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Guinea worm disease (GWD) is both a neglected tropical disease and an environmentally driven infectious disease. Environmen-
tally driven infectious diseases remain one of the biggest health threats for human welfare in developing countries and the threat is
increased by the looming danger of climate change. In this paper we present a multiscale model of GWD that integrates the within-
host scale and the between-host scale. The model is used to concurrently examine the interactions between the three organisms
that are implicated in natural cases of GWD transmission, the copepod vector, the human host, and the protozoan worm parasite
(Dracunculus medinensis), and identify their epidemiological roles. The results of the study (through sensitivity analysis of 𝑅0)
show that the most efficient elimination strategy for GWD at between-host scale is to give highest priority to copepod vector
control by killing the copepods in drinking water (the intermediate host) by applying chemical treatments (e.g., temephos, an
organophosphate). This strategy should be complemented by health education to ensure that greater numbers of individuals and
communities adopt behavioural practices such as voluntary reporting of GWD cases, prevention of GWD patients from entering
drinking water bodies, regular use of water from safe water sources, and, in the absence of such water sources, filtering or boiling
water before drinking. Taking into account the fact that there is no drug or vaccine forGWD (interventionswhich operate at within-
host scale), the results of our study show that the development of a drug that kills female worms at within-host scale would have
the highest impact at this scale domain with possible population level benefits that include prevention of morbidity and prevention
of transmission.

1. Introduction

Guinea worm disease (GWD), sometimes known as Dra-
cunculiasis or dracontiasis [1], is a nematode infection trans-
mitted to humans exclusively through contaminated drink-
ing water. People become infected when they drink water
contaminated with copepods or cyclopoids (tiny aquatic
crustaceans) harbouring infective Dracunculus larvae also
known asDracunculus medinensis.The larvae ofDracunculus
medinensis are released into the stomach, when the copepods
are digested by the effect of the gastric juice and get killed by
the acid environment. Although the disease has lowmortality,
its morbidity is considerably high causing huge economic
losses and devastating disabilities [2]. There is no vaccine
or drug for the disease. Our ability to eliminate GWD rests
partly on gaining better insights into the functioning of the
immune system, especially its interaction with Guinea worm

parasite and partly on development of drugs to treat the
disease together with implementation of preventive mea-
sures. Currently, the only therapy for GWD is to physically
extract the worm from the human body. Humans are the
sole definitive host for GWD parasite. Efforts to eradicate the
disease are focused on preventivemeasures which include the
following:

(a) Parasite control in the physical water environment.This
may involve chlorination of drinking water, or boiling
the water before drinking, or applying a larvicide, all
of which have the effect of killing the parasite and
thereby reduce parasite population in the physical
water environment.

(b) Parasite control within the human host. This involves
physically extracting the worm from the human body
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by rolling it over an ordinary stick or matchstick [1, 3]
and ensuring that the patient receives care by cleaning
and bandaging the wound until all the worms are
extracted from the patient. This process may take up
to two months to complete, as the worm can grow up
to a meter in length and only 1-2 centimeters can be
removed per day [4, 5].

(c) Vector control. This consists of killing the copepods
in water (the intermediate host) by applying a chem-
ical called temephos, an organophosphate, to unsafe
drinking water sources everymonth during the trans-
mission season, thus reducing vector population and
reducing the chances of individuals contracting the
disease [2, 6, 7].The adult vectormay also be removed
from drinking water by filtering the water using a
nylon cloth or by boiling the water.

(d) Health education.This is disseminated throughposter,
radio and television broadcast, village criers andmar-
kets, face-to-face communication (social mobiliza-
tion and house-to-house visits) by health workers and
volunteers to ensure that greater numbers of indi-
viduals and communities adopt behavioural practices
aimed at preventing transmission of GWD [8]. These
behavioural practices include voluntary reporting of
GWD cases, prevention of GWD patients from enter-
ing drinking water bodies, regular use of water from
safe water sources, and, in the absence of such water
sources, filtering or boiling water before drinking [6].

(e) Provision of safe water sources.This involves providing
safe drinkingwater supplies throughprotecting hand-
dug wells and sinking deep bore wells, improving
existing surface water sources by constructing bar-
riers to prevent humans from entering water, and
filtering the water through sand-filters [4].

To date, these preventive measures have reduced the inci-
dence of GWDby over 99% [6],makingGWD themost likely
parasitic disease that will soon be eradicated without the use
of any drug or vaccine. Most countries, including the whole
of Asia, are now declared free from GWD and transmission
of the disease is now limited to African countries, especially
Sudan, Ghana, Mali, Niger, and Nigeria [8]. GWD is one of
the neglected tropical diseases. It is also an environmentally
driven infectious disease.Therefore, its transmission depends
on the parasite’s survival in the environment and finding new
hosts (humans and copepod vectors) in order to replicate and
sustain parasite population. Because this process is complex,
it has hampered eradication efforts. During the parasite’s
movement through the environment to the human and
copepod vector hosts, many environmental factors influence
both the parasite’s population and the vector population.

For infectious diseases, including environmentally driven
infectious diseases such as GWD, mathematical models have
a long history of being used to study their transmission and
also to compare and evaluate the effectiveness and afford-
ability of intervention strategies that can be used to control
or eliminate them [9, 10]. Currently, the predominant focus
of modelling of infectious diseases is centered on concepts

of epidemiological modelling and immunological modelling
being considered as separate disease processes even for the
same infectious disease. In epidemiological or between-host
modelling of infectious diseases, the focus is on studying of
transmission of infectious diseases between hosts, be they
animals or humans or even both in the case of multiple host
infections. In the immunological or within-host modelling of
infectious diseases, the focus is on studying the interaction of
pathogen and the immune system togetherwith otherwithin-
host processes in order to elucidate outcomes of infection
within a single host [11, 12]. To the best of our knowledge
there has been nomathematicalmodel to study themultiscale
nature of GWD transmission by integrating between-host
scale and within-host scale disease processes. Such models
are sometimes called immunoepidemiological models [13].
Most of the mathematical models that have been developed
so far are focused on the study ofGWDat the epidemiological
scale [14–16]. The purpose of this study is to develop an
immunoepidemiological model of GWD. Immunoepidemi-
ological modelling of infectious diseases is the quantitative
approach which assists in developing a systems approach
to understanding infectious disease transmission dynamics
with regard to the interdependences between epidemiological
(between-host scale) and immunological (within-host scale)
processes [17, 18]. The immunoepidemiological model of
GWD presented in this paper is based on a modelling frame-
work of the immunoepidemiology of environmentally driven
infectious diseases developed recently by the authors [13].
This new and innovative immunoepidemiological modelling
framework, while maintaining the limits of a mathemat-
ical model, offers a solid platform to bring the separate
modelling efforts (immunological modelling and epidemi-
ological modelling) that focus on different aspects of the
disease processes together to cover a broad range of disease
aspects and time-scales in an integrated systems approach.
It bridges host, environmental, and parasitic disease phe-
nomena using mathematical modelling of parasite-host-
environment-vector interactions and epidemiology to illu-
minate the fundamental processes of disease transmission in
changing environments. For GWD there are three distinct
time-scales associatedwith its transmission cyclewhich are as
follows.

(i) The epidemiological time-scale, which is associated
with the infection between hosts (human and cope-
pod vector hosts).

(ii) The within-host time-scale, which is related to the
replication and developmental stages of Guineaworm
parasite within an individual human host and the
individual copepod vector host.

(iii) Theenvironmental time-scale, which is associatedwith
the abundance and survival of Guinea worm parasite
population and vector population in the physical
water environment.

In order to try and integrate these different processes and
the associated time-scales of GWD, the immunoepidemio-
logical model of GWDpresented here incorporates the actual
parasite load of the human host and copepod vector, rather
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than simply tracking the total number of infected humans. It
also incorporates the various stages of the parasite’s life cycle
as well as the within-host effects such as the effect of gastric
juice within an infected human host and describes how the
life stages in the definitive human host, environment, and
intermediate vector are interconnected with the parasite’s life
cycle through contact, establishment, and parasite fecundity.
The paper is organized as follows. In Section 2 we present
brief discussion of the life cycle of Guinea worm parasite and
use this information to develop the immunoepidemiological
model of GWD in the same section. In Sections 3, 4,
and 5, we derive the analytical results associated with the
immunoepidemiological model and show that the model is
mathematically and epidemiologically well-posed. We also
show the reciprocal influence between the within-host scale
and between-host scale of GWD transmission dynamics.The
results of the sensitivity analysis of the reproductive number
are given in Section 6while the numerical results of themodel
are presented in Section 7. The paper ends with conclusions
in Section 8.

2. The Mathematical Model

We develop a multiscale model of Guinea worm disease that
traces the parasite’s life cycle of Guinea worm disease.The life
cycle of GWD involves three different environments: physical
water environment, biological human host environment, and
biological copepod host environment. For more details on
the life cycle of GWD see the published works [6, 19]. We
only give a brief description in this section.The transmission
cycle of Guinea worm disease begins when the human
individual drinks contaminated water with copepods that
are infected with Guinea mature worm larvae (L3 larvae).
After ingestion, gastric juice in the human stomach kills
the infected copepods and mature worm larvae are released.
Then the released mature worm larvae penetrate the human
stomach and intestinal wall and move to abdominal tissues
where they grow and mate. After mating the male worms
die soon and fertilized female worms migrate towards the
skin surface (usually on the lower limbs or feet). After a year
of infection, the fertilized female worm makes a blister on
the infected individual’s skin causing burning and itching,
which forces an infected individual to immerse his or her feet
into water (which is the only source of drinking water) to
seek relief from pain. At that point the female worm emerges
and releases thousands of worm eggs. The worm eggs then
hatch Guinea worm larvae (L1 larvae stage) which are then
consumed by copepods and take approximately two weeks
to develop and become infective mature larvae (L3 larvae)
within the copepods.Then ingestion of the infected copepods
by human closes the life cycle. The multiscale model which
we now present explicitly traces this life cycle of Dracunculus
medinensis in three different environments, which are phys-
ical water environment, biological human environment, and
biological copepod environment. The model flow diagram is
shown in Figure 1.

The full multiscale model presented in this paper is based
on monitoring the dynamics of ten populations at any time𝑡, which are susceptible humans 𝑆𝐻(𝑡) and infected humans

𝐼𝐻(𝑡) in the behavioural human environment; infected
copepods 𝐼𝐶 in the human biological environment; mature
Guinea worms 𝑊𝑀(𝑡) and fertilized female Guinea worms𝑊𝐹(𝑡) in the biological human environment (within-host
parasite dynamics); Guinea worm eggs 𝐸𝑊(𝑡) and Guinea
worm larvae 𝐿𝑊(𝑡) in the physical water environment;
susceptible copepods 𝑆𝐸(𝑡) and infected copepods 𝐼𝐸(𝑡) in
the physical water environment; and gastric juice 𝐺𝐽(𝑡) in
the human biological environment. We make the following
assumptions for the model:

(a) There is no vertical transmission of the disease.

(b) The transmission of the disease in the human popu-
lation is only through drinking contaminated water
with infected copepods, 𝐼𝐸(𝑡), harbouring infective
free-living pathogens (first-stage larvae),𝐿𝑊(𝑡), in the
physical water environment.

(c) For an infected individual, more than one Guinea
worm can emerge simultaneously or sequentially over
the course of weeks, depending on the number and
intensity of infection the preceding year.

(d) Humans do not develop temporary or permanent
immunity.

(e) Copepods do not recover from infection.

(f) The total population of humans and copepods is con-
stant.

(g) Except for the effects of gastric juice in the stomach,
there is no immune response in the human host.

(h) Copepods die in the human stomach due to the effects
of gastric juice at a rate 𝛼𝐶 before their larvae under-
goes two molts in the copepod to become L3 larvae
and therefore are nonviable and noninfectious larvae.

From the model flow diagram presented in Figure 1
and the assumptions that we have now made, we have the
following system of ordinary differential equations as our
multiscale model for GWD transmission dynamics:

(1) 𝑑𝑆𝐻 (𝑡)𝑑𝑡 = Λ𝐻 − 𝜆𝐻 (𝑡) 𝑆𝐻 (𝑡) − 𝜇𝐻𝑆𝐻 (𝑡)+ 𝛼𝐻𝐼𝐻 (𝑡) ,(2) 𝑑𝐼𝐻 (𝑡)𝑑𝑡 = 𝜆𝐻 (𝑡) 𝑆𝐻 (𝑡) − (𝜇𝐻 + 𝛿𝐻 + 𝛼𝐻) 𝐼𝐻 (𝑡) ,(3) 𝑑𝐼𝐶 (𝑡)𝑑𝑡 = 𝜆ℎ (𝑡) 𝑆ℎ (𝑡) − 𝜇𝐶𝐺𝐽 (𝑡) 𝐼𝐶 (𝑡)− 𝛼𝐶𝐼𝐶 (𝑡) ,(4) 𝑑𝑊𝑀 (𝑡)𝑑𝑡 = 𝑁𝐶𝜇𝐶𝐺𝐽 (𝑡) 𝐼𝐶 (𝑡)− (𝛼𝑀 + 𝜇𝑀)𝑊𝑀 (𝑡) ,
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Figure 1: A conceptual diagram of the multiscale model of Guinea worm disease transmission dynamics.

