we have been
uniquely positioned to focus on the metastatic disease by both
analyzing fresh frozen material by genomics as well as generating
PDXes, cell lines, and TIL cultures for transcriptomics analyses.

The key event to metastasis in UM is loss of the tumor sup-
pressor BAP110. Compatible with this, we observed BAP1 muta-
tions in 91% of the metastases. Two of these seem to have altered
splicing via intronic events outside of canonical splice regions, via
creation of new intronic splice sites. This illustrates special cases
that exome sequencing may not be sufficient for detecting. Given

the implications of BAP1 status, one may therefore argue for
more comprehensive sequencing at this locus.

It has been reported that mutations in the epigenetic regulators
PBRM1 and EZH2 can occur late during metastatic development
of UM33. Consistent with those observations, we also find a
mutation in EZH2 in one of the samples. In addition, we find
mutations in other not previously implicated epigenetic reg-
ulators, including TET1, TET2, and ASXL2, the latter of which is
known to interact with BAP122–24. This may support that such
alterations can be relevant to additional selection pressures a
tumor may be subjected to during metastasis.

We furthermore find that out of two tumors studied of the iris
subtype, both had mutational spectra associated with UV-induced
damage. Mutational signatures of UV damage in UM have not
previously been reported and a consensus of UV-involvement in
UM has not been reached by previous epidemiological studies.
Although iris UM is rare, the metastasis studied here had much
higher than average mutation load, and predicted number of
neoantigens. This could potentially render such tumors suitable
for immunotherapy, which otherwise lacks efficacy in UM.
Interestingly, the iris UM metastasis concerned here also har-
bored T cells recognizing MART-1.

Several broad copy number events were found to be more
frequent in the metastases studied compared with primary
tumors from TCGA, including losses of chromosome 3, 6q, and
17p, as well as gains of 5p and 8q. Notably, 8q gain was present in
every metastasis. By sequencing matched primary tumors for two
cases, we could establish that in one of the tumors 5p gain and
17p loss had arisen during metastasis, and in the other case 6q
loss. Furthermore, two tumors had focal deletions of CDKN2A, an
event that may have a larger relevance in the metastatic setting, as
it has not been detected in recent large-scale studies of primary
UM tumors4–6,14,46 and since it has also been observed to be
deleted in a step-wise fashion during metastatic progression in
UM33. The latter is consistent with our finding that a PDX model
established from a tumor with a hemizygous deletion was
revealed to have homozygous loss of CDKN2A, suggesting a
selective advantage for a secondary inactivating event.

We additionally mapped out genes with correlations between
expression and arm-level copy number changes in both this data
set and that of TCGA and ranked them by their degree of
protein–protein interactions and any associations with survival
present to gain an understanding for central processes affected
and potential targets. We found several interesting candidates,
including the recently proposed UM oncogene PTK237, MAPK14,
the apoptosis mediator CASP935, as well as CDKN2A to be first-
ranked candidates in 8q gain, 6p gain, 1p loss, and 9p loss,
respectively. We performed a siRNA knockdown experiment
against selected genes and found proliferation and viability
decreases to be the consequence when targeting the majority of
those. In addition, we found expression changes mediated by loss
events to be enriched for genes generally downregulated in poor-
prognosis tumors and gain events enriched for genes upregulated
in poor-prognosis tumors, showing that these broad events
contribute to shaping the distinct transcriptomes of the two
subtypes.

To increase our understanding for how these transcriptomic
subtypes are established, we investigated the contribution from
BAP1 loss by reintroducing a functional allele into a cell line
established from one of these metastases. This cell line is
unusual in the sense that it proliferates well in culture, whereas
BAP1-deficient UM cell lines generally are associated with
extremely slow growth characteristics47. It is, in fact, the only
BAP1-deficient UM cell line we have been able to grow
well enough to study. It is tempting to speculate that the genetic
make-up of this cell line, with a diploid chromosome 3 and a
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downstream mutation of BAP1 that impairs the nuclear
localization signal, but leaves the remainder of the protein
unaffected, is the reason for this favorable growth in culture.
Nevertheless, we show in this one, and potentially
unique, cell line that reintroduction of a wild-type BAP1
resulted in a reversal of the transcriptomic subtype from class II

to class I, which was also seen at the protein level. The tran-
scriptomic changes are in accordance with the phenotypic
switch observed upon genetic inhibition of BAP1 in BAP1 wild-
type cells48. Of potential relevance was also the down-
regulation of TIM-3 and TIGIT ligand-related genes after
restoring BAP1 function, indicating potential upregulation on
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BAP1 loss that may have consequences for tumor–immune
interactions.

