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ABSTRACT

Motivation: New, high-throughput sequencing technologies have

made it feasible to cheaply generate vast amounts of sequence

information from a genome of interest. The computational recon-

struction of the complete sequence of a genome is complicated by

specific features of these new sequencing technologies, such as the

short length of the sequencing reads and absence of mate-pair

information. In this article we propose methods to overcome such

limitations by incorporating information from optical restriction maps.

Results: We demonstrate the robustness of our methods to

sequencing and assembly errors using extensive experiments on

simulated datasets. We then present the results obtained by applying

our algorithms to data generated from two bacterial genomes Yersinia

aldovae and Yersinia kristensenii. The resulting assemblies contain a

single scaffold covering a large fraction of the respective genomes,

suggesting that the careful use of optical maps can provide a cost-

effective framework for the assembly of genomes.

Availability: The tools described here are available as an open-

source package at ftp://ftp.cbcb.umd.edu/pub/software/soma

Contact: mpop@umiacs.umd.edu

1 INTRODUCTION

Fast and cheap DNA sequencing technologies are an important

prerequisite for accelerating research in many areas of medicine

and biology, from personalized medicine and cancer research to

the exploration of the multitude of bacteria inhabiting our

world. The importance of genome sequencing in modern
biological research is further highlighted by the announcement

of an ‘X-prize’ for the first group that can successfully map the

genomes of 100 humans in just 10 days.

In recent years, several companies have made advances
towards this goal: the technology developed at 454 Life

Sciences provides an order of magnitude higher throughput at

a fraction of the cost of Sanger sequencing (Margulies et al.,

2005), while the technology developed by Solexa/Illumina can

generate an astounding 1 Gbp of DNA (one third of the human

genome) during a single run of the sequencing machine, at a

cost of only a few thousand dollars (www.solexa.com). In

addition to 454 Life Sciences and Solexa, both of which are

already being used in sequencing centers around the world,

many other companies—Helicos, and Applied Biosystems, to

name just a few—are participating in the race towards afford-

able high-throughput sequencing technologies.

The abundance of sequence information, however, does not

necessarily make the task of deciphering a genome easier.

Typically in a whole-genome shotgun (WGS) sequencing

project, the sequence information consists of randomly sheared

fragments whose order and orientation (which strand of DNA

they come from) within the genome is not known. In order

to minimize the chance that there exist regions of the genome

not sampled by any of the fragments, sufficient fragments must

be sequenced so as to oversample the genome several fold

(a number referred to as the coverage of the genome). Piecing

these sequences together (sequence assembly) is akin to solving

a large puzzle, where multiple pieces are similar (repeats in the

genome) and our eyesight is not perfect (errors in sequencing)

(Pop, 2004).
In Sanger sequencing, the ‘traditional’ method for sequen-

cing DNA, the sequenced fragments are relatively long

(800–1000 bp) making it easy to disambiguate short repeats.

In contrast, the sequences provided by emerging high-through-

put technologies are generally of lower quality. For example,

the 454 Life Sciences technology generates reads �250 bp in

length, while Solexa generates even shorter reads, �35–40 bp.

These datasets pose significant challenges to assembly algo-

rithms and can, depending on the repeat complexity of the

genome, lead to fragmented or incorrect assemblies. More

importantly, however, these new technologies have significantly

higher throughput than the Sanger method, leading to the need

for the automated validation and scaffolding (determining rela-

tive placement of sequences) of the resulting assemblies. In this

work, we address this issue by designing algorithms to auto-

matically incorporate optical mapping information in the

assembly process.
Optical mapping, a variant of restriction mapping, is one of

multiple laboratory techniques aimed at mapping the location

of specific landmarks along the DNA of an organism of

interest. In both optical and restriction mapping, the landmarks

correspond to the recognition sites for specific restriction

enzymes. Restriction mapping involves cleaving a piece of

unknown DNA using a restriction enzyme and then using

gel-based methods to measure the range of fragment sizes

represented in the sample. The spectrum of sizes obtained*To whom correspondence should be addressed.
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provides information about the structure of the unknown piece

of DNA and can be viewed as a fingerprint of this sequence

(Nathans and Smith, 1975). Optical mapping (Samad et al.,

1995) extends this approach by providing, in addition to the set

of fragment sizes, information about the order in which these

fragments occur in the DNA (see Fig. 1 for a schematic rep-

resentation of the map generation process). This information

provides a genome-wide scaffold into which the sequence data

can be placed [in a process somewhat akin to comparative

assembly (Pop et al., 2004)]. Computational methods for

performing this mapping are the focus of this article. Our

work was motivated by the recent availability of accurate high-

throughput methods for constructing optical maps (specifically

the technology developed at Opgen, www.opgen.com) and its

increased adoption as a valuable source of information

(Latreille et al., 2007). Note that this technology allows an

optical map to be constructed within as little as 24 h after

receiving a DNA sample, a time-frame comparable to that

needed for sequencing the sample with the 454 technology.