(5) 𝑑𝑊𝐹 (𝑡)𝑑𝑡 = 𝛼𝑀2 𝑊𝑀 (𝑡) − (𝜇𝐹 + 𝛼𝐹)𝑊𝐹 (𝑡) ,(6) 𝑑𝐺𝐽 (𝑡)𝑑𝑡 = 𝐺0 + 𝛼𝐽𝐺𝐽 (𝑡) 𝐼𝐶 (𝑡) − 𝜇𝐽𝐺𝐽 (𝑡) ,(7) 𝑑𝐸𝑊 (𝑡)𝑑𝑡 = 𝛼𝐹𝑊𝐹 (𝑡) 𝐼ℎ (𝑡) − (𝜇𝑊 + 𝛼𝑊) 𝐸𝑊 (𝑡) ,(8) 𝑑𝐿𝑊 (𝑡)𝑑𝑡 = 𝑁𝑊𝛼𝑊𝐸𝑊 (𝑡) − 𝜇𝐿𝐿𝑊 (𝑡) ,(9) 𝑑𝑆𝐸 (𝑡)𝑑𝑡 = Λ 𝐸 − 𝜆𝐸 (𝑡) 𝑆𝐸 (𝑡) − 𝜇𝐸𝑆𝐸 (𝑡) ,(10) 𝑑𝐼𝐸 (𝑡)𝑑𝑡 = 𝜆𝐸 (𝑡) 𝑆𝐸 (𝑡) − (𝜇𝐸 + 𝛿𝐸) 𝐼𝐸 (𝑡) ,
(1)

where 𝜆𝐻 (𝑡) = 𝛽𝐻𝐼𝐸 (𝑡)𝑃0 + 𝜖𝐼𝐸 (𝑡) ,𝜆𝐸 (𝑡) = 𝛽𝐸𝐿𝑊 (𝑡)𝐿0 + 𝜖𝐿𝑊 (𝑡) ,𝐼ℎ (𝑡) = 𝐼𝐻 (𝑡) + 1,

𝑆ℎ (𝑡) = 𝑆𝐻 (𝑡) − 1,𝜆ℎ (𝑡) = 𝛽𝐻𝐼𝐸 (𝑡)[𝑃0 + 𝜖𝐼𝐸 (𝑡)] [𝐼𝐻 (𝑡) + 1] .
(2)

Equations (1) and (2) of the model system (1) describe
the evolution with time of susceptible and infected human
hosts, respectively. At any time 𝑡, new susceptible humans
are recruited at a constant rate Λ𝐻 and we assume that the
recruited humans are all susceptible. Susceptible individuals
leave the susceptible class either through infection at rate𝜆𝐻(𝑡)𝑆𝐻(𝑡) by drinking contaminated water with infected
copepods to join infected group or through natural death
at a rate 𝜇𝐻. The infected group is generated through
infection when susceptible humans acquire the disease at a
rate 𝜆𝐻(𝑡)𝑆𝐻(𝑡) through drinking water contaminated with
copepods infected with Dracunculus medinensis. Infected
humans leave the infected group either through recovery at
a rate 𝛼𝐻 to join the susceptible group or through natural
death at a rate 𝜇𝐻, or through disease induced death at a
rate 𝛿𝐻. Equation (3) of the model system (1) represents the
evolution with time of infected copepods within an infected
human host. The infected copepods within a human host
are generated following uptake of infected copepods in the
physical water environment through drinking contaminated
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water. In the human population, this uptake of infected
copepods, which harbour Guinea worm larvae, is the trans-
mission of Guinea worm parasite from the physical water
environment to susceptible humans who become infected
humans. Following the methodology described in [13] for
modelling reinfection (superinfection) for environmentally
transmitted infectious disease systems (because GWD and
schistosomiasis are bothwater-borne and vector-borne infec-
tions), wemodel the average rate at which a single susceptible
human host uptakes the infected copepods in the physical
water environment through drinking contaminated water
and becomes an infected human host by the expression𝜆ℎ (𝑡) 𝑆ℎ (𝑡) = 𝜆𝐻 (𝑡) [𝑆𝐻 (𝑡) − 1][𝐼𝐻 (𝑡) + 1] , (3)

where 𝜆𝐻(𝑡), 𝑆𝐻(𝑡), and 𝐼𝐻(𝑡) are as defined previously. This
is because, in our case, we define such a single infection by a
single transition(𝑆𝐻 (𝑡) , 𝐼𝐻 (𝑡) , 𝐼𝐸 (𝑡))󳨀→ (𝑆𝐻 (𝑡) − 1, 𝐼𝐻 (𝑡) + 1, 𝐼𝐸 (𝑡)) . (4)

Therefore, the average number of infected copepods,𝐼𝐶(𝑡), within a single infected human host increases at amean
rate 𝜆ℎ(𝑡)𝑆ℎ(𝑡) and decreases through death due to digestion
by human gastric acid at a rate 𝜇𝐶 after their larvae undergo
two molts in the copepod to become L3 larvae and release
viable and infectious larvae or naturally at a rate 𝛼𝐶 before
their larvae undergo two molts in the copepod to become L3
larvae and release nonviable and noninfectious larvae.

Equations (4–6) of the model system (1) represent
changes with time of the average population ofmature worms𝑊𝑀(𝑡), fertilized female worms 𝑊𝐹(𝑡), and the amount of
gastric acid 𝐺𝐽(𝑡) within a single infected human host,
respectively. The average mature worm population 𝑊𝑀(𝑡)
in a single infected human host is generated following the
digestion of infected copepods in the human stomach by
gastric acid and then mature worms are released. We assume
that mature worms die naturally at a rate 𝜇𝑀 and they exit the
human stomach to the abdominal tissues at a rate 𝛼𝑀, where
they grow and mate. The population of fertilized female
worms, 𝑊𝐹(𝑡) within an infected human host, is generated
following the developmental changes undergone by mature
fertilized female worms. These developmental changes result
inmature worms reaching sexualmaturity andmating and all
male worms die soon after mating. We assume that fertilized
female worms die naturally at a rate 𝜇𝐹 and emerge out
through an infected human individual’s skin (usually the
lower limbs) to release Guinea worm eggs into a water source
at a rate 𝛼𝐹, when an infected human comes into contact with
water. The average amount of gastric acid inside a human
stomach is generated following copepod vector induced
proliferation at a rate 𝛼𝐽𝐼𝐶(𝑡), which is proportional to the
density of infected copepods within an infected human host.
We assume that the amount of gastric acid is also increased
by the spontaneous production of gastric acid by the human
body at a rate 𝐺0 and diluted or degraded at a rate 𝜇𝐽.
Equation (7) of model system (1) describes the evolution with

time of the Guinea worm eggs 𝐸𝑊(𝑡) in the physical water
environment. We note that the population of Guinea worm
eggs increases when each infected human host excretes eggs
at a rate𝛼𝐹𝑊𝐹(𝑡).Therefore the rate at which infected humans
contaminate the physical water environment by excreting
Guineaworm eggs ismodelled by𝛼𝐹𝑊𝐹(𝑡)𝐼ℎ(𝑡).The last three
equations of the model system (1) describe the evolution with
time of Guinea worm larvae 𝐿𝑊(𝑡), susceptible copepods𝑆𝐸(𝑡), and infected copepods 𝐼𝐸(𝑡) in the physical water
environment, respectively. The population of Guinea worm
larvae is generated through each egg hatching an average of𝑁𝑊 worms larvae with eggs hatching at an average rate of𝛼𝑊. Therefore the total Guinea worm larvae in the physical
water environment aremodelled by𝑁𝑊𝛼𝑊𝐸𝑊(𝑡).We assume
that worm larvae in the physical water environment die
naturally at a constant rate 𝜇𝐿. Similar to human population,
at any time 𝑡, new susceptible copepods are recruited at
a constant Λ 𝐸. Susceptible copepods leave the susceptible
group to join the infected copepods group through infection
at a rate 𝜆𝐸(𝑡)𝑆𝐸(𝑡) when they consume first-stage Guinea
worm larvae in the physical water environment. We assume
that the population of copepods die naturally at a constant
rate 𝜇𝐸 and further, we also assume that infected copepods
have an additional mortality rate 𝛿𝐸 due to infection. The
model state variables are summarized in Table 1.

3. Invariant Region of the Model

Themodel system (1) can be analysed in a regionΩ ⊂ R10+ of
biological interest. Now assume that all parameters and state
variables for model system (1) are positive for all 𝑡 > 0 and
further suppose that 𝐺𝐽 is bounded above by 𝐺0/𝜇𝐽. It can be
shown that all solutions for themodel system (1) with positive
initial conditions remain bounded.

Letting 𝑁𝐻 = 𝑆𝐻 + 𝐼𝐻 and adding (1) and (2) of model
system (1) we obtain𝑑𝑆𝐻𝑑𝑡 + 𝑑𝐼𝐻𝑑𝑡 = 𝑑𝑁𝐻𝑑𝑡 = Λ𝐻 − 𝜇𝐻𝑁𝐻 − 𝛿𝐻𝐼𝐻≤ Λ𝐻 − 𝜇𝐻𝑁𝐻. (5)

This implies that

lim
𝑡→∞

sup (𝑁𝐻 (𝑡)) ≤ Λ𝐻𝜇𝐻 . (6)

Similarly, letting𝑁𝐸 = 𝑆𝐸 + 𝐼𝐸 and adding (9) and (10) of
model system (1) we obtain𝑑𝑆𝐸𝑑𝑡 + 𝑑𝐼𝐸𝑑𝑡 = 𝑑𝑁𝐸𝑑𝑡 = Λ 𝐸 − 𝜇𝐻𝑁𝐸 − 𝛿𝐻𝐼𝐸≤ Λ 𝐸 − 𝜇𝐻𝑁𝐸. (7)

This also implies that

lim
𝑡→∞

sup (𝑁𝐸 (𝑡)) ≤ Λ 𝐸𝜇𝐸 . (8)



6 Computational and Mathematical Methods in Medicine

Table 1: Description of the state variables of the model system (1).

State variable Description Initial value𝑆𝐻(𝑡) The susceptible human population size in the behavioural human environment 2500𝐼𝐻(𝑡) The infected human population size in the behavioural human environment 10𝐼𝐶(𝑡) The infected copepod population size in the biological human environment 0𝑊𝑀(𝑡) Themature worm population size in the biological human environment 0𝑊𝐹(𝑡) The female worm population size in the biological human environment 0𝐺𝐽(𝑡) Amount of gastric acid in the human stomach 1.5𝑆𝐸(𝑡) The susceptible copepod population size in the physical water environment 105𝐼𝐸(𝑡) The infected copepod population size in the physical water environment 0𝐸𝑊(𝑡) The worm egg population size in the physical water environment 0𝐿𝑊(𝑡) The worm larvae population size in the physical water environment 5000

Now considering the third equation of model system (1),
given by𝑑𝐼𝐶𝑑𝑡 = 𝜆ℎ𝑆ℎ − 𝜇𝐶𝐺𝐽𝐼𝐶 − 𝛿𝐶𝐼𝐶= ( 𝛽𝐻𝐼𝐸 (𝑆𝐻 − 1)(𝑃0 + 𝜖𝐼𝐸) (𝐼𝐻 + 1)) − (𝜇𝐶𝐺𝐽 + 𝛼𝐶) 𝐼𝐶, (9)

we obtain 𝑑𝐼𝐶𝑑𝑡 ≤ ( 𝛽𝐻Λ 𝐸 (Λ𝐻 − 𝜇𝐻)(𝑃0𝜇𝐸 + 𝜖Λ 𝐸) (Λ𝐻 + 𝜇𝐻))− 1𝜇𝐽 (𝜇𝐶𝐺0 + 𝛼𝐶𝜇𝐽) 𝐼𝐶. (10)

This implies that

lim
𝑡→∞

sup (𝐼𝐶 (𝑡))≤ ( 𝛽𝐻Λ 𝐸 (Λ𝐻 − 𝜇𝐻)(𝑃0𝜇𝐸 + 𝜖Λ 𝐸) (Λ𝐻 + 𝜇𝐻))( 𝜇𝐽(𝜇𝐶𝐺0 + 𝛿𝐻𝜇𝐽)) . (11)

Using (6), (8), and (11) similar expression can be derived
for the remaining model variables. Hence, all feasible solu-
tions of the model system (1) are positive and enter a region
defined byΩ = {(𝑆𝐻, 𝐼𝐻, 𝐼𝐶,𝑊𝑀,𝑊𝐹, 𝐺𝐽, 𝐸𝑊, 𝐿𝑊, 𝑆𝐸, 𝐼𝐸)∈ R

10
+ : 0 ≤ 𝑆𝐻 + 𝐼𝐻 ≤ 𝑆1, 0 ≤ 𝑆𝐸 + 𝐼𝐸 ≤ 𝑆2, 0 ≤ 𝐼𝐶≤ 𝑆3, 0 ≤ 𝑊𝑀 ≤ 𝑆4, 0 ≤ 𝑊𝐹 ≤ 𝑆5, 0 ≤ 𝐺𝐽 ≤ 𝑆6, 0≤ 𝐸𝑊 ≤ 𝑆7, 0 ≤ 𝐿𝑊 ≤ 𝑆8} ,

(12)

which is positively invariant and attracting for all 𝑡 > 0, where𝑆1 = Λ𝐻𝜇𝐻 ,𝑆2 = Λ 𝐸𝜇𝐸 ,

𝑆3 = ( 𝜇𝐽(𝜇𝐶𝐺0 + 𝛼𝐶𝜇𝐽)) 𝑆9,
𝑆4 = (𝑁𝐶𝛼𝐶𝜇𝐶𝛼𝑀 + 𝜇𝑀)( 𝜇𝐽(𝜇𝐶𝐺0 + 𝛼𝐶𝜇𝐽)) 𝑆9,
𝑆5 = 12 ( 𝛼𝑀𝛼𝐹 + 𝜇𝐹)(𝑁𝐶𝛼𝐶𝜇𝐶𝛼𝑀 + 𝜇𝑀)( 𝜇𝐽(𝜇𝐶𝐺0 + 𝛼𝐶𝜇𝐽)) 𝑆9,
𝑆6 = 𝐺0𝜇𝐽 ,𝑆7 = 12 ( 𝛼𝐹𝛼𝑊 + 𝜇𝑊)( 𝛼𝑀𝛼𝐹 + 𝜇𝐹)(𝑁𝐶𝛼𝐶𝜇𝐶𝛼𝑀 + 𝜇𝑀)⋅ ( 𝜇𝐽(𝜇𝐶𝐺0 + 𝛼𝐶𝜇𝐽)) 𝑆9,
𝑆8 = 12 (𝑁𝑊𝛼𝑊𝜇𝐿 )( 𝛼𝐹𝛼𝑊 + 𝜇𝑊)( 𝛼𝑀𝛼𝐹 + 𝜇𝐹)⋅ ( 𝑁𝐶𝛼𝐶𝜇𝐶𝛼𝑀 + 𝜇𝑀)( 𝜇𝐽(𝜇𝐶𝐺0 + 𝛼𝐶𝜇𝐽)) 𝑆9,
𝑆9 = ( 𝛽𝐻Λ𝐶 (Λ𝐻 − 𝜇𝐻)(𝑃0𝜇𝐶 + 𝜖Λ𝐶) (Λ𝐻 + 𝜇𝐻)) .

(13)

Therefore it is sufficient to consider solutions of themodel
system (1) inΩ, since all solutions starting inΩ remain there
for all 𝑡 ≥ 0. Hence, the model system is mathematically and
epidemiologically well-posed and it is sufficient to consider
the dynamics of the flow generated by model system (1) inΩ whenever Λ𝐻 > 𝜇𝐻. We shall assume in all that follows
(unless stated otherwise) that Λ𝐻 > 𝜇𝐻.
4. Determination of Disease-Free
Equilibrium and Its Stability

To obtain the disease-free equilibrium point of system (1), we
set the left-hand side of the equations equal to zero and
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further we assume that 𝐼𝐻 = 𝐼𝐶 = 𝑊𝐻 = 𝑊𝐻 = 𝐸𝑊 = 𝐿𝑊 =𝐼𝐸 = 0. This means that all the populations are free from the
disease. Thus we get𝐸0 = (𝑆0𝐻, 𝐼0𝐻, 𝐼0𝐶,𝑊0𝑀,𝑊0𝐹 , 𝐺0𝐽 , 𝐸0𝑊, 𝐿0𝑊, 𝑆0𝐸, 𝐼0𝐸) ,= (Λ𝐻𝜇𝐻 , 0, 0, 0, 0, 𝐺0𝜇𝐽 , 0, 0, Λ 𝐸𝜇𝐸 , 0) , (14)

as the disease-free equilibrium of the model system (1).