We profiled tumor-infiltrating lymphocytes isolated from
some of the metastases by flow cytometry and found tumor-
reactive subsets present in several cases. This argues that lack of
immune responses is not due to bystander T cells being the only
ones present in the tumors. However, we also noted expression of
the checkpoint receptors PD-1, TIM-3, LAG3, and, to some
extent, TIGIT. Potentially, the inferred upregulation of ligands for
TIM-3 and TIGIT upon BAP1 loss may cooperate with the
expression of these receptors on T cells to interfere with antitumor
immunity. Given the historic failures of anti-PD-1 and anti-
CTLA-4 therapies in UM, this may argue for exploring these other
checkpoint receptors. After publishing our preprint, another study
performing scRNA-seq of TILs in UM biopsies found results that
support this49. Overall, however, our molecular profiling of TILs
suggests large intra-patient heterogeneity of both TILs residing in
the biopsies as well as in expanded TILs. This heterogeneity could
contribute to infrequent or non-durable tumor responses to
checkpoint inhibitors as well as adoptive T-cell transfer of TILs3.

Collectively, these results highlight that exome sequencing
might not be sufficient for detecting BAP1 loss, which is the most
significant event in UM metastasis, that UV damage can be an
important mutational process in the iris subtype and that
recurrent copy number aberrations cooperate with BAP1 loss to
shape the transcriptome of the metastatic subtype. We also
describe immune-profiles of T cells present in metastases that
indicate tumor recognition, and heterogeneous activation states of
T-cell clones, some with expression of checkpoint receptors that
are not targeted by current immunotherapies.

Methods
Processing of tumor biopsies. The patients received oral and written information
and signed informed consent agreements according to the ethical approval at the
Regional ethical review board (#289-12 and #144-13). Biopsies were either
extracted from subcutaneous metastases or from liver metastases, during the
procedure of isolated hepatic perfusion in the SCANDIUM trial (NCT01785316)
for those participating in it. Two cutaneous melanoma tumors used for comparison
were derived from a subcutaneous and brain metastasis of a previously profiled
case50. Tumor biopsies were divided into pieces that were snap-frozen or minced
and used for cryopreservation or tumor-infiltrating lymphocyte cultures. Snap-
frozen tumor pieces were homogenized using Bullet Blender (Next Advance, Troy,
NY). DNA and RNA were extracted using the AllPrep DNA/RNA kit (Qiagen,
Hilden, Germany). Primary eye tumors were formalin-fixed and paraffin embedded
(FFPE) in blocks at St Erik’s Eye Hospital’s pathology biobank.

Sequencing. DNA and RNA from fresh frozen biopsies, blood and tumor-
infiltrating lymphocytes were extracted as described. Primary eye tumors were
sectioned and processed using an FFPE DNA kit (Qiagen). Whole-genome DNA
libraries were made using the Illumina TruSeq PCR-free kit or Illumina TruSeq
Nano in some cases where low input material was available and sequenced with
Illumina HiSeq X Ten at SciLifeLab in Stockholm or Illumina NovaSeq 6000 at
GeneCore SU in Gothenburg. RNA libraries were made using the Illumina TruSeq
Stranded mRNA kit with poly-A selection and sequenced with Illumina HiSeq
2500 at SciLifeLab in Stockholm or with Illumina NextSeq 500 at GeneCore SU in
Gothenburg. Exome-sequencing libraries were prepared with the NextSeq 500
HighOutput Kit v2 and sequenced with Illumina NextSeq 500.

Preprocessing of DNA sequencing data. DNA sequencing reads were aligned to
the 1000 Genomes version of the GRCh37 reference genome with bwa51 (v. 0.7.12;
options “mem” and “-M”). Duplicates were marked with Picard (version 1.109;
https://broadinstitute.github.io/picard). The resulting BAM files were recalibrated
with GATK BaseRecalibrator (v. 3.3.0)52, using known polymorphic sites from
dbSNP v138 and 1000 Genomes. PDX samples were aligned separately to the
human reference genome and to the GRCm38 version of the mouse reference
genome. Reads originating from human were then distinguished using Dis-
ambiguate (v. 2018.05.03)53 with the parameter “-a bwa”.

Preprocessing of RNA sequencing data. RNA sequencing reads were aligned
to the 1000 Genomes version of the GRCh37 reference genome with STAR54

(v. 2.7.1a) with the parameters “–twopassMode Basic –outFilterType BySJout,
–outSAMmapqUnique 60”. Splice junctions were provided from the Ensembl
GRCh37.75 reference annotation. Gene expression was quantified using htseq-
count55 (v. 0.6.0), with parameters “-m intersection-strict -s reverse”. PDX samples
were aligned separately to the human reference genome and to the GRCm38
version of the mouse reference genome with STAR. Reads originating from human
were then distinguished using Disambiguate, with the parameter “-a star”.