Optical maps are, therefore, an attractive alternative to a

454-Sanger hybrid approach (Goldberg et al., 2006) as the

construction of a paired-end library can take more than a week.

Furthermore, since optical maps and paired-end data have

complementary characteristics they can be used together when

both data types are available. Optical maps provide a coarse,

genome-wide scaffold, in contrast, with the typically fragmen-

ted scaffolds generated from paired-end data. The methods

described in this article can be easily adapted to a hybrid optical

map—paired-end approach by aligning entire paired-end

scaffolds to the map instead of individual contigs.

We consider the problem of using optical maps to determine

the relative placement and orientation of sequence frag-

ments produced during the assembly process (scaffolding). In

principle, the use of optical maps should be straightforward:

since we know the restriction enzyme used to create the optical

map, we can produce an in silico digest of the contigs (a list

of fragments that would theoretically result by digesting the

corresponding DNA). The sequence of fragment sizes thus

generated should match a unique region of the optical map and

provide a unique placement to the contig on the genome. In

practice, however, there are several complications that we need

to account for. The presence of sequencing errors can affect our

ability to identify real restriction sites, while errors in the
assembly or the optical map can lead to contigs and maps that
do not match well. In addition, small contigs, or contigs

originating in repeat regions may lead to non-unique place-
ments on the map. Finally, sequences that are poorly assembled
or are from foreign DNA may not even match anywhere on the

optical map. The methods presented in this article are robust to
such errors and can be used to confidently place DNA
sequences on an optical map.
The problem of combining restriction digest and sequence

information has been studied in the past, albeit from a some-
what different perspective. In Ben-Dor et al. (2003) and Engler
et al. (2003), the restriction maps considered were based on

older protocols where the order and multiplicity of fragments
is unknown. Engler et al. (2003) identify the location of a
sequence contig within a fingerprint map by simulating the

fingerprinting process (restriction digest followed by electro-
phoresis) and incorporating the in silico fingerprint within the
map using software developed for combining restriction

fingerprints (Soderlund et al., 1997). Ben-Dor et al. (2003)
attempt to identify the order and orientation of a set of contigs
that is consistent with the pattern of restriction fragment sizes

generated by multiple restriction enzymes. Their solution,
based on a simulated annealing approach, is computationally
expensive and can handle only a small number of contigs. In the

only approach specifically targeted at optical maps (Antoniotti
et al., 2001), the comparison between in silico maps and optical
maps has been used as a tool to validate the optical map. This

approach relies on algorithms developed for the task of aligning
optical maps (Anantharaman et al., 1999; Valouev et al., 2006)
(rather than contig sequences to an optical map) and implicitly

assumes the contigs to be error free. These methods, in
combination with some manual intervention, have been used
as part of several genome sequencing projects (Reslewic et al.,

2005; Zhou et al., 2002, 2004) to align in silico and optical maps
and provide scaffolds for a small number of sequences. Despite
elaborate modeling assumptions, the methods were too rigid to

place sequences on the optical map in an automated fashion.
It is also important to note that prior uses of optical maps
in genome projects involved high-quality data generated

through Sanger sequencing. The higher error rates and shorter
contigs characteristic to data generated by new sequencing
technologies further underscore the need for automated optical

scaffolding tools.
In this work, we present the first methods that are specifically

designed to tackle the problem of using optical maps for

scaffolding of short-read assemblies. In particular, our methods
are designed to be robust in the presence of sequencing and
assembly errors and can handle datasets containing numerous

small sequence fragments. We decompose the optical scaffold-
ing problem into two natural subproblems : (i) that of finding
good matches between the sequences and the optical map (see

Section 2.1.1) and (ii) finding a consistent placement for all the
sequences given a set of good matches (see Section 2.2). In
Section 3, we demonstrate the effectiveness of our methods on

several artificial datasets as well as experimental data from two
microbial genomes. Also, in Section 4, we explore extensions
and applications of our methods where additional scaffold-

ing information is available. We also discuss the important

Fig. 1. The optical mapping process. To generate a whole-genome

optical map, DNA is sheared into fragments that are stretched and

fixed onto an optical chip and then digested using a restriction enzyme.