4.1. The Basic Reproduction Number of the Model System
(1). The basic reproduction number of the system model (1)
is calculated in this section using next generation operator
approach described in [20]. Thus the model system (1) can
also be written in the form𝑑𝑋𝑑𝑡 = 𝑓 (𝑋, 𝑌, 𝑍) ,𝑑𝑌𝑑𝑡 = 𝑔 (𝑋, 𝑌, 𝑍) ,𝑑𝑍𝑑𝑡 = ℎ (𝑋, 𝑌, 𝑍) ,

(15)

where

(i) 𝑋 = (𝑆𝐻, 𝑆𝐸, 𝐺𝐽) represents all compartments of indi-
viduals who are not infected,

(ii) 𝑌 = (𝐼𝐻, 𝐼𝐶,𝑊𝑀,𝑊𝐹, 𝐸𝑊) represents all compart-
ments of infected individuals who are not capable of
infecting others,

(iii) 𝑍 = (𝐼𝐸, 𝐿𝑊) represents all compartments of infected
individuals who are capable of infecting others.

We also let the disease-free equilibrium of the model (1)
be denoted by the following expression:

𝑈0 = (Λ𝐻𝜇𝐻 , 0, 0, 0, 0, 𝐺0𝜇𝐽 , 0, 0, Λ 𝐸𝜇𝐸 , 0) . (16)

Following [20], we let𝑔 (𝑋∗, 𝑍) = (𝑔1 (𝑋∗, 𝑍) , 𝑔2 (𝑋∗, 𝑍) , 𝑔3 (𝑋∗, 𝑍) ,𝑔4 (𝑋∗, 𝑍) , 𝑔5 (𝑋∗, 𝑍)) , (17)

with

𝑔1 (𝑋∗, 𝑍) = 𝛽𝐻Λ𝐻𝑍1𝜇𝐻 (𝜇𝐻 + 𝛿𝐻 + 𝛼𝐻) (𝑃0 + 𝜖𝐼𝐸) ,
𝑔2 (𝑋∗, 𝑍) = 𝛽𝐻 (Λ𝐻 − 𝜇𝐻) 𝜇𝐽 (𝜇𝐻 + 𝛿𝐻 + 𝛼𝐻) 𝑍1(𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶)𝑀11 ,
𝑔3 (𝑋∗, 𝑍) = 𝑁𝐶𝛼𝐶𝛽𝐻 (Λ𝐻 − 𝜇𝐻) 𝐺0 (𝜇𝐻 + 𝛿𝐻 + 𝛼𝐻) 𝑍1(𝜇𝑀 + 𝛼𝑀) (𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶)𝑀11 ,
𝑔4 (𝑋∗, 𝑍) = 𝛼𝑀𝑁𝐶𝛼𝐶𝛽𝐻 (Λ𝐻 − 𝜇𝐻) 𝐺0 (𝜇𝐻 + 𝛿𝐻 + 𝛼𝐻) 𝑍12 (𝜇𝐹 + 𝛼𝐹) (𝜇𝑀 + 𝛼𝑀) (𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶)𝑀11 ,
𝑔5 (𝑋∗, 𝑍) = 𝛼𝐹𝛼𝑀𝑁𝐶𝛼𝐶𝛽𝐻 (Λ𝐻 − 𝜇𝐻) 𝐺0𝑍12 (𝜇𝑊 + 𝛼𝑊) (𝜇𝐹 + 𝛼𝐹) (𝜇𝑀 + 𝛼𝑀) (𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶) 𝜇𝐻 (𝑃0 + 𝜖𝐼𝐸) ,

(18)

where

𝑀11 = 𝜖𝛽𝐻Λ𝐻𝐼𝐸 + 𝜇𝐻 (𝜇𝐻 + 𝛿𝐻 + 𝜇𝐻) (𝑃0 + 𝜖𝐼𝐸) . (19)

We deduce that

ℎ (𝑋, 𝑌, 𝑍) = (ℎ1 (𝑋, 𝑌, 𝑍) , ℎ2 (𝑋, 𝑌, 𝑍)) , (20)

with ℎ1 (𝑋, 𝑌, 𝑍) = 𝜆𝐸𝑆𝐸 − (𝜇𝐸 + 𝛼𝐸) 𝐼𝐸= 𝛽𝐸Λ 𝐸𝑍2𝜇𝐸 (𝐿0 + 𝜖𝑍2) − (𝜇𝐸 + 𝛼𝐸) 𝑍1,ℎ2 (𝑋, 𝑌, 𝑍) = 𝑁𝑊𝛼𝑊𝐸𝑊 − 𝜇𝐿𝐿𝑊= 𝐾𝑍1(𝑃0 + 𝜖𝑍1) − 𝜇𝐿𝑍2,
(21)
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where𝐾= 𝛼𝐹𝛼𝑀𝑁𝑊𝛼𝑊𝑁𝐶𝛼𝐶𝛽𝐻 (Λ𝐻 − 𝜇𝐻) 𝐺02 (𝜇𝑊 + 𝛼𝑊) (𝜇𝐹 + 𝛼𝐹) (𝜇𝑀 + 𝛼𝑀) (𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶) 𝜇𝐻 . (22)

𝐴matrix

𝐴 = 𝐷𝑍ℎ (𝑋∗, 𝑔 (𝑋∗, 0) , 0) = [[[[
− (𝜇𝐸 + 𝛼𝐸) 𝐾𝑃0𝛽𝐸Λ 𝐸𝜇𝐸𝐿0 −𝜇𝐿]]]] (23)

can be written in the form 𝐴 = 𝑀 − 𝐷, so that

𝑀 = [[[[
0 𝐾𝑃0𝛽𝐸Λ 𝐸𝜇𝐸𝐿0 0 ]]]] , (24)

𝐷 = [(𝜇𝐸 + 𝛼𝐸) 00 𝜇𝐿] . (25)

The basic reproductive number is the spectral radius
(dominant eigenvalue) of the matrix 𝑇 = 𝑀𝐷−1. Hence, the
basic reproduction number of the immumoepidemiological
model (1) is expressed by the following quantity.

𝑅0 = √12 ⋅ 𝛼𝑀𝛼𝑀 + 𝜇𝑀 ⋅ 𝛼𝐹𝛼𝐹 + 𝜇𝐹 ⋅ 𝑁𝐶𝜇𝐶𝐺0𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶 ⋅ 𝛽𝐻 (Λ𝐻 − 𝜇𝐻)𝑃0𝜇𝐻 ⋅ 𝑁𝑊𝛼𝑊(𝛼𝑊 + 𝜇𝑊) 𝜇𝐿 𝛽𝐸Λ 𝐸𝜇𝐸 (𝜇𝐸 + 𝛿𝐸) 𝐿0
= √𝑅0𝐵𝑅0𝑊, (26)

with

𝑅0𝐵 = 𝛽𝐻 (Λ𝐻 − 𝜇𝐻)𝑃0𝜇𝐻⋅ 𝑁𝑊𝛼𝑊(𝛼𝑊 + 𝜇𝑊) 𝜇𝐿 𝛽𝐸Λ 𝐸𝜇𝐸 (𝜇𝐸 + 𝛿𝐸) 𝐿0 , (27)

𝑅0𝑊 = 12 ⋅ 𝛼𝑀𝛼𝑀 + 𝜇𝑀 ⋅ 𝛼𝐹𝛼𝐹 + 𝜇𝐹 ⋅ 𝑁𝐶𝜇𝐶𝐺0𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶 . (28)

The expression, 𝑅0𝐵, in (27) represents GWD’s partial
reproductive number associatedwith the between-host trans-
mission of the disease while the expression, 𝑅0𝑊, in (28)
represents GWD’s partial reproductive number associated
with the within-host transmission of the disease. From the
above two expressions in (27) and (28), respectively, we
therefore make the following deductions.

(i) The epidemiological (between-host) transmission pa-
rameters such as the rate at which susceptible humans
come into contact with water contaminated with
infected copepods 𝛽𝐻 (through drinking contami-
nated water with infected copepods) and the rate at
which susceptible copepods come into contact with
Guinea worm larvae 𝛽𝐸; the supply rate of susceptible
humans Λ𝐻 and copepods Λ 𝐸 (through birth); the
rate at which worms emerge from infected humans
to contaminate the physical water environment 𝛼𝐹,
by laying eggs every time infected humans come
into contact with water sources; the rate at which
eggs in physical water environment hatch to produce
worm larvae𝑁𝑊𝛼𝑊 all contribute to the transmission

of Guinea worm disease. Therefore control mea-
sures such as reducing the rate at which infected
human hosts visit water sources when an individual
is infected, reducing contact rate between susceptible
humans with contaminated water through educating
the public, and treating water bodies with chemicals
that kill worm eggs, worm larvae, and copepods may
help to reduce the transmission risk of GWD.

(ii) The immunological (within-host) transmission pa-
rameters such as the rate at which infected copepods
within an infected human host release mature worms𝑁𝐶𝜇𝐶 after digestion by human gastric juice; the rate
at which mature worms become fertilized females
worms 𝛼𝑀/2; and the rate at which mature worms
and females worms die all contribute to the trans-
mission of Guinea worm disease. Therefore immune
mechanisms that kill infected copepods and worms
within infected human host and also treatment intend
to kill bothmature worms and fertilized female worm
population may help to reduce the transmission risk
of GWD.

Therefore, both the epidemiological and immunological
factors affect the transmission cycle of GWD in both humans
and copepod population.

4.2. Local Stability of DFE. In this section we determine the
local stability of DFE of the model system (1). We linearize
equations of the model system (1) in order to obtain a
Jacobian matrix. Then we evaluate the Jacobian matrix of the
system at the disease-free equilibrium (DFE),

𝐸0 = (Λ𝐻𝜇𝐻 , 0, 0, 0, 0, 𝐺0𝜇𝐽 , 0, 0, Λ 𝐸𝜇𝐸 , 0) . (29)
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The Jacobian matrix of the model system (1) evaluated at
the disease-free equilibrium state (DFE) is given by

𝐽 (𝐸0) =
((((((((((((((((((((((((((
(

−𝜇𝐻 𝛼𝐻 0 0 0 0 0 0 0 −𝐴00 −𝑞0 0 0 0 0 0 0 0 𝐴00 0 −𝑞1 0 0 0 0 0 0 𝐴10 0 𝑁𝐶𝜇𝐶𝐺0𝜇𝐽 −𝑞2 0 0 0 0 0 00 0 0 𝛼𝑀2 −𝑞3 0 0 0 0 00 0 𝛼𝐽𝐺0𝜇𝐽 0 0 −𝜇𝐽 0 0 0 00 0 0 0 𝛼𝐹 0 −𝑞4 0 0 00 0 0 0 0 0 𝑁𝑊𝛼𝑊 −𝜇𝐿 0 00 0 0 0 0 0 0 −𝛽𝐸Λ 𝐸𝜇𝐸𝐿0 −𝜇𝐸 00 0 0 0 0 0 0 𝛽𝐸Λ 𝐸𝜇𝐸𝐿0 0 −𝑞5

))))))))))))))))))))))))))
)

, (30)

where 𝑞0 = (𝜇𝐻 + 𝛿𝐻 + 𝛼𝐻) ,𝑞1 = (𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶)𝜇𝐽 ,𝑞2 = (𝜇𝑀 + 𝛼𝑀) ,𝑞3 = (𝜇𝐹 + 𝛼𝐹) ,𝑞4 = (𝜇𝑊 + 𝛼𝑊) ,𝑞5 = (𝜇𝐸 + 𝛼𝐸) ,𝐴0 = 𝛽𝐻Λ𝐻𝑃0𝜇𝐻 ,
𝐴1 = 𝛽𝐻 (Λ𝐻 − 𝜇𝐻)𝜇𝐻𝑃0 .

(31)

We consider stability of DFE by calculating the eigenval-
ues (𝜆𝑠) of the Jacobian matrix given by (30). The character-
istic equation for the eigenvalues is given by𝜆0 [𝜆6 + 𝜋1𝜆5 + 𝜋2𝜆4 + 𝜋3𝜆3 + 𝜋4𝜆2 + 𝜋5𝜆 + 𝜋6]= 0, (32)

where𝜆0 = (−𝜇𝐻 − 𝜆) (−𝜇𝐸 − 𝜆) (−𝜇𝐽 − 𝜆) (−𝑞0 − 𝜆) . (33)

It is clear from (32) that there are four negative eigen-
values (−𝜇𝐻, −𝜇𝐸, −𝜇𝐽, and −𝑞0). Now in order to make

conclusions about the stability of the DFE, we use the Routh-
Hurwitz criteria to determine the sign of the remaining
eigenvalues of the polynomial𝜆6 + 𝜋1𝜆5 + 𝜋2𝜆4 + 𝜋3𝜆3 + 𝜋4𝜆2 + 𝜋5𝜆 + 𝜋6 = 0, (34)

where𝜋1 = 𝑞1 + 𝑞2 + 𝑞3 + 𝑞4 + 𝑞5 + 𝜇𝐿,𝜋2 = 𝑞1𝑞2 + 𝑞3𝑞4 + (𝑞1 + 𝑞2 + 𝑞3 + 𝑞4) (𝑞5 + 𝜇𝐿)+ 𝑞5𝜇𝐿 + (𝑞1 + 𝑞2) (𝑞3 + 𝑞4) ,𝜋3 = 𝑞1𝑞2 (𝑞3 + 𝑞4) + 𝑞3𝑞4 (𝑞1 + 𝑞2)+ (𝑞1 + 𝑞2) (𝑞3 + 𝑞4) (𝑞5 + 𝜇𝐿)+ 𝑞1𝑞2 (𝑞5 + 𝜇𝐿) + 𝑞3𝑞4 (𝑞5 + 𝜇𝐿)+ 𝑞5𝜇𝐿 (𝑞1 + 𝑞2 + 𝑞3 + 𝑞4) ,𝜋4 = 𝑞1𝑞2𝑞3𝑞4 + 𝑞3𝑞4 (𝑞1 + 𝑞2) (𝑞5 + 𝜇𝐿)+ 𝑞1𝑞2 (𝑞3 + 𝑞4) (𝑞5 + 𝜇𝐿)+ (𝑞1 + 𝑞2) (𝑞3 + 𝑞4) 𝑞1𝜇𝐿 + 𝑞5𝑞4𝑞3𝜇𝐿+ 𝑞1𝑞2𝑞5𝜇𝐿,𝜋5 = 𝑞1𝑞2𝑞3𝑞4 (𝑞5 + 𝜇𝐿) + 𝑞3𝑞4 (𝑞1 + 𝑞2) 𝑞5𝜇𝐿+ 𝑞1𝑞2 (𝑞3 + 𝑞4) 𝑞5𝜇𝐿,𝜋6 = 𝑞1𝑞2𝑞3𝑞4𝑞5𝜇𝐿 (1 − 𝑅20) .