Variant calling. Variant calling was performed with MuTect 2 (GATK v. 4.0.11.0)
using the 1000 Genomes version of the GRCh37 reference genome and a panel of
normals. Matched normal samples were used when available. Known population
variants were provided from the Genome Aggregation Database (gnomAD).
Parameters used were:, “–af-of-alleles-not-in-resource 0.0000025 –disable-read-
filter MateOnSameContigOrNoMappedMateReadFilter –genotype-germline-sites
true –genotype-pon-sites true –all-site-pls true”. The panel of normals was con-
structed by first running MuTect 2 on each normal with the parameter “–disable-
read-filter MateOnSameContigOrNoMappedMateReadFilter” and then merging
the resulting lists with GATK CreateSomaticPanelOfNormals. MuTect 2 calls were
classified according to quality with GATK FilterMutectCalls and variants failing
those filters were removed. Exceptions were made for known hotspot mutation
sites in GNA11, GNAQ, SF3B1, PLCB4, CYSLTR2, and EIF1AX. Low-quality var-
iants in BAP1 were inspected further for support on DNA and RNA alignments.
Variant annotation was performed with VEP (v. 91.3) and ANNOVAR56 (v. 2016-
05-11), using the databases COSMIC (v. 79), ESP6500 (“siv2_all”), 1000 Genomes
(“2015aug_all”), and dbSNP (“snp138NonFlagged”). For two of the tumors,
exome-sequenced normals were used for further filtering using GATK SelectVar-
iants. Comparisons with TCGA UM mutations were made against mutation lists
downloaded from GDC (accessed May 29, 2017).

Mutational signature analysis. To determine mutation spectra, all somatic
autosomal mutations (including synonymous) not present in any population
variant resource, and with minor allele read support ≥10, were converted into a
96-trinucleotide mutation frequency matrix using the function “mut_matrix”
from the R package MutationalPatterns57 (v. 1.10.0), with the parameter “ref_ge-
nome= ‘Bsgenome.Hsapiens.UCSC.hg19’”. Known mutational signature trinu-
cleotide frequencies, obtained via COSMIC (http://cancer.sanger.ac.uk/
cancergenome/assets/signatures_probabilities.txt; accessed October 27, 2017), were
then fitted to the observed mutations using the function “fit_to_signatures” from
the same R package. This algorithm operates by searching for the non-negative
linear combination of the predefined mutational signatures that best explains all
mutations in a given sample, which is done by solving a non-negative least squares
optimization problem57. This results in estimates of the relative contributions of
known mutational signatures in each sample.

Pan-cancer transcriptomic classification. RNA sequencing data for 9,583 tumors
from 32 cancer types were downloaded from the cgHub repository on December
18, 2015 and aligned to the hg19 human genome assembly, excluding alternative
haplotype regions, with hisat58 0.1.6-beta (parameters: “–no-mixed –no-discordant
–no-unal –known-splicesite-infile”), using splice junctions defined in the GEN-
CODE (v. 19) reference human genome annotation. Gene read counts were derived
with htseq-count55 (parameters: “-m intersection-strict -s no”). RPKM normalized

Fig. 4 Analysis of tumor-infiltrating lymphocytes. a Proportions of CD8+ and CD4+ T cells from biopsy material, and proportions of these that were
positive for PD-1 and CD39. Sample UM22 was derived from a patient that has previously been treated with chemotherapy, possibly affecting TIL
proportions in this sample. b Assessment of T-cell reactivity against MART-1, gp100 and NY-ESO-1 in yTIL cultures. Proportions found to be reactive are
indicated. Samples tested were those with the HLA-A*02:01 genotype, as this genotype is known to present MART-1 and gp100. Samples with this
genotype (Supplementary Data 7) that are not shown were also tested and found to be negative. c Analysis of relative levels of PDCD1 (PD-1) and ENTPD1
(CD39) expression among different CD8+ T-cell clonotypes, determined by single-cell RNA-seq of yTILs. Clonotypes with one pair of alpha and beta chain
were included, and the ones with greatest expression of both markers are highlighted. Point sizes are proportional to clonotype frequency. Gray color
indicates clones that were negative for either PDCD1 or ENTPD1, whereas other colors indicate different clonotypes that correspond to those in
Supplementary Fig. 7e. d Expression of T-cell markers and checkpoint receptors in bulk RNA-seq data from biopsies (batch-corrected log2 RPKM
normalized values). yTILs young TILs, TILs isolated and expanded from a biopsy with a low dose of IL-2.
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values were calculated, taking into account the max mature transcript length of
each gene and using robust size factors calculated using the median ratio method59.
For the correlation analysis, reads from our sample of interest were realigned and
read counts requantified and normalized using the same methods described for
TCGA data. However, standard read depth-based size factors were used for the
RPKM normalization of this sample. Pairwise Spearman correlation coefficients
were then calculated between our sample and each TCGA sample, with respect to
all coding genes (using the function “corr” in MATLAB R2018a). For t-distributed
stochastic neighbor embedding (t-SNE) analysis, log2 transformed (pseudocount of
1 added) expression values of all coding genes were used as input to the “Rtsne”
function from the R package of the same name60. A separate classification was
performed using a k-nearest neighbor approach based on Spearman correlations,
using k= 6, as previously found to be optimal based on leave-one-out cross-
validation on the TCGA cohort50. With this approach, any ties are broken
by taking the majority vote after removing the worst correlating sample.