The resulting pieces are optically analyzed and assembled into a

genome-wide map.
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question of how to choose the restriction enzyme that provides

the most useful optical map. While the work described below

was applied to assemblies generated from 454 data, our results

are applicable to any sequencing technology. Furthermore, our

algorithms and tools can be applied to any other mapping

approach that generates ordered fragment lengths. All the

methods described in this work will be available as part of a

web-application and open-source package called Scaffolding

using Optical Map Alignment (SOMA) at http://www.cbcb.

umd.edu/soma.

2 METHODS

2.1 Sequence matching

2.1.1 Match score In order to place sequences on the optical map

we need some notion of how well the restriction site pattern within a

sequence matches a region of the optical map. In the absence of errors,

we expect the fragment sizes c1; . . . ; cn from an in silico digest of the

sequence to be in one-to-one correspondence and identical to a

subsequence of fragment sizes oj; . . . ; ojþn�1 of the optical map

fragments o1; . . . ; om. In practice, however, the optical map fragment

sizes are only estimates and can be modeled as normally distributed

random variables with mean oj and SD �j (information provided by

the mapping software). The ‘goodness’ of the alignment can, thus, be

estimated using the following �2 scoring function:

Xj

k¼1

ck � ok
�k

� �2

The introduction of sequencing errors complicates the matching

process as real restriction sites may disappear from sequences and false

ones may be created. In addition, while we expect errors in the optical

map to be rare we do not wish to rule out this possibility completely.

For example, optical maps typically miss fragments that are too small

(5700 nucleotides) due to physical limitations of the mapping process.

A possible solution to account for sequencing errors involves

considering near matches to the restriction site when performing the

in silico digest. In practice, however, this introduces too many false

positives (in one of the datasets considered, the map had 350 restriction

sites but there were more than 1200 putative sites on the sequences

when allowing for single base mismatches). An alternative solution is to

introduce a penalty for unmatched restriction sites in the scoring

scheme while maintaining the original goal of minimizing the �2 score.

Correctly weighting these two components is important for the

effectiveness of the scoring scheme.

Note that we also considered the possibility of designing a Bayesian

scoring function, analogous to approaches used in computing align-

ments between optical maps (Anantharaman et al., 1997). In principle,

this is a reasonable scoring function, with an implicit weighting

scheme for the �2 and missed-restriction-site components of the score.

In practice, however, genome assembly programs involve complex

heuristic algorithms that are hard to model accurately in the Bayesian

framework. As assembly errors are one of the major complication in

optical map scaffolding, we chose a scoring function that takes such

errors into account without explicitly modeling them. We propose the

following two-staged scoring scheme:

� The matches are compared on the number of unpaired restriction

sites where fewer is better.

� If two matches involve the same number of unpaired restriction

sites then they are compared by their �2 scores where a smaller

score is better.

This scoring function assumes that we are given a ‘reasonable’

matching between a sequence (c1; . . . ; cn) and a region of the optimal

map (oj; . . . ; ojþk�1), where a matching gives a one-to-one correspon-

dence between non-overlapping subsequences of the sequence and a

region of the optical map that respects the order of the fragments (see

Fig. 2 for an example). Formally, we consider the correspondence

between a subsequence of fragments from the sequence (cs; . . . ; ct) and

a subsequence from the optical map (ou; . . . ; ov) to be reasonable if the

sum of their sizes agree well, or more explicitly if:

Xt

i¼s

ci �
Xv
j¼u

oj

�����
����� � C�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXv
j¼u

�j2

vuut ð1Þ

where C� ¼ 4 is a safe choice when the sequence fragment sizes are

largely accurate. In Section 2.1.3, we describe an approach for handling

large sizing errors in the optical maps.