(35)
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Using the Routh-Hurwitz stability criterion, the equilib-
rium state associated with themodel system (1) is stable if and
only if the determinants of all theHurwitzmatrices associated
with the characteristic equation (34) are positive; that is,

Det (𝐻𝑗) > 0; 𝑗 = 1, 2, . . . , 6, (36)

where 𝐻1 = (𝜋1) ;𝐻2 = (𝜋1 1𝜋3 𝜋2) ;
𝐻3 = (𝜋1 1 0𝜋3 𝜋2 𝜋1𝜋5 𝜋4 𝜋3);
𝐻4 = (𝜋1 1 0 0𝜋3 𝜋2 𝜋1 1𝜋5 𝜋4 𝜋3 𝜋20 𝜋6 𝜋5 𝜋4);

𝐻5 = (((
(

𝜋1 1 0 0 0𝜋3 𝜋2 𝜋1 1 0𝜋5 𝜋4 𝜋3 𝜋2 𝜋10 𝜋6 𝜋5 𝜋4 𝜋30 0 0 𝜋6 𝜋5
)))
)

;

𝐻6 = ((((((
(

𝜋1 1 0 0 0 0𝜋3 𝜋2 𝜋1 1 0 0𝜋5 𝜋4 𝜋3 𝜋2 𝜋1 10 𝜋6 𝜋5 𝜋4 𝜋3 𝜋20 0 0 𝜋6 𝜋5 𝜋40 0 0 0 0 𝜋6
))))))
)

.

(37)

The Routh-Hurwitz criterion applied to (37) requires that
the following conditions (H1)–(H6) be satisfied, in order to
guarantee the local stability of the disease-free equilibrium
point of the model system (1).

(H1) 𝜋1 > 0.
(H2) 𝜋1𝜋2 − 𝜋3 > 0.
(H3) 𝜋1(𝜋2𝜋3 + 𝜋5) > 𝜋1𝜋4 + 𝜋23 .
(H4) 𝜋1[𝜋2(𝜋3(𝜋4 + 𝜋5) + 𝜋1𝜋6) + (𝜋1 + 𝜋4)] > 𝜋1[𝜋22𝜋5 +𝜋3𝜋6 + 𝜋1𝜋24] + 𝜋32𝜋4 + 𝜋25 .

(H5) 𝜋6[𝜋1(2𝜋2𝜋5 + 𝜋3(𝜋1𝜋4 − 3𝜋5 − 𝜋3)) + 𝜋33𝜋6] +𝜋5[𝜋5(2𝜋1𝜋4+𝜋2𝜋3−𝜋1𝜋2(𝜋2+1)+𝜋4(𝜋1𝜋2𝜋3−𝜋21𝜋4−𝜋23))] > 0.
(H6) 𝜋26[𝜋1(2𝜋2𝜋5 + 𝜋3(𝜋1𝜋4 − 3𝜋5 − 𝜋3)) + 𝜋33𝜋6] +𝜋5𝜋6[𝜋5(2𝜋1𝜋4 + 𝜋2𝜋3 − 𝜋1𝜋2(𝜋2 + 1) + 𝜋4(𝜋1𝜋2𝜋3 −𝜋21𝜋4 − 𝜋23))] > 0.
From (37) we note that all the coefficients 𝜋1, 𝜋2, 𝜋3,𝜋4, 𝜋5, and 𝜋6 of the polynomial 𝑃(𝜆) are greater than zero

whenever 𝑅20 < 1. And we also noted that the conditions
above are satisfied if and only if 𝑅20 < 1. Hence all the roots of
the polynomial 𝑃(𝜆) either are negative or have negative real
parts. The results are summarized in the following theorem.

Theorem 1. The disease-free equilibrium point of the model
system (1) is locally asymptotically stable whenever 𝑅0 < 1.
4.3. Global Stability of DFE. To determine the global stability
of DFE of the model system (1), we use Theorem 2 in
[21] to establish that the disease-free equilibrium is globally
asymptotically stable whenever 𝑅0 < 1 and unstable when𝑅0 > 1. In this section, we list two conditions that if met, also
guarantee the global asymptotic stability of the disease-free
state. We write the model system (1) in the form𝑑𝑋𝑑𝑡 = 𝐹 (𝑋, 𝑍) ,𝑑𝑌𝑑𝑡 = 𝐺 (𝑋, 𝑍) , (38)

where

(i) 𝑋 = (𝑆𝐻, 𝑆𝐸, 𝐺𝐽) represents all uninfected compo-
nents.

(ii) 𝑍 = (𝐼𝐻, 𝐼𝐶,𝑊𝑀,𝑊𝐹, 𝐸𝑊, 𝐿𝑊, 𝐼𝐸) represents all com-
partments of infected and infectious components.

We let 𝑈0 = (𝑋∗, 0) = (Λ𝐻𝜇𝐻 , 0, 0, Λ𝐶𝜇𝐶 , 0, 0, 0) (39)

denote the disease-free equilibrium (DFE) of the system.
To guarantee global asymptotic stability of the disease-free
equilibrium, conditions (H1) and (H2) below must be met
[20].

(H1) 𝑑𝑋/𝑑𝑡 = 𝐹(𝑋, 0) is globally asymptotically stable,

(H2) 𝐺(𝑋,𝑍) = 𝐴𝑍−𝐺(𝑋,𝑍) and𝐺(𝑋,𝑍) ≥ 0 for (𝑋, 𝑍) ∈
R10+ , where 𝐴 = 𝐷𝑍𝐺(𝑋∗, 0) is an𝑀-matrix and R10+
is the region where the model makes biological sense.

In our case

𝐹 (𝑋, 0) = [[[
Λ𝐻 − 𝜇𝐻𝑆𝐻Λ 𝐸 − 𝜇𝐸𝑆𝐸𝐺0 − 𝜇𝐽𝐺𝐽 ]]] . (40)
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Matrix 𝐴 is given by

𝐴 =
[[[[[[[[[[[[[[[[[[[[[

−𝑎0 0 0 0 0 0 𝛽𝐻Λ𝐻𝑃0𝜇𝐻0 −𝑎1 0 0 0 0 𝛽𝐻 (Λ𝐻 − 𝜇𝐻)𝜇𝐻𝑃00 𝑁𝐶𝜇𝐶𝐺0𝜇𝐽 −𝑎2 0 0 0 00 0 𝛼𝑀2 −𝑎3 0 0 00 0 0 𝛼𝐹 −𝑎4 0 00 0 0 0 𝑁𝑊𝛼𝑊 −𝜇𝐿 00 0 0 0 0 𝛽𝐸Λ 𝐸𝐿0𝜇𝐸 −𝑎5

]]]]]]]]]]]]]]]]]]]]]
, (41)

where

𝑎0 = (𝜇𝐻 + 𝛿𝐻 + 𝛼𝐻) ,𝑎1 = 1𝜇𝐽 (𝜇𝐶 + 𝛼𝐶𝜇𝐽) ,𝑎2 = (𝜇𝑀 + 𝛼𝑀) ,𝑎3 = (𝜇𝐹 + 𝛼𝐹) ,𝑎4 = (𝜇𝑊 + 𝛼𝑊) ,𝑎5 = (𝜇𝐸 + 𝛼𝐸) ,

𝐺 (𝑋, 𝑍) =
[[[[[[[[[[[[[[[[[[[

( Λ𝐻𝜇𝐻𝑃0 − 𝑆𝐻𝑃0 + 𝜖𝐼𝐸)𝛽𝐻𝐼𝐸((Λ𝐻 − 𝜇𝐻)𝜇𝐻𝑃0 − (𝑆𝐻 − 1)𝑃0 + 𝜖𝐼𝐸 )𝛽𝐻𝐼𝐸 + 𝐼𝐶(𝜇𝐶(𝐺𝐽 − 𝐺0𝜇𝐽 ) + 𝛼𝐶 (1 − 𝜇𝐽))0000( Λ 𝐸𝜇𝐸𝐿0 − 𝑆𝐸𝐿0 + 𝜖𝐿𝑊)𝛽𝐸𝐿𝑊

]]]]]]]]]]]]]]]]]]]
.

(42)

Assume that 𝐺𝐽 = 𝐺0/𝜇𝐽 and 𝜇𝐽 ∈ [0, 1]. It is clear that𝐺(𝑋,𝑍) ≥ 0 for all (𝑋, 𝑍) ∈ R10+ , since Λ𝐻/𝜇𝐻𝑃0 ≥ 𝑆𝐻/(𝑃0 +𝜖𝐼𝐸), Λ 𝐸/𝜇𝐸𝐿0 ≥ 𝑆𝐸/(𝐿0 + 𝜖𝐿𝑊), and (Λ𝐻 − 𝜇𝐻)/𝜇𝐻𝑃0 ≥(𝑆𝐻 − 1)/(𝑃0 + 𝜖𝐼𝐶) provided that Λ𝐻 > 𝜇𝐻. It is also clear
that 𝐴 is an 𝑀-matrix, since the off diagonal elements of 𝐴
are nonnegative. We state a theorem which summarizes the
above result.

Theorem 2. The disease-free equilibrium of model system (1)
is globally asymptotically stable if 𝑅0 ≤ 1 and the assumptions
(H1) and (H2) are satisfied.

5. The Endemic Equilibrium
State and Its Stability

At the endemic equilibriumhumans are infected by copepods
that have been infected by first-stage larvae (𝐿𝑊). The
endemic equilibrium point of the model system (1) given by𝐸1 = (𝑆∗𝐻, 𝐼∗𝐻, 𝐼∗𝐶,𝑊∗𝑀,𝑊∗𝐹 , 𝐺∗𝐽 , 𝐸∗𝑊, 𝐿∗𝑊, 𝑆∗𝐸, 𝐼∗𝐸) (43)

satisfies 0 = Λ𝐻 − 𝜆∗𝐻𝑆∗𝐻 − 𝜇𝐻𝑆∗𝐻 + 𝛼𝐻𝐼∗𝐻,0 = 𝜆∗𝐻𝑆∗𝐻 − (𝜇𝐻 + 𝛿𝐻 + 𝛼𝐻) 𝐼∗𝐻,



12 Computational and Mathematical Methods in Medicine0 = 𝜆∗ℎ𝑆∗ℎ − 𝜇𝐶𝐺∗𝐽 𝐼∗𝐶 − 𝛼𝐶𝐼∗𝐶,0 = 𝑁𝐶𝜇𝐶𝐺∗𝐽 𝐼∗𝐶 − (𝛼𝑀 + 𝜇𝑀)𝑊∗𝑀,0 = 𝛼𝑀2 𝑊∗𝑀 − (𝜇𝐹 + 𝛼𝐹)𝑊∗𝐹 ,0 = 𝐺0 + 𝛼𝐽𝐺∗𝐽 𝐼∗𝐶 − 𝜇𝐽𝐺∗𝐽 ,0 = 𝛼𝐹𝑊∗𝐹 𝐼∗ℎ − (𝜇𝑊 + 𝛼𝑊) 𝐸∗𝑊,0 = 𝑁𝑊𝛼𝑊𝐸∗𝑊 − 𝜇𝐿𝐿∗𝑊,0 = Λ 𝐸 − 𝜆∗𝐸𝑆∗𝐸 − 𝜇𝐸𝑆∗𝐸,0 = 𝜆∗𝐸𝑆∗𝐸 − (𝜇𝐸 + 𝛿𝐸) 𝐼∗𝐸 ,
(44)

for all 𝑆∗𝐻, 𝐼∗𝐻, 𝐼∗𝐶,𝑊∗𝑀,𝑊∗𝐹 , 𝐺∗𝐽 , 𝐸∗𝑊, 𝐿∗𝑊, 𝑆∗𝐸, 𝐼∗𝐸 > 0. We there-
fore obtain the following endemic values. The endemic value
of susceptible humans is given by𝑆∗𝐻 = Λ𝐻 + 𝛼𝐻𝐼∗𝐻(𝜆∗𝐻 + 𝜇𝐻) . (45)

From (45) we note that the susceptible human population
at endemic equilibrium is proportional to the average time
of stay in the susceptible class and the rate at which new
susceptible individuals are entering the susceptible class
either through birth or through infected individuals who
recover from the disease. Individuals leave the susceptible
class through either infection or death. The endemic value of
infected humans is given by𝐼∗𝐻 = 𝜆∗𝐻𝑆∗𝐻(𝜇𝐻 + 𝛿𝐻 + 𝛼𝐻) . (46)

Wenote from (46) that the population of infected humans
at the endemic equilibrium point is proportional to the
average time of stay in the infected class, the rate at which
susceptible individuals become infected, and the density
of susceptible individuals. The endemic value of infected
copepods population within a single infected human at the
equilibrium point is given by𝐼∗𝐶 = 𝜆∗𝐻 (𝑆∗𝐻 − 1)(𝐼∗𝐻 + 1) (𝜇𝐶𝐺∗𝐽 + 𝛼𝐶) , (47)

where 𝑆∗𝐻 > 1. From (47) we note that the average infect-
ed copepod population within a single infected human is
proportional to the average life-span of infected copepods
within a single infected human host and the rate of infection
of a single susceptible individual to become infected. We
also note that this expression provides a link between the
dynamics of the infected copepods within-host and human
population dynamics. The endemic value of mature worm
population within a single infected human is given by𝑊∗𝑀 = 𝑁𝐶𝜇𝐶𝐺∗𝐽 𝐼∗𝐶(𝛼𝑀 + 𝜇𝑀) . (48)

We note from (48) that the population of mature worms
within a single infected human at endemic equilibrium point
is proportional to the average life-span of mature worms and
the rate at which mature worms are released after infected
copepods within human host have been killed by human
gastric juice. The endemic value of fertilized female worm
population within a single infected human is given by𝑊∗𝐹 = 12 𝛼𝑀𝑊∗𝑀(𝛼𝐹 + 𝜇𝐹) . (49)

The average population of fertilized female worms within
an infected human at endemic equilibrium point is equal to
the average life-span of female worms and the rate at which
mature worms become fertilized female worms.The endemic
value of a single human gastric juice is given by𝐺∗𝐽 = 𝐺0(𝜇𝐽 − 𝛼𝐽𝐼∗𝐶) , (50)

where 𝜇𝐽 > 𝛼𝐽𝐼∗𝐶. The endemic value of Guinea worm eggs
population in the physical water environment is given by𝐸∗𝑊 = 𝛼𝐹𝑊∗𝐹 (𝐼∗𝐻 + 1)(𝛼𝑊 + 𝜇𝑊) . (51)

We note from (51) that the worm egg population at
equilibrium point is proportional to the average life-span of
eggs, the rate at which each infected human host excretes
Guinea worm eggs, and the total number of infected humans.
The endemic value of Guinea worm larva population in the
physical water environment is given by𝐿∗𝑊 = 𝑁𝑊𝛼𝑊𝐸∗𝑊𝜇𝐿 . (52)

We note from (52) that the larvae population at equi-
librium point is proportional to the rate at which Guinea
worm eggs hatch, the number of larvae generated by each
egg, and the average life-span of larvae. The value of sus-
ceptible copepod population at equilibrium point is given
by 𝑆∗𝐸 = Λ 𝐸(𝜆∗𝐸 + 𝜇𝐸) . (53)

From (53) we note that susceptible copepod population
at endemic equilibrium is proportional to the average time of
stay in susceptible copepod class and the rate at which new
susceptible copepods are entering the susceptible copepod
class through birth. The endemic value of infected copepod
population is given by𝐼∗𝐸 = 𝜆∗𝐸𝑆∗𝐸(𝛿𝐸 + 𝜇𝐸) = 𝜆∗𝐸Λ 𝐸(𝜆∗𝐸 + 𝜇𝐸) (𝛿𝐸 + 𝜇𝐸) . (54)

We note from (54) that infected copepod population at
the endemic equilibrium point is proportional to the average
time of stay in the infected copepod class, the rate at which
susceptible copepods become infected, and the density of sus-
ceptible copepods. We also make the endemic equilibrium of
the model system (1) given by expressions (45)–(54) depend
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on both within-host and between-host disease parame-
ters.