HLA genotyping and neoantigen prediction. HLA genotyping was performed
using polysolver (v. 1.0)61 on whole-genome sequencing data, with the parameters
“Unknown 0 hg19 STDFQ”, and on RNA with OptiType (v. 1.3.2, default para-
meters)62. For neoantigen prediction, mutated 17-mer peptide sequences centered
at each mutation were constructed from non-synonymous point mutations not
present in any population variant resource. Predictions against the HLA class I
genotypes of each sample were then performed using netMHCpan63 (v. 4.0, default
parameters), considering only 9-mers. Peptides with predicted affinity <500 nM
were retained and those deriving from transcripts without expression were
removed. Transcript-level expression was quantified using kallisto64 (v. 0.44.0,
default parameters), based on cDNA sequences corresponding to the Ensembl
annotation of the GRCh37 human reference genome.

Copy number segmentation and purity estimation. Copy number segmentation
was performed using binocular (https://sourceforge.net/projects/binocular), using
unfiltered variant calls as input, together with aligned reads for tumor and normal
samples. Parameters used were “–delta= 90 –min-maf-delta= 0.05 –ai-cutoff=
0.001 –min-copy-ratio= 1.1” for the majority of samples, although for samples
with more variable coverage this threshold was raised. Re-centering of segmenta-
tion values was required for some samples where estimated values globally deviated
from diploid and additional amplitude-based filtering was performed for samples
with noisy segmentation profiles resulting from variable coverage or tumor and
normals being sequenced on different platforms. For tumors without matching
normals, the intersect of segments defined using normals from other samples were
used. Sample purity and ploidy was estimated with ichorCNA65, using the para-
meters “–ploidy “c(2,3,4)” –normal “c(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)” –maxCN
10“ with tumor BAM files as input. Copy number neutral loss of heterozygosity was
determined using the CNVkit (v. 0.9.6a0)66 “scatter” command, with variants
concordant with matching normal DNA as input.

Associations between copy number changes and metastasis. Segmented copy
number data from TCGA primary tumors were downloaded from GDC Data
Portal (accessed 6 October 2017). Copy number changes with an absolute log2 ratio
relative to diploid chromosomes <0.2 and with width less than half the size of the
shortest chromosome arm were filtered out from both TCGA UMs and our
tumors. The general regions to test were defined as those where a contiguous
altered region spanning all events in all metastasis samples could be con-
structed that had the required width and amplitude and which was present at least
once in either dataset. Changes of the same direction (loss or gain) affecting each
region were then assessed for association with each of the two data sets using
Fisher’s exact test (two-tailed) using the function “fisher.test“ in R 3.6.0. As the
resulting contiguous regions practically spanned the entire length of each affected
chromosome arm, with the exception of chromosome 3, which spanned the entire
chromosome, one test was performed per gain or loss event of each such arm. p
values were corrected for multiple testing using the Benjamini–Hochberg method.

Ranking of genes in broad copy number aberrations. RNA-seq data for the
TCGA-UVM data set (n= 80) were downloaded using TCGAbiolinks67, with
parameters “project= ‘TCGA-UVM’, data.category= ‘Transcriptome Profiling’,
data.type= ‘Gene Expression Quantification’, workflow.type= ‘HTSeq–Counts’”.
Read counts were normalized using the “rpkm” method from the “edgeR” package
(“log= FALSE, prior.count= 1”) based on maximum transcript length per gene,
obtained via biomaRt and the Ensembl database. Segmented copy number profiles
for each sample were downloaded from the GDC data portal. Gene copy number
status was defined as the maximal absolute log2 ratio among segments spanning the
gene in a given sample. Genes with both copy number and expression values
assigned were retained.

To focus on genomic regions subject to copy number changes recurrent enough
to indicate selection, TCGA GISTIC results4 were used (obtained from gdac.
broadinstitute.org, accessed 4 July 2017) and broad copy number changes with
q values < 0.05 were kept. To focus on genes altered at relevant frequencies and
more likely to be part of any minimal region of overlap, genes with absolute log2
copy number ratio < 0.2 were filtered out and only genes with an alteration

frequency in the upper third quartile per chromosome arm event were retained.
The third quartile was chosen, rather than a stricter threshold, as some regions may
be subject to low-frequency focal events of a random or artifactual nature.