2.1.2 Optimal match The scoring function described above can

be easily optimized using a straight-forward dynamic programming

(DP) formulation. If mr is the number of missed restriction sites and x is

the �2 score of the match, we can use the combined score Cr �mr þ x as

a surrogate for the two-stage score (where Cr is a constant larger than

the largest possible �2 score, thereby, giving preference to alignments

that match up a large number of sites). If S½i �½ j� is the score for the best

match that aligns the end of the ith fragment of the sequence with the

end of the jth fragment of the optical map, the recursion is given by:

S½i �½ j� ¼ max
0�k�i; 0�l�j

�Cr � ði� kþ l� jÞ

� ð
Xi

s¼k

cs �
Xj

t¼l

otÞ
2=

Xj

t¼l

�t
2 þ S½k� 1�½l� 1�

where S½�1�½ j� ¼ 0 and S½i �½�1� ¼ �1; 8i; j � 0. This results in an

Oðm2n2Þ algorithm, for an optical map with m fragments and a

sequence with n fragments. In practice, we can avoid this worstcase

runtime by using the constraint specified in Equation (1) to prune the

search space.

In order to be useful in practice, the algorithm and scoring function

described here were further modified to address the following issues:

� Small sequence fragments: fragments that are less than 700 bases

long are excluded as they are typically absent from the optical map.

� Handling sequence ends: typically sequences do not start or end

with a restriction site. For the fragments at the end of sequences

we relaxed equation Equation (1) to a version where the absolute

value is not taken, i.e we only test an upper bound on the length

of fragments.

� Matching to a circular map: a common case in bacterial chromo-

somes, this requires a change to the DP formulation to allow for

matches that wrap around the ends of a linearized optical map.

2.24.1 1.9 2.0 3.4

3.1,0.26.1,0.3 4.5,0.2
Optical map

Contig

Fig. 2. Correspondence of sequence fragments to map fragments in a

valid match. Ticks are used to indicate restriction sites and the sets of

fragments between dashed lines are considered to be aligned to each

other. Fragments sizes are given in kbp. Optical map sizes are shown in

the format mean, SD.
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2.1.3 Match significance The DP algorithm will always find a

‘best match’ between a DNA sequence and the optical map, even if the

sequence does not belong to the genome (e.g. the sequence represents a

contaminant or mis-assembled contig). The algorithm described above

must, therefore, be augmented with a procedure for evaluating the sig-

nificance of matches produced by the DP process.

The simplest approach to solving this problem is the use of a

threshold on the match score to determine a significant match. The

choice of a threshold is however likely to vary with the size and number

of fragments. An explicit model for random matches can lead to a more

elegant solution in terms of P-values (probability that a random match

has a greater score) that are comparable between sequences. A match

can then be deemed significant if its P-value is less than a user-specified

threshold, say x, with the useful property that the false positive rate is

then guaranteed to be less than x.

A convenient model for random matches involves aligning random

permutations of the in silico fragments (minus the ends) corresponding

to a given sequence. Computing the significance of a match then

transforms into a permutation test where we use the distribution of

match scores for permutations of the sequence fragments to compute a

P-value i.e. Pðscore of permuted sequence � score of sequenceÞ. For

sequences with many fragments, we estimate the distribution by

sampling from the space of possible permutations, and for sequences

with very few fragments (�3) we skip the test entirely. This procedure

has the advantage that it accurately models the distribution of fragment

sizes and takes into account the structure of the scoring function. In

addition, mis-assembled sequences quite often have sequence fragments

in an incorrect order and the permutation test can help detect such

situations.

The permutation test can be useful as a filter for poor matches and

thus it also provides us with the means to choose the parameter C�

more carefully. As mentioned in Section 2.1.1, the procedure to score

matches assumes that the size of sequence fragments is largely accurate

in order to suggest a value for C�. In the datasets we analyzed, we found

many cases where the size of sequence fragments was quite different

from that of the corresponding optical map fragments (an example of

this can be seen in Fig. 3). Setting C� too conservatively may miss too

many matches (as shown in Section 3) while the converse may lead to

many false matches. In practice, the following coarse-grained search

procedure works well to independently choose C� for each sequence:

over the interval ½4; 12� set C� to the smallest integer that leads to a

significant match.

2.1.4 Non-unique matches We expect sufficiently large sequences

with many restriction sites to match uniquely to the optical map.

Unique placement is, however, not possible for sequences contained in

repeats, and for sequences containing few restriction sites especially

if the sizes of the restriction fragments occur commonly in the

optical map. In such situations, we wish to identify a set of matches

that are ‘comparably good’ and remove from consideration those that

are too poor to be correct. In Section 2.2, we will describe an algorithm

that further refines this set of matches, to determine the placement of

sequences that do not have a unique mapping.

To identify ‘comparably good’ matches, we take into account the �2

score of matches with the same number of matched restriction sites (mr).