5.1. Existence of the Endemic EquilibriumState. In this section
we present some results concerning the existence of an

endemic equilibrium solution for the model system (1). To
determine the existence and uniqueness of the endemic
equilibriumpoint (EEP) of themodel system (1), we can easily
express 𝑆∗𝐻, 𝐼∗𝐻, 𝐼∗𝐶,𝑊∗𝑀,𝑊∗𝐹 , 𝐸∗𝑊, and 𝐿∗𝑊 in terms of 𝐼∗𝐸 in the
form

𝑆∗𝐻 (𝐼∗𝐸) = [Λ𝐻 (𝑎1 + 𝑎2𝐼∗𝐸) + 𝛼𝐻𝑎0𝐼∗𝐸] (𝑃0 + 𝜖𝐼∗𝐸)(𝑎1 + 𝑎2𝐼∗𝐻) [𝛽𝐻𝐼∗𝐸 + 𝜇𝐻 (𝑃0 + 𝜖𝐼∗𝐸)] ,
𝐼∗𝐻 (𝐼∗𝐸) = 𝑎0𝐼∗𝐸𝑎1 + 𝑎2𝐼∗𝐸 ,
𝐼∗𝐶 (𝐼∗𝐸) = 𝐼∗𝐸 [𝛽𝐻 (Λ𝐻 − 𝜇𝐻) 𝑍(𝑎)𝐸 + 𝑍(𝑏)𝐸 𝛽𝐻𝐼∗𝐸](𝑃0 + 𝜖𝐼∗𝐸) (𝜇𝐶𝐻𝐺∗𝐽 + 𝛼𝐶) (𝐼∗𝐻 + 1)𝑍(𝑐)𝐸 ,

𝑊∗𝑀 (𝐼∗𝐸) = 𝑁𝐶𝜇𝐶𝐺∗𝐽 𝐼∗𝐸 [𝛽𝐻 (Λ𝐻 − 𝜇𝐻) 𝑍(𝑎)𝐸 + 𝑍(𝑏)𝐸 𝛽𝐻𝐼∗𝐸](𝛼𝑀 + 𝜇𝑀) (𝑃0 + 𝜖𝐼∗𝐸) (𝜇𝐶𝐺∗𝐽 + 𝛼𝐶) (𝐼∗𝐻 + 1)𝑍(𝑐)𝐸 ,
𝑊∗𝐹 (𝐼∗𝐸) = 12 𝛼𝑀𝑁𝐶𝜇𝐶𝐺∗𝐽 𝐼∗𝐸 [𝛽𝐻 (Λ𝐻 − 𝜇𝐻) 𝑍(𝑎)𝐸 + 𝑍(𝑏)𝐸 𝛽𝐻𝐼∗𝐸](𝛼𝐹 + 𝜇𝐹) (𝛼𝑀 + 𝜇𝑀) (𝑃0 + 𝜖𝐼∗𝐸) (𝜇𝐶𝐻𝐺∗𝐽 + 𝛼𝐶) (𝐼∗𝐻 + 1)𝑍(𝑐)𝐸 ,
𝐸∗𝑊 (𝐼∗𝐸) = 𝛼𝐹𝛼𝑀𝑁𝐶𝜇𝐶𝐺∗𝐽 𝐼∗𝐸 [𝛽𝐻 (Λ𝐻 − 𝜇𝐻) 𝑍(𝑎)𝐸 + 𝑍(𝑏)𝐸 𝛽𝐻𝐼∗𝐸]2 (𝛼𝑊 + 𝜇𝑊) (𝛼𝐹 + 𝜇𝐹) (𝛼𝑀 + 𝜇𝑀) (𝑃0 + 𝜖𝐼∗𝐸) (𝜇𝐶𝐻𝐺∗𝐽 + 𝛼𝐶)𝑍(𝑐)𝐸 ,
𝐿∗𝑊 (𝐼∗𝐸) = 𝑄𝐸𝐺∗𝐽(𝜇𝐶𝐺∗𝐽 + 𝛼𝐶) ⋅ 𝛽𝐻 (Λ𝐻 − 𝜇𝐻) 𝐼∗𝐸𝑍(𝑎)𝐸 + 𝑍(𝑏)𝐸 𝛽𝐻𝐼∗2𝐸(𝑃0 + 𝜖𝐼∗𝐸) 𝑍(𝑐)𝐸 ,

(55)

where

𝑍(𝑎)𝐸 = (𝑎1 + 𝑎2𝐼∗𝐸) (𝑃0 + 𝜖𝐼∗𝐸) ,𝑍(𝑏)𝐸 = Λ𝐻𝛼𝐻𝑎0 (𝑃0 + 𝜖𝐼∗𝐸) − (𝑎1 + 𝑎2𝐼∗2𝐸 ) 𝛽𝐻,𝑍(𝑐)𝐸 = (𝑎1 + 𝑎2𝐼∗𝐸) (𝛽𝐻𝐼∗𝐸 + 𝜇𝐻 (𝑃0 + 𝜖𝐼∗𝐸)) ,𝑄𝐸 = 12 ⋅ 𝑁𝐶𝜇𝐶𝜇𝐿 ⋅ 𝑁𝑊𝛼𝑊(𝜇𝑊 + 𝛼𝑊) ⋅ 𝛼𝐹(𝜇𝐹 + 𝛼𝐹)⋅ 𝛼𝑀(𝜇𝑀 + 𝛼𝑀) ,

𝑎0 = 𝛽𝐻Λ𝐻,𝑎1 = 𝜇𝐻𝑃0 (𝜇𝐻 + 𝛿𝐻 + 𝛼𝐻) ,𝑎2 = 𝛽𝐻 (𝜇𝐻 + 𝛿𝐻) 𝜇𝐻𝜖 (𝜇𝐻 + 𝛿𝐻 + 𝛼𝐻) .
(56)

Substituting the expression 𝜆𝐸 = 𝛽𝐸𝐿𝑊/(𝐿0 + 𝜖𝐿𝑊)
and 𝐿∗𝑊 = 𝑄𝐸𝐺∗𝐽 /(𝜇𝐶𝐺∗𝐽 + 𝛼𝐶) ⋅ ((𝛽𝐻(Λ𝐻 − 𝜇𝐻)𝐼∗𝐸𝑍(𝑎)𝐸 +𝑍(𝑏)𝐸 𝛽𝐻𝐼∗2𝐸 )/(𝑃0 + 𝜖𝐼∗𝐸)𝑍(𝑐)𝐸 ) into (25) we get𝐼∗𝐸ℎ (𝐼∗𝐸) = 𝐼∗𝐸 [𝛾3𝐼∗3𝐸 + 𝛾2𝐼∗2𝐸 + 𝛾1𝐼∗𝐸 + 𝛾0] = 0, (57)

where

𝛾3 = 𝐺∗𝐽 (𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶) (𝛽𝐸 + 𝜖𝜇𝐸) 𝐿0𝜇𝐸𝑃0𝜇𝐻𝜖𝛽𝐸Λ 𝐸𝐺0 (𝜇𝐶𝐺∗𝐽 + 𝛼𝐶) 𝑅20 [𝑎2 (𝛽𝐻 − 𝜇𝐻) + 𝑎2 (𝛽𝐻 + 𝜇𝐻𝜖) 𝜇𝐸𝐿0 − 𝛽𝐻Λ𝐻𝛼𝐻𝑎0] > 0,
𝛾1 = 𝐺∗𝐽 (𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶) (𝛽𝐸 + 𝜖𝜇𝐸) 𝐿0𝜇𝐸 (𝜇𝐸 + 𝛿𝐻) 𝑃20𝜇𝐻 (𝑎1 + Λ𝐻𝛼𝐻𝑎0)𝛽𝐸Λ 𝐸𝐺0 (𝜇𝐶𝐺∗𝐽 + 𝛼𝐶) 𝑅20
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+ 𝑎1 [1 − 𝛽𝐻 (𝜇𝐸 + 𝛿𝐸) (𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶)𝐺0 𝑅20] + 𝑃0𝜇𝐸𝐿0𝑎2 (𝛽𝐻 + 𝜇𝐻𝜖)
− 𝐿0𝜇𝐸𝑃0𝜇𝐻 (𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶) 𝐺∗𝐽𝐺0 (𝜇𝐶𝐺∗𝐽 + 𝛼𝐶) [𝑎1𝜖 + 𝑎2𝑃0 + Λ𝐻𝐺0𝜖(Λ𝐻 − 𝜇𝐻)] ,

𝛾2 = 𝐵𝛽𝐻 (Λ𝐻 − 𝜇𝐻) [𝑎1𝜖 + 𝑎2𝑃0 + 𝑎2𝜇𝐸𝐿0 (𝛽𝐻 + 𝜖𝜇𝐸)(Λ𝐻 − 𝜇𝐻) ] + 𝐴𝛽𝐻 [𝛽𝐻 − (Λ𝐻 − 𝜇𝐻) 𝜖] ,
𝛾0 = 𝜇𝐸𝐿0𝜇𝐻𝑎1𝑃0 [1 − 𝐺∗𝐽 (𝜇𝐶𝐺0 + 𝜇𝐽𝛿𝐶)(𝜇𝐶𝐺∗𝐽 + 𝛼𝐶)𝐺0 𝑅20] − 𝐺∗𝐽 (𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶) 𝐿0𝜇𝐸𝑃20𝜇𝐻𝛽𝐻(Λ𝐻 − 𝜇𝐻) 𝐺0 (𝜇𝐶𝐺∗𝐽 + 𝛼𝐶) [𝜇𝐻 (𝜇𝐻 + 𝛿𝐻 + 𝛼𝐻) − Λ2𝐻𝛼𝐻] 𝑅20,
𝐴 = 𝑄𝐸𝐺∗𝐽𝛽𝐸Λ 𝐸(𝜇𝐶𝐺∗𝐽 + 𝛼𝐶) (𝜇𝐸 + 𝛿𝐸) ,
𝐵 = 𝑄𝐸𝐺∗𝐽 (𝛽𝐸 + 𝜖𝜇𝐸)(𝜇𝐶𝐺∗𝐽 + 𝛼𝐶) .

(58)

We can easily note that (57) gives 𝐼∗𝐸 = 0, which
corresponds to the disease-free equilibrium andℎ (𝐼∗𝐸) = 𝛾3𝐼∗3𝐸 + 𝛾2𝐼∗2𝐸 + 𝛾1𝐼∗𝐸 + 𝛾0 = 0, (59)

which corresponds to the existence of endemic equilibria.
Solving for 𝐼∗𝐸 in ℎ(𝐼∗𝐸) = 0, the roots of ℎ(𝐼∗𝐸) = 0 are
determined by using Descartes’s rule of sign. The various
possibilities are tabulated in Table 2.

We summarize the results in Table 2 in the following
Theorem 3.

Theorem 3. The model system (1)

(1) has a unique endemic equilibriumwhenever Cases 1, 2,
3, 4, 5, 6, 7, and 8 are satisfied and if 𝑅0 > 1,

(2) could have more than one endemic equilibrium if
Case 8 is satisfied and 𝑅0 > 1,

(3) could have two endemic equilibria if Cases 3, 5, and 7
are satisfied.

We now employ the center manifold theory [22] to estab-
lish the local asymptotic stability of the endemic equilibrium
of model system (1).

5.2. Local Stability of the Endemic Equilibrium. Wedetermine
the local asymptotic stability of the endemic steady state of
the model system (1) by using the center manifold theory
described in [22]. In our case, we use center manifold theory
by making the following change of variables. Let 𝑆𝐻 = 𝑥1,𝐼𝐻 = 𝑥2, 𝐼𝐶 = 𝑥3, 𝑊𝑀 = 𝑥4, 𝑊𝐹 = 𝑥5, 𝐺𝐽 = 𝑥6, 𝐸𝑊 = 𝑥7,𝐸𝑊 = 𝑥8, 𝑆𝐸 = 𝑥9, and 𝐼𝐸 = 𝑥10. We also use the vector

notation x = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10)𝑇 so that the
model system (1) can be written in the form𝑑x𝑑𝑡 = f (x, 𝛽∗) , (60)

where

f = (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7, 𝑓8, 𝑓9, 𝑓10) . (61)

Therefore, model system (1) can be rewritten as𝑥̇1 = Λ𝐻 − 𝜆𝐻𝑥1 − 𝜇𝐻𝑥1 + 𝛼𝐻𝑥2,𝑥̇2 = 𝜆𝐻𝑥1 − (𝜇𝐻 + 𝛿𝐻 + 𝛼𝐻) 𝑥2,𝑥̇3 = 𝜆𝐻 (𝑥1 − 1)𝑥2 + 1 − (𝜇𝐶𝑥6 + 𝛼𝐶) 𝑥3,𝑥̇4 = 𝑁𝐶𝜇𝐶𝑥6𝑥3 − (𝛼𝑀 + 𝜇𝑀) 𝑥4,𝑥̇5 = 𝛼𝑀2 𝑥4 − (𝜇𝐹 + 𝛼𝐹) 𝑥5,𝑥̇6 = 𝐺0 + 𝛼𝐽𝑥6𝑥3 − 𝜇𝐽𝑥6,𝑥̇7 = 𝛼𝐹𝑥5 (𝑥2 + 1) − (𝜇𝑊 + 𝛼𝑊) 𝑥7,𝑥̇8 = 𝑁𝑊𝛼𝑊𝑥7 − 𝜇𝐿𝑥8,𝑥̇9 = Λ 𝐸 − 𝜆𝐸𝑥9 − 𝜇𝐸𝑥9,𝑥̇10 = 𝜆𝐸𝑥9 − (𝜇𝐸 + 𝛿𝐸) 𝑥10,

(62)
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where 𝜆𝐻 = 𝛽∗𝑥10𝑃0 + 𝜖𝑥10 ,𝜆𝐸 = 𝑘𝛽∗𝑥8𝐿0 + 𝜖𝑥8 . (63)

The method involves evaluating the Jacobian matrix of
system (62) at the disease-free equilibrium 𝐸0 denoted by𝐽(𝐸0). The Jacobian matrix associated with the system of
(62) evaluated at the disease-free equilibrium (𝐸0) is given
by