Genes altered in expression in tandem with the copy number changes were
determined using linear regression between copy number and expression, adjusting
for tumor purity according to published estimates68. Genes with too low expression
variance to test (where regression failed to converge) were removed. Univariate
survival tests with Cox regression (“coxph” from the “survival” R package69) were
carried out against clinical data downloaded using TCGAbiolinks, using the
variables “vital_status”, “days_to_death”, and “days_to_last_follow_up”.

For the metastasis data set, segmented copy number values were mapped to
gene names as described above and converted to log2 ratios. Values of zero prior to
transformation were set to the lowest observed non-zero copy number value. Gene
expression values were normalized with RPKM as described and batch-corrected
(“removeBatchEffect” from the “limma” R package)70. Genes with both copy
number and expression values assigned and also present in the filtered TCGA data
set were retained. Associations between expression and copy number were assessed
as for the TCGA data set, considering sample purity. p values from associations in
the TCGA data and metastasis data set were combined using Fisher’s method and
FDR adjusted using the Benjamini–Hochberg method. Candidates with q values
< 0.05, independent raw p values < 0.05 in each data set and correlations consistent
with the direction of the assessed copy number event were retained. Candidates in
regions with more samples harboring gains than losses were retained as candidates
of gains and vice versa.

To assess the extent to which a given gene may have a wider impact on cellular
behavior, protein–protein interactions with experimental evidence defined in the
HPRD database (accessed using the iRefR R package)71,72 were used. Candidates
were then ranked by the number of HPRD connections, followed by whether any
univariate survival associations existed (p < 0.05) that implied worse survival
consistent with the nature (gain or loss) of the copy number event assessed. This
way, survival associations were placed a low weight, with the motivation that such
associations are easily confounded by multiple genomic and clinical factors.

siRNA screen. In vitro knockdown of selected genes was performed using siRNA
in UM22, MP-41, and 92-1 cells. Transient transfection was performed with mock
siRNA (control), a positive control siRNA (GNAQ) or a pool of four siRNA per
gene of interest. The siRNA duplexes were purchased from Dharmacon (Thermo
Fisher Scientific, Waltham, MA, USA) and the lipid based transfection was per-
formed with Lipofectamine-RNAiMAX (Thermo Fisher Scientific, Waltham, MA,
USA) using 1 pmol of siRNA per well of a 96-well plate as per the guidelines
provided by manufacturer. The RNA-Lipid complex was made in Opti-MEM
Reduced Serum medium. The cells were seeded in triplicates in black 96-well plates
(Corning). Post transfection (72 h, 96 h, and 96 h, respectively), cells and viability
were monitored with ATP measurement using CellTiter-Glo Assay (Promega).
Luminescence was measured with GloMax Discover plate reader (Promega). In
parallel, manual cell counting was performed using Trypan blue staining of cells
obtained from transfections in 12-well format.

Generation of PDX models and a BAP1-deficient UM cell line. Animal
experiments were performed in accordance with E.U. directive 2010/63 (Regional
animal ethics committee of Gothenburg approvals #36-2014 and #1183-2018).
Cryopreserved biopises were thawed and single cells were transplanted into the
flank (UM22) or the liver (UM9) of immunocompromised, 6–8-week-old female
non-obese severe combined immune deficient interleukin-2 chain receptor γ
knockout mice (NOG mice; Taconic, Denmark) to form xenografts. The mice were
housed in the pathogen-free animal facility of University of Gothenburg. Mice were
kept in cages with individual ventilation at ambient temperature (21–23 degrees
Celsius) and 20–40% humidity. Mice were given free access to food and water. The
dark–light cycle was 12 h dark and light, respectively (dark 7 pm to 7 am). Tumors
were analyzed by immunohistochemistry using clinically used antibodies against
Melan-A (clone A103, catalog: IS63330-2, ready-to-use solution), PMEL (clone:
HMB45, catalog: GA05261-2, ready-to-use solution for Autostainers) and S100
(clone: IR504, catalog: IS50430-2, ready-to-use solution), purchased from Agilent/
Dako. For generation of a cell line, a PDX tumor was minced and seeded at high
density into a 5 cm culture plate in RPMI medium supplemented with 10% fetal
bovine serum. Surviving cells were expanded and transduced with either a retro-
virus expressing HA-tagged BAP1 or a control retrovirus (MSCV-IRES-GFP), both
of which were made using plasmids from Addgene. n= 3 independently grown
replicates from each were then characterized by RNA-seq. The UM22 cell line
generated is available upon request. BAP1 protein expression was measured with
IHC using an antibody purchased from Santa Cruz Biotechnology (clone: C-4;
catalog: sc-28383) with dilution 1:1000 and with western blot using dilution 1:100.
Beta-actin antibody used for Western blot was purchased from Sigma (clone AC-15,
catalog: A1978, dilution 1:10000).