If �2
best and �2

other are the scores for the best match and some other

match, respectively (involving nbest and nother sets of fragments), then we

can use the fact that ð�2
best=nbestÞ

�
ð�2

other=notherÞ has an F-distribution to

filter matches that have a low score compared to the best match (based

on a P-value threshold). Sequences that have multiple good matches

after the filtering step are then labeled as ‘non-unique’. Note that

sequences with good matches (based on mr) that only match one

restriction site are always labeled non-unique. Finally, we do not apply

the uniqueness test to sequences that do not have a significant match

based on the permutation test.

2.2 Sequence placement

The sequence matching procedure provides us with possible matches to

the optical map but the placements that they suggest may not be

mutually consistent. For example, sequences that overlap on the optical

map but do not have any sequence similarity in the overlap region

indicate problems with sequence placement. Under the assumption that

sequences cannot overlap, the problem of choosing a good placement

can be modeled as follows: let Mi be the set of matches (intervals of the

optical map) corresponding to sequence i, then we wish to select a set

P � [iMi such that 8i; jP \Mij ¼ 1 and for a; b 2 P; a \ b ¼ ;.

The Sequence Placement problem is analogous to a well-studied

problem in the field of Operations Research called Interval Scheduling

(Kolen et al., 2007). In a typical formulation of Interval Scheduling, we

are given a set of jobs and the time intervals to which they can be

assigned/scheduled, where each possible assignment has an associated

weight as a measure of its goodness. We then wish to find a schedule

(i.e. an assignment of jobs to time intervals that do not overlap) that is

of maximal total weight. Translating ‘sequences’ to ‘jobs’ and ‘matches

to the optical map’ to ‘scheduling in a time interval on a processor’, we

can see that Sequence Placement is just a special case of the Interval

Scheduling problem. In fact, this case is well-known to be a

computationally hard problem (NP-complete) and several approxima-

tion algorithms have been proposed in the literature (Bar-Noy et al.,

2001). The following simple greedy algorithm [a special case of the

algorithm proposed in (Bar-Noy et al., 2001)] can be shown to be a

2-approximation:

Algorithm 2.1: GREEDY-SCHEDULE (< i1, . . . , in >)

procedure SCHEDULE(< i1, . . . , in >)

if n = 0

then return (empty schedule)

else

for each i ∈ {instances that belong to same job as i1}
do reduce the weight of i by the weight of i1

Eliminate all instances with non-positive weight
result ← SCHEDULE(< i2, . . . , in >)

if i1 ∪ result is feasible/non-overlapping
then return (i1 ∪ result)

else return (result)

main
comment: < i1, . . . , in > is the set of job instances

SORT < i1, . . . , in > by minimum end time
output (SCHEDULE(< i1, . . . , in >))

In practice we expect the greedy algorithm to return much better

solutions than the provable 2-approximation bound. Also, for small

problem instances, an exact algorithm based on a depth-first search to

enumerate schedules/placements and find the best one, may be feasible.

Based on a lower bound for the weight of the optimal schedule (that can

3.2 31.0 25.5

14.9,0.3
3.3,0.1

14.4 8.5 4.8

Optical map for Y.Kristensenii

Contig 2

24.0,0.2
28.9,0.3 9.0,0.2

5.2,0.1

Fig. 3. Disagreement between sequence and optical map fragment size.

Note that comments following Figure 2 also apply here. Here we show

part of a real alignment for a dataset described in Section 3. The sizes of

the two large sequence fragments in the middle (31.0 and 25.5 kbp) do

not agree well with the optical map.
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be obtained, for example, by running the greedy algorithm), the search

tree can also be conservatively pruned using the following heuristic: a

subtree is pruned if weight of partial schedule þ weight of instances to

schedule5lower-bound. We present the results of our experiments with

these two methods (GREEDY and ASTAR, respectively) in Section 3.3.

The methods presented here are general enough to handle weight

functions other than the obvious one where all matches are assigned a

weight of one. This can prove to be useful in two cases. In the first case,

there is more than one solution that places all the sequences on the

optical map and we then wish to choose a placement that preferentially

places sequences in regions where they match well. This requires a

scoring function for matches that is comparable across sequences, such

as the P-values based on the permutation test. A two-stage weight

function similar to the one in Section 2.1.1 can then help enforce the

constraint that we want to maximize the number of placed sequences. In

the second case, there is no solution that maps all the sequences to the

optical map. Here, we might be interested in finding the solution that

covers as much of the optical map as possible, i.e. the weight function is

the size of the sequence. We further explore the utility of these scoring

functions in Section 3.3.