𝐽 (𝐸0) =

((((((((((((((((((((((((((((((
(

−𝜇𝐻 𝛼𝐻 0 0 0 0 0 0 0 −𝛽𝐻Λ𝐻𝜇𝐻𝑃00 𝑏0 0 0 0 0 0 0 0 𝛽𝐻Λ𝐻𝑃0𝜇𝐻0 0 𝑏1 0 0 0 0 0 0 𝛽𝐻 (Λ𝐻 − 𝜇𝐻)𝜇𝐻𝑃00 0 𝑁𝐶𝜇𝐶𝐺0𝜇𝐽 𝑏2 0 0 0 0 0 00 0 0 𝛼𝑀2 𝑏3 0 0 0 0 00 0 𝛼𝐽𝐺0𝜇𝐽 0 0 −𝜇𝐽 0 0 0 00 0 0 0 𝛼𝐹 0 𝑏4 0 0 00 0 0 0 0 0 𝑁𝑊𝛼𝑊 −𝜇𝐿 0 00 0 0 0 0 0 0 −𝛽𝐸Λ 𝐸𝜇𝐸𝐿0 −𝜇𝐸 00 0 0 0 0 0 0 𝛽𝐸Λ 𝐸𝜇𝐸𝐿0 0 𝑏5

))))))))))))))))))))))))))))))
)

, (64)

where

𝑏0 = − (𝜇𝐻 + 𝛿𝐻 + 𝛼𝐻) ,𝑏1 = −(𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶)𝜇𝐽 ,𝑏2 = − (𝜇𝑀 + 𝛼𝑀) ,

𝑏3 = − (𝜇𝐹 + 𝛼𝐹) ,𝑏4 = − (𝜇𝑊 + 𝛼𝑊) ,𝑏5 = − (𝜇𝐸 + 𝛼𝐸) .
(65)

By using the similar approach from Section 4.1, the basic
reproductive number of model system (62) is

𝑅0 = √12 ⋅ 𝛼𝑀𝛼𝑀 + 𝜇𝑀 ⋅ 𝛼𝐹𝛼𝐹 + 𝜇𝐹 ⋅ 𝑁𝐶𝜇𝐶𝐺0𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶 ⋅ 𝛽𝐻 (Λ𝐻 − 𝜇𝐻)𝑃0𝜇𝐻 ⋅ 𝑁𝑊𝛼𝑊(𝛼𝑊 + 𝜇𝑊) 𝜇𝐿 𝛽𝐸Λ 𝐸𝜇𝐸 (𝜇𝐸 + 𝛿𝐸) 𝐿0 . (66)

Now let us consider 𝛽𝐸 = 𝑘𝛽𝐻, regardless of whether 𝑘 ∈(0, 1) or 𝑘 ≥ 1, and let 𝛽𝐻 = 𝛽∗. Taking 𝛽∗ as the bifurcation parameter and if we consider 𝑅0 = 1 and solve for 𝛽∗ in (66),
we obtain

𝛽∗ = √2𝐿0 (𝜇𝐸 + 𝛿𝐸) 𝜇𝐸 (𝜇𝑊 + 𝛼𝑊) 𝜇𝐿 (𝜇𝑀 + 𝛼𝑀) (𝜇𝐹 + 𝛼𝐹) (𝜇𝐶𝐺0 + 𝛼𝐶𝜇𝐽) 𝑃0𝜇𝐻𝑘𝛼𝐹𝛼𝑀𝑁𝐶𝜇𝐶𝐺0𝑁𝑊𝛼𝑊 (Λ𝐻 − 𝜇𝐻) Λ 𝐸 . (67)

Note that the linearized system of the transformed
equations (62) with bifurcation point 𝛽∗ has a simple zero

eigenvalue. Hence, the center manifold theory [22] can be
used to analyse the dynamics of (62) near 𝛽𝐻 = 𝛽∗.
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Table 2: Number of possible positive roots of ℎ(𝐼∗𝐸) = 0.
Cases 𝛾3 𝛾2 𝛾1 𝛾0 Number of

sign changes

Number of possible
real roots (endemic

equilibrium)
1 + + + + 0 0
2 + + + − 1 1
3 + + − + 2 0, 2
4 + + − − 1 1
5 + − − + 2 0, 2
6 + − − − 1 1
7 + − + + 2 0, 2
8 + − + − 3 1, 3

In particular, Theorem 4.1 in Castillo-Chavez and Song
[23], reproduced below as Theorem 4 for convenience, will
be used to show the local asymptotic stability of the endemic
equilibrium point of (62) (which is the same as the endemic
equilibrium point of the original system (1), for 𝛽𝐻 = 𝛽∗).
Theorem 4. Consider the following general system of ordinary
differential equations with parameter 𝜙:𝑑𝑥𝑑𝑡 = 𝑓 (𝑥, 𝜙) , 𝑓 : R𝑛 × R 󳨀→ R, 𝑓 : C2 (R2 × R) , (68)

where 0 is an equilibrium of the system, that is, 𝑓(0, 𝜙) = 0 for
all 𝜙, and assume that

(A1) 𝐴 = 𝐷𝑥𝑓(0, 0) = ((𝜕𝑓𝑖/𝜕𝑥𝑗)(0, 0)) is a linearization
matrix of themodel system (68) around the equilibrium0 with 𝜙 evaluated at 0. Zero is a simple eigenvalue of𝐴, and other eigenvalues of 𝐴 have negative real parts,

(A2) matrix𝐴 has a right eigenvector 𝑢 and a left eigenvector
V corresponding to the zero eigenvalue.

Let 𝑓𝑘 be the 𝑘th component of 𝑓 and𝑎 = 𝑛∑
𝑘,𝑖,𝑗=1

𝑢𝑘V𝑖V𝑗 𝜕2𝑓𝑘𝜕𝑥𝑖𝜕𝑥𝑗 (0, 0) ,𝑏 = 𝑛∑
𝑘,𝑖=1

𝑢𝑘V𝑖 𝜕2𝑓𝑘𝜕𝑥𝑖𝜕𝜙 (0, 0) . (69)

The local dynamics of (68) around 0 are totally governed by𝑎 and 𝑏 and are summarized as follows.

(i) 𝑎 > 0 and 𝑏 > 0. When 𝜙 < 0 with |𝜙| ≪ 1, 0 is
locally asymptotically stable, and there exists a positive
unstable equilibrium; when 0 < 𝜙 ≪ 1, 0 is unstable
and there exists a negative and locally asymptotically
stable equilibrium.

(ii) 𝑎 < 0 and 𝑏 < 0. When 𝜙 < 0 with |𝜙| ≪ 1, 0 is
unstable; when 0 < 𝜙 ≪ 1, 0 is locally asymptotically
stable, and there exists a positive unstable equilibrium.

(iii) 𝑎 > 0 and 𝑏 < 0. When 𝜙 < 0 with |𝜙| ≪ 1, 0 is
unstable, and there exists a locally asymptotically stable
negative equilibrium; when 0 < 𝜙 ≪ 1, 0 is stable and
a positive unstable equilibrium appears.

(iv) 𝑎 < 0 and 𝑏 > 0. When 𝜙 changes from negative to
positive, 0 changes its stability from stable to unsta-
ble. Correspondingly a negative unstable equilibrium
becomes positive and locally asymptotically stable.

In order to applyTheorem 4, the following computations
are necessary (it should be noted that we are using 𝛽∗ as the
bifurcation parameter, in place of 𝜙 in Theorem 4).

Eigenvectors of 𝐽𝛽∗ . For the case when𝑅0 = 1, it can be shown
that the Jacobian matrix of (62) at 𝛽𝐻 = 𝛽∗ (denoted by 𝐽𝛽∗)
has a right eigenvector associated with the zero eigenvalue
given by

u = [𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8, 𝑢9, 𝑢10, 𝑢11, 𝑢12]𝑇 , (70)

where

𝑢1 = 𝛽∗Λ𝐻𝜇2𝐻𝑃0 [ 𝛼𝐻(𝜇𝐻 + 𝛿𝐻 + 𝛼𝐻) − 1] ,
𝑢2 = 𝛽∗ΛH(𝜇𝐻 + 𝛿𝐻 + 𝛼𝐻) 𝑃0𝜇𝐻 ,𝑢3 = 𝛽∗ (Λ𝐻 − 𝜇𝐻)𝑃0𝜇𝐻 𝜇𝐽(𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶) ,𝑢4 = 𝑁𝐶𝛼𝐶𝐺0(𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶) ⋅ 𝛽∗ (Λ𝐻 − 𝜇𝐻)𝑃0𝜇𝐻 (𝜇𝑀 + 𝛼𝑀) ,𝑢5 = 𝛼𝑀2 (𝜇𝑀 + 𝛼𝑀) (𝜇𝐹 + 𝛼𝐹) 𝑁𝐶𝜇𝐶𝐺0(𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶)⋅ 𝛽∗ (Λ𝐻 − 𝜇𝐻)𝑃0𝜇𝐻 ,
𝑢6 = 𝛼𝐽𝐺0𝜇𝐽 (𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶) ⋅ 𝛽∗ (Λ𝐻 − 𝜇𝐻)𝑃0𝜇𝐻 ,
𝑢7 = 𝛼𝑀𝛼𝐹2 (𝜇𝑀 + 𝛼𝑀) (𝜇𝐹 + 𝛼𝐹) 𝑁𝐶𝜇𝐶𝐺0(𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶)⋅ 𝛽∗ (Λ𝐻 − 𝜇𝐻)𝑃0𝜇𝐻 1(𝜇𝑊 + 𝛼𝑊) ,𝑢8 = 𝛼𝑀𝛼𝐹2 (𝜇𝑀 + 𝛼𝑀) (𝜇𝐹 + 𝛼𝐹) 𝑁𝐶𝜇𝐶𝐺0(𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶)⋅ 𝛽∗ (Λ𝐻 − 𝜇𝐻)𝑃0𝜇𝐻 𝑁𝑊𝛼𝑊𝜇𝐿 (𝜇𝑊 + 𝛼𝑊) ,
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𝑢9 = − 𝛼𝑀𝛼𝐹2 (𝜇𝑀 + 𝛼𝑀) (𝜇𝐹 + 𝛼𝐹) 𝑁𝐶𝜇𝐶𝐺0(𝜇𝐶𝐺0 + 𝜇𝐽𝛼𝐶)⋅ 𝛽∗2 (Λ𝐻 − 𝜇𝐻)𝑃0𝜇𝐻 𝑁𝑊𝛼𝑊𝜇𝐿 (𝜇𝑊 + 𝛼𝑊) ⋅ 𝑘Λ 𝐸𝐿0𝜇2𝐸 .𝑢10 = 1.
(71)

In addition, the left eigenvector of the Jacobian matrix in
(64) associated with the zero eigenvalue at 𝛽𝐻 = 𝛽∗ is given
by

k = [V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12]𝑇 , (72)

where
V1 = 0,
V2 = 0
V3 = 1,
V4 = 𝛽∗2 (Λ𝐻 − 𝜇𝐻)𝜇𝐻𝑃0 ⋅ 𝛼𝐹𝛼𝑀2 (𝜇𝐹 + 𝛼𝐹) (𝜇𝑀 + 𝛼𝑀)⋅ 𝑁𝑊𝛼𝑊𝜇𝐿 (𝜇𝑊 + 𝛼𝑊) ⋅ 𝑘Λ 𝐸𝜇𝐸 (𝜇𝐸 + 𝛿𝐸) 𝐿0 ,
V5 = 𝛽∗2 (Λ𝐻 − 𝜇𝐻)𝜇𝐻𝑃0 ⋅ 𝛼𝐹(𝜇𝐹 + 𝛼𝐹) ⋅ 𝑁𝑊𝛼𝑊𝜇𝐿 (𝜇𝑊 + 𝛼𝑊)⋅ 𝑘Λ 𝐸𝜇𝐸 (𝜇𝐸 + 𝛿𝐸) 𝐿0 ,
V6 = 0,
V7 = 𝛽∗2 (Λ𝐻 − 𝜇𝐻)𝜇𝐻𝑃0 ⋅ 𝑁𝑊𝛼𝑊𝜇𝐿 (𝜇𝑊 + 𝛼𝑊)⋅ 𝑘Λ 𝐸𝜇𝐸 (𝜇𝐸 + 𝛿𝐸) 𝐿0 ,
V8 = 𝛽∗2 (Λ𝐻 − 𝜇𝐻)𝜇𝐻𝑃0 ⋅ 1𝜇𝐿 ⋅ 𝑘Λ 𝐸𝜇𝐸 (𝜇𝐸 + 𝛿𝐸) 𝐿0 ,
V9 = 0,
V10 = 𝛽∗ (Λ𝐻 − 𝜇𝐻)(𝜇𝐸 + 𝛿𝐸) 𝜇𝐻𝑃0 .

(73)

Computation of Bifurcation Parameters 𝑎 and 𝑏. We evaluate
the nonzero second-order mixed derivatives of f with respect
to the variables and 𝛽∗ in order to determine the signs
of 𝑎 and 𝑏. The sign of 𝑎 is associated with the following
nonvanishing partial derivatives of f :𝜕2𝑓1𝜕𝑥210 = 2𝜖𝛽∗Λ𝐻𝑃20𝜇𝐻 ,𝜕2𝑓2𝜕𝑥210 = −2𝜖𝛽∗Λ𝐻𝑃20𝜇𝐻 ,

𝜕2𝑓3𝜕𝑥210 = −2𝜖𝛽∗ (Λ𝐻 − 𝜇𝐻)𝑃20𝜇𝐻 ,𝜕2𝑓9𝜕𝑥28 = 2𝜖𝑘𝛽∗Λ 𝐸𝐿20𝜇𝐸 ,𝜕2𝑓10𝜕𝑥28 = −2𝜖𝑘𝛽∗Λ 𝐸𝐿20𝜇𝐸 .
(74)

The sign of 𝑏 is associated with the following nonvanish-
ing partial derivatives of f :𝜕2𝑓1𝜕𝑥10𝜕𝛽∗ = − Λ𝐻𝜇𝐻𝑃0 ,𝜕2𝑓2𝜕𝑥10𝜕𝛽∗ = Λ𝐻𝜇𝐻𝑃0 ,𝜕2𝑓3𝜕𝑥10𝜕𝛽∗ = (Λ𝐻 − 𝜇𝐻)𝜇𝐻𝑃0 ,𝜕2𝑓9𝜕𝑥8𝜕𝛽∗ = − 𝑘Λ 𝐸𝜇𝐸𝐿0 ,𝜕2𝑓10𝜕𝑥8𝜕𝛽∗ = 𝑘Λ 𝐸𝜇𝐸𝐿0 .