Differential gene expression analysis. RNA-seq data were aligned and quantified
as described. Differential expression was assessed using DESeq2, with the para-
meter “alpha= 0.05”. Gene set enrichment analysis was carried out with the R
package “fgsea”73, with gene sets obtained from MSigDB42, using the parameters
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“minSize= 0, maxSize= 10000, nperm= 107”. Genes and gene sets with q < 0.05
were considered statistically significant.

RT-qPCR validation. RNA was extracted from the indicated cell lines with
Nucleospin RNA II kit (Macherey-Nagel), and converted to cDNA using iScript
cDNA synthesis kit (Bio-Rad). qPCR was performed using 2× qPCR SyGreen Mix
(PCR Biosystems) and the CFX Connect Real-Time System (Bio-Rad). Data ana-
lysis was performed by comparing ΔΔCT values using Ubiquitin as a reference
gene. n= 2 technical replicates were used.

Protein extraction for proteomic analysis. Cell pellets were lysed by sonication in
400 µl in 2% sodium dodecyl sulfate and 50 mM triethylammonium bicarbonate
(TEAB). Samples were centrifuged at 13,000 rpm for 10 min and the supernatants
were transferred to clean tubes. Protein concentration of lysates was determined
using Pierce BCA Protein Assay Kit (Thermo Scientific) and the Benchmark Plus
microplate reader (BIO-RAD) with bovine serum albumin solutions as standards.

Tryptic digestion and tandem mass tag (TMT) labeling. Aliquots containing
30 µg of total protein were taken from each sample and reduced at 56 °C for 30 min
in the lysis buffer with DL-dithiothreitol at 100 mM final concentration and
incubated. The reduced samples were processed using the modified filter-aided
sample preparation method74. In short, reduced samples were diluted to 400 µl by
addition of 8 M urea, transferred onto Nanosep 30k Omega filters (Pall Life Sci-
ences) and washed two times with 200 µl of 8 M urea. Alkylation of the cysteine
residues was performed using 10 mM methyl methanethiosulfonate diluted in
digestion buffer (1% sodium deoxycholate (SDC), 50 mM TEAB) for 20 min at
room temperature and the filters were then repeatedly washed with digestion
buffer. Trypsin (Pierce Trypsin Protease, MS Grade, Thermo Fisher Scientific) in
digestion buffer was added in a ratio of 1:100 relative to total protein mass and the
samples were incubated at 37 °C for 3 h; another portion of trypsin (1:100) was
added and incubated overnight. The peptides were collected by centrifugation and
labeled using TMT reagents (Thermo Scientific) according to the manufacturer’s
instructions. The labeled samples were combined; pooled samples were con-
centrated using vacuum centrifugation, and SDC was removed by acidification with
10% trifluoroacetic acid and centrifugation. The combined TMT-labeled sample
was fractionated into 40 primary fractions by basic reversed-phase chromatography
using a Dionex Ultimate 3000 UPLC system (Thermo Fischer Scientific). Peptide
separations were performed using a reversed-phase XBridge BEH C18 column
(3.5 μm, 3.0 × 150 mm, Waters Corporation) and a linear gradient from 3% to 40%
solvent B over 17 min followed by an increase to 100% B over 5 min. Solvent A was
10 mM ammonium formate buffer at pH 10.00 and solvent B was 90% acetonitrile,
10% 10 mM ammonium formate at pH 10. The primary fractions were con-
catenated into final 20 fractions (1+ 21, 2+ 22, … 20+ 40), evaporated and
reconstituted in 15 μl of 3% acetonitrile, 0.2% formic acid for nLC MS analysis.

Liquid chromatography–mass spectrometry/mass spectrometry analysis. The
fractions were analyzed on an Orbitrap Fusion Lumos Tribrid mass spectrometer,
equipped with a FAIMS Pro Source and interfaced with Easy-nLC1200 liquid
chromatography system (both Thermo Fisher Scientific). Peptides were trapped on
an Acclaim Pepmap 100 C18 trap column (100 μm× 2 cm, particle size 5 μm,
Thermo Fisher Scientific) and separated on an in-house packed analytical column
(75 μm× 30 cm, particle size 3 μm, Reprosil-Pur C18, Dr. Maisch) using a linear
gradient from 5% to 33% B over 77 min followed by an increase to 100% B for
3 min, and 100% B for 10 min at a flow of 300 nLmin−1. Solvent A was 0.2%
formic acid in water and solvent B was 80% acetonitrile, 0.2% formic acid. Two
experiments were performed in parallel during the 90 min separation for all MS
scans and sequential MS2 and MS3 scans. One experiment using a FAIMS
Compensation voltage (CV) of −30 V and a second one using a CV of − 50 V. MS
scans was performed at 120,000 resolution, m z−1 range 375–1375, MS/MS analysis
was performed in a data-dependent, with top speed cycle of 3 s for the most intense
doubly or multiply charged precursor ions. Most intense precursors were frag-
mented in MS2 by collision induced dissociation at 35 collision energy with a
maximum injection time of 50 ms, and detected in the ion trap followed by
multinotch (simultaneous) isolation of the top 10 MS2 fragment ions, with m z−1