In addition to GREEDY and ASTAR, we also experimented with a

conservative, heuristic approach to place sequences (match filtering).

This procedure iteratively places sequences which have a unique

significant match, filtering out matches for other sequences that overlap

the placed sequences. This process is repeated until either all sequences

have been placed or all unplaced sequences have non-unique place-

ments. Match filtering is based on the intuition that unique significant

matches are likely to be correct. This is also borne out in our

experiments with simulated data as shown in Section 3.

3 RESULTS

3.1 Datasets and parameters

To validate our methods we used optical maps and sequences

for two bacterial strains: Yersinia aldovae ATCC 35236 and
Yersinia kristensenii ATCC 33638 (that we abbreviate as YA

and YK, respectively). The optical maps for these strains were
generated at Opgen (www.opgen.com) using the restriction

enzyme AflII. Each individual map represents the consensus of

maps generated from a randomly sheared set of fragments,
assembled together using the program gentig (Anantharaman

et al., 1997, 1999). These strains were generated using 454
sequencing and the newbler assembler (www.454.com).

Newbler generates non-overlapping contigs, and also provides
information indicating the potential adjacency of pairs of

contigs. More generally, many assemblers provide various

forms of linking information between contigs, conceptually
forming a ‘contig graph’. We use this information in a pre-

processing step to identify simple paths in the graph corre-
sponding to sets of contigs whose relative placement is

unambiguous (Fig. 4a). The contigs within a simple chain are

treated as a single unit throughout our algorithms. Forked
paths as shown in Figure 4b indicate ambiguities due to repeats,

that can be resolved using optical maps as will be discussed in
Section 4. Additional information about the optical maps and

the assemblies of the two Yersinia genomes is provided in
Table 1. Note that Y.kristensenii and Y.aldovae have 42 and 58

sequences, respectively, with more than two restriction sites,

providing an upper bound on the number of contigs we can
expect to scaffold. The results shown in Tables 3 and 5 should

be evaluated against these upper bounds.

To extensively test our methods, we also generated collec-

tions of artificial datasets that mimic the features of real data.

These data were generated for the two Yersinia strains (X), at

different levels of sizing (C) and sequencing errors (p). Each

collection contained 100 datasets generated as follows: an

artificial map was obtained as a random permutation of the real

map corresponding to strain X. The contigs were then placed

end-to-end (in a random order) on the artificial optical map

to define contig locations on the map and transfer restriction

site locations from the map to the sequences. Further, we

introduced errors in the restriction sites by omitting individual

sites with probability P and inflating sequence fragments by

a factor of C. We experimented with different values of C and

p to test the robustness of our methods to errors.

For sequences with six or more fragments the permutation

test was performed with 200 random samples (all permutations

were enumerated in the other cases). The permutation test was

not applied to sequences with53 fragments and C� was set to

12 in these cases. The significance threshold for the permutation

test was set to 0.005 to eliminate sequences for which even a

single permuted sequence scores better. The threshold for the

F-test was set to 0.01.

3.2 Robustness of the matching algorithm

The tests on simulated data allowed us to check the robustness

of our methods in a setting where we know the answer. In the

case of tests with C ¼ 0; p ¼ 0, they provide a quick sanity

check. As can be seen from Experiment 1 in Table 2, and as

expected, the DP matching algorithm provides perfect place-

ments in this case. With the introduction of sizing errors,

however, this is no longer the case (see Experiment 2). Finally,

when restriction sites are missing, the placement accuracy can

Table 1. Optical Map and Sequence statistics

Strain Map type Coverage No. of sites # Contigs

(N50 in kbp)

Total size

(in Mbp)

YK Optical 440X 350 1 4.63

454 Contigs �16X 404 488 (100) 4.68

YA Optical 440X 360 1 4.30

454 Contigs �19X 411 375 (66) 4.32

Note that contigs on simple paths in the assembly graph (inferred from newbler

output) were merged into 463 and 361 contigs, respectively, for YK and YA.