(75)

Substituting expressions (71), (73), and (74) into (69), we
get

𝑎 = 𝑢1V210 𝜕2𝑓1𝜕𝑥210 + 𝑢2V210 𝜕2𝑓2𝜕𝑥210 + 𝑢3V210 𝜕2𝑓3𝜕𝑥210 + 𝑢9V28 𝜕2𝑓9𝜕𝑥28+ 𝑢10V28 𝜕2𝑓10𝜕𝑥28= 𝑢1V210 [2𝜖𝛽∗Λ𝐻𝑃20𝜇𝐻 ] + 𝑢2V210 [−2𝜖𝛽∗Λ𝐻𝑃20𝜇𝐻 ]
+ 𝑢3V210 [−2𝜖𝛽∗ (Λ𝐻 − 𝜇𝐻)𝑃20𝜇𝐻 ]
+ 𝑢9V28 [2𝜖𝑘𝛽∗Λ 𝐸𝐿20𝜇𝐸 ] + 𝑢10V28 [−2𝜖𝑘𝛽∗Λ 𝐸𝐿20𝜇𝐸 ]

= 2𝜖𝛽∗Λ𝐻𝑃20𝜇𝐻 ⋅ V210 [𝑢1 − 𝑢2]
− 𝑢3V210 [2𝜖𝛽∗ (Λ𝐻 − 𝜇𝐻)𝑃20𝜇𝐻 ] + 2𝜖𝑘𝛽∗Λ 𝐸𝐿20𝜇𝐸⋅ V28 [𝑢9 − 𝑢10]< 0

(76)

since (𝑢1 − 𝑢2) < 0, (𝑢9 − 𝑢10) < 0, 𝑢3 > 0, and V10 > 0.
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Similarly, substituting expressions (71) and (73) and (75)
into (69), we get𝑏 = 𝑢1V10 𝜕2𝑓1𝜕𝑥10𝜕𝛽∗ + 𝑢2V10 𝜕2𝑓2𝜕𝑥10𝜕𝛽∗ + 𝑢3V10 𝜕2𝑓3𝜕𝑥8𝜕𝛽∗+ 𝑢9V8 𝜕2𝑓9𝜕𝑥10𝜕𝛽∗ + 𝑢10V8 𝜕2𝑓10𝜕𝑥8𝜕𝛽∗= V10 [ Λ𝐻𝑃0𝜇𝐻 ⋅ 𝑢2 − Λ𝐻𝑃0𝜇𝐻 ⋅ 𝑢1 + (Λ𝐻 − 𝜇𝐻)𝑃0𝜇𝐻 ⋅ 𝑢3]

+ 𝑘Λ 𝐸𝐿0𝜇𝐸 ⋅ V8 [𝑢10 − 𝑢9]
= Λ𝐻𝑃0𝜇𝐻 V10 [𝑢2 − 𝑢1] + (Λ𝐻 − 𝜇𝐻)𝑃0𝜇𝐻 V10𝑢3+ 𝑘Λ 𝐸𝐿0𝜇𝐸 V8 [𝑢10 − 𝑢9]> 0,

(77)

since (𝑢2 − 𝑢1) > 0, (𝑢10 − 𝑢9) > 0, 𝑢3 > 0, and V10 > 0.
Thus, 𝑎 < 0 and 𝑏 > 0. Using Theorem 4, item (iv),

we have established the following result which only holds for𝑅0 > 1 but close to 1.
Theorem 5. The endemic equilibrium guaranteed byTheorem
3 is locally asymptotically stable for 𝑅0 > 1 near 1.
6. Sensitivity Analysis

In this section we carry out sensitivity analysis to evaluate
the relative change in basic reproduction number (𝑅0) when
the within-host and between-host parameters as well as the
environmental parameters of the model system (1) change.
We used the normalized forward sensitivity index of the basic
reproduction number, 𝑅0 of the model system (1) to each
of the model parameters. The normalized forward sensitivity
index of a variable to a parameter is typically defined as “the
ratio of the relative change in the variable to the relative
change in the parameter” [24]. In this case, if we let 𝑅0
be a differentiable function of the parameter 𝑢, then the
normalized forward sensitivity index of 𝑅0 at 𝑢 is defined asΥ𝑅0𝑢 = 𝜕𝑅0𝜕𝑢 × 𝑢𝑅0 , (78)

where the quotient 𝑢/𝑅0 is introduced to normalize the
coefficient by removing the effect of units [25]. For example,
the sensitivity index of𝑅0 with respect to the human infection
rate 𝛽𝐻 is given byΥ𝑅0

𝛽𝐻
= 𝜕𝑅0𝜕𝛽𝐻 × 𝛽𝐻𝑅0 = 0.5. (79)

It can be easily noted that the sensitivity index of 𝑅0
with respect to the parameter 𝛽𝐻 does not depend on any
of the parameter values. The indices of worm larvae death

rate within a host and copepods death rate in the physical
environment are, respectively, given byΥ𝑅0𝜇𝐹 = −12 𝜇𝐹(𝜇𝐹 + 𝛼𝐹) = −0.5,

Υ𝑅0𝜇𝐸 = −12 (2𝜇𝐸 + 𝛿𝐸)(𝜇𝐸 + 𝛿𝐸) = −0.9991. (80)

Using (78)–(80) similar expressions can be derived for
the remaining parameters.The resulting sensitivity indices of𝑅0 to the different model parameters are shown in Table 3.
We see from (78)–(80) that the index of parameter 𝛽𝐻
is positive and indexes of both parameters 𝜇𝐿 and 𝜇𝐸 are
negative. The sign of the index value indicates whether the
parameter increases the reproduction number or reduces the
reproduction number. Therefore increasing human infection
rate 𝛽𝐻 reduces 𝑅0 and also increasing 𝜇𝐿 or 𝜇𝐸 reduces 𝑅0.
Based on the results shown in Table 3, we observe that the
reproduction number 𝑅0 is sensitive to the changes of both
the within-host and between-host parameters as well as the
environmental parameters (parameters which can be modi-
fied by environmental conditions which impact on survival
and reproduction of the parasite and vector populations).
More specifically, we deduce the following results for the
between-host scale:

(i) The reproductive number is most sensitive to the
changes of parameter 𝜇𝐸 and the natural death rate
of copepods in the physical water environment. This
implies that interventions focused on vector control
have highest impact on GWD control. Since Υ𝑅0𝜇𝐸 =−0.9991, increasing 𝜇𝐸 by 10% decreases the repro-
duction number by 9.991%. Therefore increasing the
death rate of copepods by using chemical such as
ABATE or temephos will eventually reduce the trans-
mission of Guinea worm disease.

(ii) The reproductive number also shows significant sen-
sitivity to 𝛽𝐻 and 𝛽𝐸 since Υ𝑅0𝛽𝐻 = Υ𝑅0

𝛽𝐸
= 0.5. This

implies that reducing human infection rates 𝛽𝐻 and𝛽𝐸 by 10% reduces 𝑅0 by 5% for each of these
parameters. Therefore, health education to ensure
that greater numbers of individuals and communi-
ties adopt behavioural practices such as voluntary
reporting ofGWDcases, prevention ofGWDpatients
from entering drinking water bodies, regular use of
water from safe water sources, and, in the absence of
such water sources, filtering or boiling water before
drinking aimed at preventing transmission of GWD
would have high impact in complementing vector
control in elimination of GWD.

(iii) Similarly, Υ𝑅0𝛼𝐹 = 0.4639. This implies that reducing
the rate at which eggs are excreted in the physical
water environment, 𝛼𝐹, by 10% reduces 𝑅0 by 4.639%.
Therefore educating people about GWD (i.e., teach-
ing people not to immerse their infected feet into
the drinking water when the fertilized female worm
is emerging out from their feet or to always filter



Computational and Mathematical Methods in Medicine 19

Table 3: Sensitivity indices ofmodel reproductionnumber𝑅0 to parameters formodel system (1), evaluated at the parameters values presented
in Tables 4–6.

Parameter Description
Sensitivity index
with positive

sign

Sensitivity index
with negative

sign𝜇𝐸 Natural decay rate of copepods in the water environment −0.9991𝛼𝐶 Natural decay rate of copepods within human host −0.4853𝜇𝐶 Release rate of mature worms within human host −0.4853Λ𝐻 Human birth rate +0.50013𝛽𝐻 Human infection rate +0.5𝑁𝑊 Fecundity rate of worm larvae in the environment +0.5𝜇𝐿 Natural decay rate of Guinea worm larvae −0.5𝐿0 Larvae saturation constant −0.5𝑁𝐶 Fecundity rate of mature worm +0.5Λ 𝐸 Copepods birth rate +0.5𝛽𝐸 Copepods infection rate +0.5𝑃0 Copepods saturated constant −0.5𝛼𝐻 Human recovery −0.4998𝜇𝐹 Natural decay rate of fertilized female worms −0.4639𝛼𝐹 Migration rate of fertilized female worms to surface of host’s skin +0.4639𝜇𝑊 Natural decay rate of worm eggs in the water environment −0.4545𝛼𝑊 Worm egg hatching rate +0.4545𝜇𝑀 Natural decay rate of mature worms within human host −0.25𝛼𝑀 Migration rate of mature worms to subcutaneous tissues +0.25𝜇𝐽 Dilution/degradation rate of gastric juice −0.0147𝐺0 Supply rate of gastric juice from the source of the body +0.0147𝛿𝐸 Induced decay rate of copepods in the water environment −0.000894
Table 4: Human host parameter values used in simulations.

Parameter Description Initial values Units SourceΛ𝐻 Human birth rate 0.1013 People day−1 [14]𝛽𝐻 Human infection rate 0.1055 Copepod day−1 Estimated𝜇𝐻 Human natural death rate 2.548 × 10−5 Day−1 [15, 16]𝛼𝐻 Human recovery rate 0.03 Day−1 Estimated𝛿𝐻 GWD induced death rate 4 × 10−8 Day−1 Estimated

Table 5: Within-host parameter values of the model system (1).

Parameter Description Initial values Units Source𝑁𝐶 Fecundity rate of mature worms 700 People Estimated𝜇𝐶 Decay rate of copepods within a human host due to gastric juice 0.99 Copepod day−1 Estimated𝛼𝐶 Natural death rate of copepods within a human host 0.001 Day−1 Estimated𝜇𝑀 Natural decay rate of mature worms within a human host 0.9 Day−1 Estimated𝛼𝑀 Migration rate of mature worms to subcutaneous tissues 0.9 Day−1 Estimated𝜇𝐹 Natural death rate of fertilized female worms within a human host 0.9 Day−1 Estimated𝛼𝐹 Migration rate of fertilized female worms to surface of skin 0.07 Day−1 Estimated𝜇𝐽 Dilution/degradation rate of gastric juice 0.05 Day−1 Estimated𝛼𝐽 Proliferation rate of gastric juice due to infection 0.4 Day−1 Estimated𝐺0 Supply rate of gastric juice from within a human body 1.5 Day−1 Estimated
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Table 6: Free-living pathogens and their associated environmental parameter values used in simulations.

Parameter Description Initial value Units SourceΛ 𝐸 Copepods birth rate 0.75 Copepod day−1 Estimated𝛽𝐸 Copepods infection rate 0.7 Larvae day−1 Estimated𝜇𝐸 Natural decay rate of copepods 0.005 Day−1 [15, 16]𝛿𝐸 Disease induced death rate of copepods 9 × 10−6 Day−1 Estimated𝑃0 Copepods saturation constant 20 0000 Day−1 [15, 16]𝜇𝑊 Natural decay rate of Guinea worm eggs 0.333 Day−1 [15, 16]𝛼𝑊 Hatching rate of worm eggs 0.009 Day−1 Estimated𝑁𝑊 Number of Guinea worm larvae hatched 300 Larvae egg −1 day−1 Estimated𝜇𝐿 Natural decay rate of Guinea worm larvae 0.0333 Day−1 [15, 16]𝐿0 Larvae saturation constant 5000000 Day−1 [15, 16]𝜖 Limitation growth rate 0.0991 Day−1 Estimated

contaminated water before drinking the water) will
reduce the transmission of the disease.

Further, we also deduce the following results for the
within-host scale:

(i) The development of a drug that would kill mature
worms within human host would have significant
benefits at within-host. However, the drugwould have
even higher impact if it would kill fertilized female
worms.

(ii) The development of interventions that would increase
the supply rate of gastric juice would have no benefits
in the control of GWD.

Therefore, the lack of drugs to treat GWD has delayed
progress in eliminating GWD.

7. Numerical Analysis

The behaviour of model system (1) was investigated using
numerical simulations using a Python program version V 2.6
on the Linux operation system (Ubuntu 14.04). The program
uses a package odeint function in the scipy.integrate for
solving a system of differential equations. The behaviour of
the system model (1) was simulated in order to illustrate the
analytical results we obtained in this paper. We used param-
eter values presented in Tables 4–6. Some of the parameter
values used in the numerical simulations are from published
literature while others were estimated as values of some
parameters are generally not reported in literature.The initial
conditions used for simulations are given by 𝑆𝐻(0) = 2500,𝐼𝐻(0) = 10, 𝐼𝐶(0) = 0, 𝐺𝐽(0) = 1.50,𝑊𝑀(0) = 0,𝑊𝐹(0) = 0,𝑆𝐸(0) = 100000, 𝐼𝐸(0) = 0, 𝐸𝑊(0) = 0, and 𝐿𝑊(0) = 50000.

Figure 2 illustrates the solution profile of the population
of (a) infected humans, (b) infected copepods in the physical
water environment, (c) worm eggs in the physical water
environment, and (d) worm larvae in the physical water
environment, for different values of the infection rate of
humans 𝛽𝐻: 𝛽𝐻 = 0.1055, 𝛽𝐻 = 0.55, and 𝛽𝐻 = 0.9.
The numerical results show that higher rates of infection at
the human population level result in increased population of
parasites (worm eggs and worm larvae) in the physical water

environment and a noticeable increase in infected copepod
population in the physical water environment. Therefore,
human behavioural changes which reduce contact with
contaminated water bodies through drinking contaminated
water reduce transmission of the disease at both human and
copepod population level.

Figure 3 illustrates the solution profile of the population
of (a) infected humans, (b) infected copepods in the physical
water environment, (c) worm eggs in the physical water
environment, and (d) worm larvae in the physical water
environment, for different values of natural death rate of
copepod population in the physical water environment 𝜇𝐸:𝜇𝐸 = 0.005, 𝜇𝐸 = 0.05, and 𝜇𝐸 = 0.5. The results show that
environmental conditions which increase death of copepods
affect transmission of the disease in the human population.
Increased death of copepod population reduces transmission
risk of the disease at humans population; therefore anymech-
anisms which enhance the killing of copepod population in
the physical water environment reduces transmission risk of
GWD within disease endemic communities.

Figure 4 shows graphs of numerical solutions of model
system (1) showing propagation of (a) population of infected
humans (𝐼𝐻), (b) population of infected copepods (𝐼𝐸),
(c) population of Guinea worm eggs in the physical water
environment, and (d) population of Guinea worm larvae in
the physical water environment, for different values of natural
death rate of Guinea worm eggs in the physical water
environment 𝜇𝑊: 𝜇𝑊 = 0.005, 𝜇𝑊 = 0.5, and 𝜇𝑊 = 0.9.
The results show that the environmental conditions which
enhance death of worm eggs affect transmission of GWD
in the human population. Increased death of worm egg
population reduces transmission risk of the disease at human
population level. Therefore any mechanisms which enhance
the killing of worm egg population in the physical water
environment reduce transmission risk of the disease within
GWD endemic communities.