400–1400, selected for fragmentation (MS3) by higher-energy collision dissociation
(HCD) at 65% and detection in the Orbitrap at 50,000 resolution, m z−1 range
100–500. Precursors were isolated in the quadrupole with a 0.7 m z−1 isolation
window and dynamic exclusion within 10 ppm during 45 s was used for m z−1

values already selected for fragmentation.

Proteomic data preprocessing. Identification and relative quantification was
performed using Proteome Discoverer v. 2.2 (Thermo Fisher Scientific). The
reference Homo sapiens database was downloaded from SwissProt (September
2019). The database search was performed using the Mascot search engine v. 2.5.1
(Matrix Science, London, UK) with MS peptide tolerance of 5 ppm and fragment
ion tolerance of 0.6 Da. Tryptic peptides were accepted with 0 missed cleavages
only; methionine oxidation was set as a variable modification, cysteine methyl-
thiolation, TMT-6 on lysine and peptide N-termini were set as fixed modifications.
Percolator was used for peptide-spectrum match validation with the strict FDR

threshold of 1%. Quantification was performed in Proteome Discoverer 2.2. TMT
reporter ions were identified in the MS3 HCD spectra with 3 mmu mass tolerance,
and the TMT reporter intensity values for each sample were normalized within
Proteome Discoverer 2.2 on the total peptide amount. Only the unique identified
peptides were taken into account for the relative quantification.

Differential protein expression analysis. Normalized abundances of identified
proteins, on log2 scale, were compared between BAP1-reintroduced cells and empty
vector-treated control cells with the R package limma (v. 3.40.6) and p values were
adjusted using the Benjamini–Hochberg method. n= 3 independently grown
samples of cells derived from either the case or control cell lines were used,
respectively. Proteins with q < 0.05 (Benjamini–Hochberg correction) were con-
sidered statistically significant. Gene set enrichment analysis was carried out as for
the corresponding RNA-seq comparison.

Comparisons between BAP1 mutant and wild-type TCGA UM tumors. TCGA
UM gene expression data were downloaded and normalized as described above. A
list of BAP1 mutated tumors was compiled from earlier publications4,46 and three
additional likely cases (Supplementary Fig. 5i) were identified from exome data
downloaded from GDC (accessed 11 September 2019). n= 40 biologically inde-
pendent samples were included in each condition. Differential expression was
assessed with Wilcoxon rank-sum tests and genes with q < 0.05 after
Benjamini–Hochberg correction were considered statistically significant.

Single-cell RNA-seq analysis of immune infiltrates. Small pieces of tumor
biopsies were cultured for 2 weeks in RPMI medium containing 10% human serum
and 6000 Uml−1 IL-2. yTIL cultures were then cryopreserved before use. Two days
before performing the single-cell experiments, yTIL cultures were thawed. Cells
were counted and 7000 cells were injected into a single-cell library preparation
instrument (10x Genomics). The steps following were performed using the Single
Cell V(D)J kit according to the kit description (10x Genomics). V(D)J libraries
were sequenced on an Illumina MiSeq, whereas the gene expression libraries were
run on an Illumina NextSeq 500. Single-cell transcriptomics data were aligned
against the hg38 reference genome and preprocessed using the Cellranger pipeline
(v. 2.1.1) provided by 10x Genomics. Expression levels were estimated using the
Cellranger “count” function, with default parameters. TCR chain assembly was also
performed using the Cellranger pipeline, using default parameters. t-SNE maps for
each sample were generated using Seurat (v. 3.1.3) and cell types were inferred
using the approach by Zheng et al. (https://github.com/10XGenomics/single-cell-
3prime-paper)75, with some modifications: correction of a code error that mis-
classified some CD4+ cells; reclassification of cells classified as memory CD4+ cells
not expressing CD4 but CD8A as the closest matching non-CD4+ cell type; pre-
dicted non-T cells that express TCRs as closest matching T-cell type; predicted
dendritic cells that express CD3G or NCAM1 as the closest non-dendritic cell type.
Doublet cells were defined as those predicted as such by DoubletFinder76 (v. 2.0.2,
default parameters) and additionally as those expressing more than two alpha or
beta chains. TCR clonotype diversity (normalized entropy) was assessed for CD8+

cells using clonotype frequency and the “diversity” function (type= “e”) from the
“diverse” R package77, giving the Shannon entropy, which was then normalized by
dividing by the logarithm of the number of unique clonotypes for each sample78.