0144

043504300383
(a)

(b)

30 34

3829

32 370406

0398

04740303

Fig. 4. Two structures identified in assembly graphs. The chain in (a) is

unambiguous: the three contigs can be inferred to be adjacent. In (b)

the relative order of the five contigs is ambiguous due to a repeat

(contig 0406).
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be quite low (580%, see Experiment 3). The value of our

methods is demonstrated in Experiments 4 and 5; adding the

permutation test and the test for non-uniqueness of matches

reinstates the high reliability of the matches. Finally, as can be

seen from Experiment 6, the reliability of our methods is robust

to the addition of even large (systematic) sizing errors in the

optical map. In contrast, an approach based on a fixed C�

would be unable to handle this dataset (e.g. with C� ¼ 4 we get

5% accuracy).

Our results on real data are summarized in Table 3. As can be

seen from Experiment 1, without the permutation test or a filter

for non-unique matches, the best matches have numerous

overlaps that have no sequence support, suggesting that they

are poorly placed. Introducing the permutation test and the

filter for non-unique matches improves the reliability of the

results (Experiment 2). However, many possible matches are

omitted for not being significant. The search procedure

described in Section 2.1.3 allows us to find many more

significant matches (Experiment 3) and get an estimate of the

degree of assembly errors in the sequences (in the form of the

value of C� for which a significant match can be obtained).

Manual inspection of the sequences with no significant match

also confirmed that they indicate cases of mis-assembly.

3.3 Accuracy of sequence placement

To test our scheduling algorithms we ran them on the sequences

with non-unique placement from experiments similar to those

in Table 2 (See Table 4 for details). On average these test sets

had 23 and 44 non-unique matches (corresponding to 10 and 15

sequences), respectively, for Y.kristensenii and Y.aldovae and

we were able to run ASTAR in a reasonable amount of time in

most cases. Since the computation of P-values based on

permutations is expensive we used the P-values from the

F-test as the weight function. We present some of the results

from our experiments in Table 4. As expected, ASTAR has

higher accuracy and coverage compared to GREEDY, over a

wide variety of conditions (though only slightly). Despite this,

GREEDY clearly does much better than its theoretical worst

case (in terms of the optimization function). As is evident from

Experiment 2, however, this may not be accurate enough for

reliable assembly and the match filtering procedure is a

valuable tool to ensure higher accuracy in sequence placement.
Using real data, Experiment 3 in Table 3 resulted in 19 and

101 non-unique matches, respectively, for Y.kristensenii and

Y.aldovae. With the addition of the F-test, the results remain

the same but the number of matches was reduced to 18 and 89,

respectively. Similar evidence for the utility of the F-test was

also seen in the tests with the artificial datasets. Reducing the

number of matches is important as it may allow us to run

ASTAR and possibly get better placements. The final

Table 2. Match results for simulated datasets

Experiment Program Strain,

C, p

Conflicts Not

significant

(%)

Not

unique

(%)

Correctly

placed

(%)

1 C�¼ 4 YK, 0, 0.0 0 0 0 100

YA, 0, 0.0 0 0 0 100

2 C�¼ 4 YK, 2, 0.0 11 0 0 89

YA, 2, 0.0 13 0 0 85

3 C�¼ 4 YK, 2, 0.1 15 0 1 82

YA, 2, 0.1 19 0 1 78

4 PT, FT YK, 2, 0.0 0 1 28 100

YA, 2, 0.0 0 1 34 100

5 PT, FT YK, 2, 0.1 2 3 31 94

YA, 2, 0.1 2 3 38 95

6 PT, FT YK, 4, 0.0 0 1 27 100

YA, 4, 0.0 0 2 34 99

The symbols PT/FT in the program column indicate whether or not the

permutation test/F-test was performed. In all cases, C� was either set to four or we

used a search procedure to set it as described in Section 2.1.3. Here we assume

that sequences that have a unique, significant match are placed accordingly. On

average each dataset had more than 40 sequences that were considered. The

‘Conflicts’ column reports the number of pairs of sequences that had overlapping

placement but no sequence overlap. The values reported are averages over all

datasets.

Table 4. Placement results for simulated datasets

Experiment Strain, C, p GREEDY ASTAR Match filtering

Cov. Acc. Cov. Acc. Cov. Acc.

1 YK, 2, 0.00 0.82 0.89 0.84 0.89 0.79 0.99

YA, 2, 0.00 0.73 0.84 0.82 0.84 0.59 0.98

2 YK, 2, 0.05 0.72 0.80 0.78 0.80 0.56 0.93

YA, 2, 0.05 0.67 0.72 0.69 0.73 0.42 0.91

3 YK, 4, 0.00 0.73 0.81 0.80 0.81 0.67 0.96

YA, 4, 0.00 0.70 0.75 0.74 0.75 0.62 0.96

In all cases the placement algorithms were applied to the set of unplaced

sequences left after applying the matching procedure with permutation and F-test.