Flow cytometry. Single-cell suspensions from cryopreserved tumor biopsies and
yTILs were surface stained for 30 min in RT. The following antibodies were used
for surface staining: CD3 (clone: HIT3a, catalog: 300306, lot: B274310, dilution:
1:200, fluorochrome: AF488), CD4 (clone: A161A1, catalog: 357414, lot: B238830,
dilution: 1:200, fluorochrome: PerCP-Cy5.5), CD8 (clone: HIT8a, catalog: 300920,
lot: B256905, dilution: 1:200, fluorochrome: AlexaFluor700), CD45 (clone: 2D1,
catalog: 368516, lot: B251494, dilution: 1:200, fluorochrome: APC-Cy7), CD69
(clone: FN50, catalog: 310933, lot: B251799, dilution: 1:200, fluorochrome: BV650),
CTLA-4 (clone: BNI13, catalog: 369603, lot: B242857, dilution: 1:100, fluor-
ochrome: PE), PD-1 (clone: EH12.H7, catalog: 329920, lot: B255122, dilution:
1:200, fluorochrome: BV421), TIGIT (clone: A15153G, catalog: 747839, lot:
8267685, dilution: 1:100, fluorochrome: BV711) and TIM-3 (clone: F38-2E2, cat-
alog: 345031, lot: B241708, dilution: 1:100, fluorochrome: BV785) from BioLegend
and CD39 (clone: eBioA1, catalog: 25-0399-41, lot: 4329374, dilution: 1:200,
fluorochrome: PE-Cy7) from eBioscience. For detection of melanoma antigen
specific CD8 T cells, cells were surface stained for 45 min in 37 °C using Melanoma
Dextramer Collection 1 kit from Immudex (catalog: RX01, lot: 20190611-KB).
Dead cells were excluded from the analysis using Live/Dead Aqua (Invitrogen).
Flow cytometry data were acquired using BD Accuri C6 (BD Biosciences), BD
LSRFortessa X-20 (BD Biosciences) or BD FACSARIA FUSION (BD Biosciences)
and analyzed using FlowJo software (FlowJo LLC). The gating strategy is shown in
Supplementary Fig. 6a, b. TILs tested for dextramer binding were those from HLA-
A*02-positive tumors (Supplementary Data 7), for which commercial dextramers
with MART-1, gp100 and NY-ESO-1 were available: UM1, UM2, UM9, UM11,
UM13, UM21, UM22, UM24, UM25, UM26, UM27, UM29, UM30, UM31, and
UM32. Samples with TILs that were reactive towards these antigens are shown in
Fig. 4b, whereas the remaining ones did not show signs of reactivity.
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Ethics. The patients received oral and written information and signed the informed
consent agreement according to the ethical approval at the Göteborg Human
ethical review board (#289-12 and #144-13 and #44-18). Animal handling: regional
animal ethics committee of Gothenburg approvals #36-2014 and #1183-2018.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Whole-genome, exome, and RNA sequence data generated for this study have been
deposited at the European Genome-Phenome Archive, which is hosted by the EBI and
the CRG under accession numbers EGAS00001004296 and EGAS00001003026. Single-
cell transcriptomics and TCR data are available at ArrayExpress with the identifier
E-MTAB-8846. TCGA data used in this study are available from the GDC Data Portal
(https://portal.gdc.cancer.gov/) under restrictions of controlled access for raw data. Mass
spectrometry proteomics data generated for this study have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository with the data set
identifier PXD017743. Figures with associated raw data are Figs. 1–4, Supplementary
Figs. 1–3, and Supplementary Figs. 5–8. Mutation data from the COSMIC database can
accessed at https://cancer.sanger.ac.uk/cosmic/download and mutational signature data
at http://cancer.sanger.ac.uk/cancergenome/assets/signatures_probabilities.txt. Data from
the Human protein reference database (HPRD) was accessed through the iRefR R
package and the database can be downloaded at http://hprd.org/download. Reference
protein data from SwissProt was accessed through the Mascot software and the database
can be downloaded from https://www.uniprot.org/downloads. Databases formatted for
use with ANNVOAR, including ESP6500, 1000 Genomes and dbSNP, can be
downloaded by following the instructions at http://annovar.openbioinformatics.org/en/
latest/user-guide/download/. MSigDB gene sets can be accessed at https://www.gsea-
msigdb.org/gsea/msigdb/genesets.jsp. Data from the Genome Aggregation database
(gnomAD) can be accessed at ftp://ftp.broadinstitute.org/bundle/Mutect2/af-only-
gnomad.raw.sites.b37.vcf.gz.

Code availability
Code is available at https://bitbucket.org/jowkar/um.
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