Note that we use the following definitions: Accuracy (Acc.) ¼ # of correct

placements/# of placements by program and Coverage (Cov.) ¼ # of correct

placements/# of sequences to be placed. The values reported are averaged over all

datasets.

Table 3. Match results for real datasets

Experiment Program Strain Not

significant

Not

unique

Conflicts

1 C�¼ 4 YK 0 3 17

YA 0 2 19

2 C�¼ 4 YK 19 11 0

PT, FT YA 19 24 0

3 PT, NU YK 2 10 0

YA 1 27 0

4 PT, FT YK 2 10 0

YA 1 27 0

The symbols PT/FT in the experiment column indicate whether or not the

permutation test/F-test was performed. The symbol NU indicates that we filtered

for non-unique matches. The ‘Conflicts’ column reports the number of pairs of

sequences that overlap in placement but have no sequence overlap.

1234

N.Nagarajan et al.



scaffolding results are shown in Table 5. We were able to run

ASTAR for Y.kristensenii and thus place eight out of nine
sequences that were considered. In combination with the
sequences that were uniquely placed by sequence matching
(39 in total), these sequences cover 4.2 Mbp of the genome

(with an optical map of 4.6Mbp or more than 91% of the
genome). For Y.aldovae, we were unable to run ASTAR to
completion (48 h) and instead we ran GREEDY to place 19 of

the 25 sequences that were considered. This resulted in a
sequence coverage of 3.5Mbp (49 sequences) for a map of size
4.3 Mbp (or 81% of the genome).

4 APPLICATIONS AND FUTURE WORK

The results of the experiments in Section 3 strongly suggest that
our methods are robust to sequencing and assembly errors in
the sequence data. This allows us to reliably place sequences on
the optical map. The combination of sequence matching and

match filtering allows us to place nearly all the sequences with
more than two restriction sites (that it can reasonably be
expected to place uniquely). Depending on the characteristics of

the genome and the optical map, this can also lead to high
coverage of the optical map (as is the case for Y.kristensenii).
There are several avenues for improving genomic coverage

using the tools described here. An obvious approach is to use
multiple optical maps to ensure that all sequences can be reliably
placed. Matching sequences to any one map is independent of

the other maps (in the absence of correspondence information)
and can be performed using the matching algorithm described
here. Sequence placement, however, would ideally incorporate
the constraints of both maps, requiring the development of new

tools for this purpose.
As discussed in Section 3, the assembly graph contains

valuable information about the order of sequence placements,

information that we are interested in combining with the optical
map data. This is a promising avenue to increase genomic
coverage, especially when placing small sequences. One poten-

tial approach considers all possible paths through the assembly
graph as putative sequences and evaluates their match to the
optical map using the methods presented here. Paths that are
not valid would, in theory, not lead to a significant match and

can therefore be excluded. However, for complicated assembly
graphs, this procedure can be computationally prohibitive
and we are currently working on more direct ways to achieve

this goal. Another approach to be considered is to use unique

matches to the optical map as ‘anchors’ that determine distance
constraints within the assembly graph. Paths that satisfy these
constraints then give us possible reconstructions of the genome.

Finally, the methods presented here were constrained by the
fact that the restriction enzymes chosen to construct the optical
maps might not be optimal in terms of informing the sequence

placement process. An ideal choice of restriction enzyme would
provide distinct restriction site patterns on the sequences and
lead to confident placement even in the presence of errors. This

is clearly a genome-specific choice and should be done after
assembly. The choice of an enzyme is further constrained by
bio-chemical and computational considerations involved in

constructing the optical map. Designing an algorithm for
choosing a restriction enzyme that satisfies such constraints is
an interesting avenue for future research.
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Table 5. Final scaffolding statistics

Strain # contigs Sizes (kbp) Total size in Mbp

(% of genome)

Min. Mean Max.

YK placed 39 20 108 307 4.2 (91%)

YK unplaced 424 0.08 1.2 41 0.5 (9%)

YA placed 49 2.5 71 272 3.5 (81%)

YA unplaced 312 0.01 2.6 70 0.8 (19%)

For each genome we report aggregate statistics for the contigs in the final scaffold

(placed) and the contigs that could not be scaffolded (unplaced). Numbers refer to

contigs obtained after collapsing simple chains in the contig graph.
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