Figure 5 shows graphs of numerical solutions of model
system (1) showing propagation of (a) population of infected
humans (𝐼𝐻), (b) population of infected copepods (𝐼𝐸), (c)
population of Guinea worm eggs, and (d) population of
Guinea worm larvae in the physical water environment, for
different values of natural death rate ofGuineaworm larvae in



Computational and Mathematical Methods in Medicine 21

H = 0.01055

H = 0.1055

H = 0.55

500 1000 1500 20000
Time (days)

0

500

1000

1500

2000

2500

In
fe

ct
ed

 h
um

an
s(

I H
)

(a)

H = 0.01055

H = 0.1055

H = 0.55

0
10000
20000
30000
40000
50000
60000
70000

In
fe

ct
ed

 co
pe

po
ds

(I
E
)

500 1000 1500 20000
Time (days)

(b)

H = 0.01055

H = 0.1055

H = 0.55

500 1000 1500 20000
Time (days)

0
2000
4000
6000
8000

10000
12000
14000
16000

Eg
gs

 in
 w

at
er

(E
W
)

(c)

H = 0.01055

H = 0.1055

H = 0.55

20001000 15005000
Time (days)

0
200000
400000
600000
800000

1000000
1200000

La
rv

ae
 in

 w
at

er
(L

W
)

(d)

Figure 2: Graphs of numerical solutions of model system (1) showing the evolution with time of (a) population of infected humans (𝐼𝐻), (b)
population of infected copepods (𝐼𝐸), (c) population of Guinea worm eggs in the physical water environment, and (d) population of Guinea
worm larvae in the physical water environment, for different values of the infection rate of humans 𝛽𝐻: 𝛽𝐻 = 0.1055, 𝛽𝐻 = 0.55, and 𝛽𝐻 = 0.9.
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Figure 3: Graphs of numerical solutions of model system (1) showing the evolution with time of (a) population of infected humans (𝐼𝐻), (b)
population of infected copepods (𝐼𝐸), (c) population of Guinea worm eggs in the physical water environment, and (d) population of Guinea
worm larvae in the physical water environment, for different values of natural death rate of copepods 𝜇𝐸: 𝜇𝐸 = 0.005, 𝜇𝐸 = 0.05, and 𝜇𝐸 = 0.5.
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Figure 4: Graphs of numerical solutions of model system (1) showing the evolution with time of (a) population of infected humans (𝐼𝐻),
(b) population of infected copepods (𝐼𝐸), (c) population of Guinea worm eggs in the physical water environment, and (d) population of
Guinea worm larvae in the physical water environment, for different values of natural death rate of Guinea worm eggs in the physical water
environment 𝜇𝑊: 𝜇𝑊 = 0.005, 𝜇𝑊 = 0.5, and 𝜇𝑊 = 0.9.
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Figure 5: Graphs of numerical solutions of model system (1) showing the evolution with time of (a) population of infected humans (𝐼𝐻), (b)
population of infected copepods (𝐼𝐸), (c) population of Guinea worm eggs, and (d) population of Guinea worm larvae in the physical water
environment, for different values of natural death rate of Guinea worm larvae in the physical water environment 𝜇𝐿: 𝜇𝐿 = 0.005, 𝜇𝐿 = 0.5,
and 𝜇𝐿 = 0.9.
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Figure 6: Graphs of numerical solutions of model system (1) showing the evolution with time of (a) population of infected humans (𝐼𝐻), (b)
population of infected copepods (𝐼𝐸), (c) population of Guinea worm eggs in the physical water environment, and (d) population of Guinea
worm larvae in the physical water environment, for different values of natural death rate of mature worms inside a single infected human
host 𝜇𝑀: 𝜇𝑀 = 0.9, 𝜇𝑀 = 0.09, and 𝜇𝑀 = 0.009.
the physical water environment 𝜇𝐿: 𝜇𝐿 = 0.005, 𝜇𝐿 = 0.5, and𝜇𝐿 = 0.9. The results show that the environmental conditions
which increase death of worm larvae reduce transmission of
GWD in the human population. Increased death of worm
larvae population reduces transmission risk of the disease at
human population level. Therefore any interventions which
enhance the killing of worm larvae population in the physical
water environment reduce transmission risk of GWD within
the human population.

Figure 6 shows graphs of numerical solution of model
system (1) showing propagation of (a) population of infected
humans (𝐼𝐻), (b) population of infected copepods (𝐼𝐸),
(c) population of Guinea worm eggs in the physical water
environment, and (d) population of Guinea worm larvae in
the physical water environment, for different values of natural
death rate of mature worms inside a single infected human
host 𝜇𝑀: 𝜇𝑀 = 0.9, 𝜇𝑀 = 0.09, and 𝜇𝑀 = 0.009. The results
show that the within-host process of death of mature worms
affects transmission of the disease in the human population
level. Increased death of mature worm population within an
infected human host reduces transmission risk of the disease
at humanpopulation level.Therefore any interventionswhich
enhance the killing of mature worm population inside an
infected human host reduce transmission risk of the disease
within communities.

Figure 7 shows graphs of numerical solution of model
system (1) showing propagation of (a) population of infected
humans (𝐼𝐻), (b) population of infected copepods (𝐼𝐸),

(c) population of Guinea worm eggs, and (d) population
of Guinea worm larvae in the physical water environment,
for different values of natural death rate of fertilized female
worms inside a single infected human host 𝜇𝐹: 𝜇𝐹 = 0.9, 𝜇𝐹 =0.09, and 𝜇𝐹 = 0.009. The results show that the within-host
processes which increase the death of fertilized female worms
can be a potent control measure for GWD. Increased death of
fertilized female worms within infected human hosts reduces
transmission risk of the disease at human population level.
Therefore any interventions which enhance the killing of
fertilized female worm population inside an infected human
host reduce transmission risk of GWD within a commu-
nity.

Figure 8 illustrates the solution profiles of the population
of (a) infected humans (𝐼𝐻), (b) infected copepods (𝐼𝐸) in the
physical water environment, (c) worm eggs in the physical
water environment, and (d) worm larvae in the physical
water environment, for different values of the rate of worm
larvae fecundity 𝑁𝑊: 𝑁𝑊 = 30, 𝑁𝑊 = 300, and 𝑁𝑊 =30000. The results show that an increase of worm larvae
produced per day by worm eggs increases the transmission of
the disease. Therefore, any interventions which reduce worm
larvae fecundity in the physical water environment reduce the
transmission risk of the disease in the community.

Figure 9 shows graphs of numerical solution of model
system (1) showing the propagation of the population of (a)
infected humans (𝐼𝐻), (b) population of infected copepods
(𝐼𝐸), (c) worm eggs in the physical water environment, and
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Figure 7: Graphs of numerical solutions of model system (1) showing the evolution with time of (a) population of infected humans (𝐼𝐻), (b)
population of infected copepods (𝐼𝐸), (c) population of Guinea worm eggs, and (d) population of Guinea worm larvae in the physical water
environment, for different values of natural death rate of fertilized female worm within a single infected human host 𝜇𝐹: 𝜇𝐹 = 0.9, 𝜇𝐹 = 0.09,
and 𝜇𝐹 = 0.009.
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Figure 8: Graphs of numerical solutions of model system (1) showing the evolution with time of (a) population of infected humans (𝐼𝐻),
(b) population of infected copepods (𝐼𝐸), (c) population of Guinea worm eggs in the physical water environment, and (d) population of
Guinea worm larvae in the physical water environment, for different values of Guinea worm larvae fecundity𝑁𝑊:𝑁𝑊 = 30,𝑁𝑊 = 300, and𝑁𝑊 = 30000.
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Figure 9: Graphs of numerical solutions of model system (1) showing the evolution with time of (a) population of infected humans (𝐼𝐻), (b)
population of infected copepods (𝐼𝐸), (c) population of Guinea worm eggs in the physical water environment, and (d) population of Guinea
worm larvae in the physical water environment, for different values of the rate at which an emerging fertilized female worm from a single
infected human host excretes eggs into the physical water environment 𝛼𝐹: 𝛼𝐹 = 0.007, 𝛼𝐹 = 0.07, and 𝛼𝐹 = 0.7.
(d) worm larvae in the physical water environment, for
different values of the rate at which an emerging fertilized
female worm from a single infected human host excretes
number of eggs into the physical water environment 𝛼𝐹: 𝛼𝐹 =0.007, 𝛼𝐹 = 0.07, and 𝛼𝐹 = 0.7. The results show that higher
rate of excretion of worm eggs by each infected human host
results in increased population of parasites (worm eggs and
worm larvae) in the physical water environment and a notice-
able increase in infected copepods. Therefore, improvements
in individual sanitation (which reduce contamination of
water source with human eggs) are good for the community
because they reduce the risk of the disease transmission in the
community.

Figure 10 demonstrates numerical solutions showing the
propagation of the population of (a) mature worm within
infected human host and (b) population of fertilized female
worm within infected human host, for different values of the
infection rate of humans 𝛽𝐻: 𝛽𝐻 = 0.1055, 𝛽𝐻 = 0.01055,𝛽𝐻 = 0.001055, and 𝛽𝐻 = 0.55. The results show the influ-
ence of between-host disease process on within-host disease
process of Guinea wormdisease. Here, as transmission rate of
GWD in the community increases, the within-host infection
intensity of the disease also increases. The numerical results
demonstrate that the transmission of the disease at the
population level influences the dynamics within an infected
individual. Therefore, human behavioural changes (such as
filtering water before drinking) which reduce contact with

infected copepods reduce infection intensity at individual
level. Equally, good sanitation by community which reduces
contamination of water bodies reduces the intensity of infec-
tion of humans at individual level.

Figure 11 illustrates the graphs of numerical solutions
showing the propagation of the population of (a) mature
worm within infected human host and (b) population of
fertilized female worm within infected human host, for
different values of the natural death rate of copepods in the
physical water environment 𝜇𝐸: 𝜇𝐸 = 0.005, 𝜇𝐸 = 0.05, and𝜇𝐸 = 0.5.The results demonstrate the potency of public health
interventions intended to reduce copepods population (such
as killing copepods using temephos or boiling the water) on
the infection intensity within an infected individual.

Figure 12 illustrates the graphs of numerical solutions
showing the propagation of the population of (a) mature
worm within infected human host and (b) population of
fertilized female worm within infected human host, for
different values of the natural death rate of worm larvae
in the physical water environment 𝜇𝐿: 𝜇𝐿 = 0.005, 𝜇𝐿 =0.05, and 𝜇𝐿 = 0.5. The results demonstrate the influence
of public health interventions intended to reduce worm
larvae population in the physical water environment (such as
destroying worm larvae using chemicals or boiling the water)
on the infection intensity within an infected individual.
Overall, the numerical results verify the following aspects
about GWD transmission dynamics.
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Figure 10: Graphs of numerical solutions of model system (1) showing the evolution with time of (a) population of mature worm within
infected human host and (b) population of fertilized female worm within infected human host, for different values of the infection rate of
humans 𝛽𝐻: 𝛽𝐻 = 0.1055, 𝛽𝐻 = 0.01055, 𝛽𝐻 = 0.001055, and 𝛽𝐻 = 0.55.
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Figure 11: Graphs of numerical solutions of model system (1) showing the evolution with time of (a) population of mature worm within
infected human host and (b) population of fertilized female worm within infected human host, for different values of the natural death rate
of copepods 𝜇𝐸: 𝜇𝐸 = 0.005, 𝜇𝐸 = 0.05, and 𝜇𝐸 = 0.5.
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Figure 12: Graphs of numerical solutions of model system (1) showing the evolution with time of (a) population of mature worm within
infected human host and (b) population of fertilized female worm within infected human host, for different values of natural death rate of
worm larvae in the physical water environment 𝜇𝐿: 𝜇𝐿 = 0.005, 𝜇𝐿 = 0.05, and 𝜇𝐿 = 0.5.

(i) Higher rates of infection at the human population
level result in increased population of parasites (worm
eggs and worm larvae) in the physical water environ-
ment and a noticeable increase in infected copepod
population in the physical water environment.

(ii) Interventions which increase death of copepods
through enhanced killing of copepod population in
the physical water environment reduce transmission
risk of GWD within a disease endemic communities.

(iii) Interventions which enhance death of worm eggs
through enhanced killing of worm egg population in
the physical water environment reduce transmission
risk of the disease within GWD endemic communi-
ties.

(iv) Health interventions which increase death of worm
larvae in the physical water environment reduce
transmission risk of GWD within the human popu-
lation.

(v) Within-host scale interventions which increase death
of mature worm population inside an infected human
host reduce transmission risk of the disease within
communities.

(vi) Within-host scale interventions which increase the
death of fertilized female worms can also be a potent
controlmeasure forGWD through reduced transmis-
sion risk of GWD within a community.

(vii) An increase in worm fecundity with an infected
human host has considerable impact on the transmis-
sion of GWD.

(viii) Higher rate of contamination of the physical water
environment through excretion of worm eggs by each
infected human host results in increased population
of parasites (worm eggs and worm larvae) in the
physical water environment and a noticeable increase
in infected copepods.

(ix) Transmission of the GWD shows reciprocal influence
of within-host scale interventions (medical interven-
tions) and between-host scale interventions (public
health interventions). Therefore, human behavioural
changes (such as filtering water before drinking)
which reduce contact with infected copepods reduce
infection intensity at individual level. Equally, good
sanitation by community which reduces contamina-
tion of water bodies reduces the intensity of infection
of humans at individual level.

8. Conclusions

Guinea worm disease, like most neglected parasitic diseases,
urgently needs renewed attention and sustainable interven-
tions in Africa.The limited scientific knowledge about GWD
represents a challenge to the successful elimination of the
disease. In this paper, we have sought to identify a broad
range of within-host and between-host processes that should
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be better understood if GWD is to be eliminated. A mul-
tiscale model of GWD transmission dynamics is presented.
The multiscale model is shown to be mathematically and
epidemiologically well-posed. Sensitivity analyses of the basic
reproduction number to the variation of model parameters
were carried out. The sensitivity results of the reproduction
number show that between-host model parameters (such as
infection rate of human host 𝛽𝐻 and supply rate of humansΛ𝐻); within-host model parameters (such as excretion rate
of eggs 𝛼𝐹 into the physical water environment by each
infected human host, fecundity rate of mature worm 𝑁𝐶,
decay rate of mature worms 𝜇𝑀, migration rate of mature
worms to the subcutaneous tissue 𝛼𝑀, and decay rate of
fertilized worms 𝜇𝐹); and environmental model parameters
(such as the production rate of larvae per egg worm per
day 𝛼𝑊, fecundity of larvae 𝑁𝑊 generated by eggs, death
rate of egg worms 𝜇𝑊, larva worms 𝜇𝐿 in the physical water
environment, supply rate of copepods Λ 𝐸, and decay rate
of copepods 𝜇𝐸) all are responsible for the transmission
dynamics of Guinea worm disease within the community.
Therefore reducing the infection rate of human, excretion rate
of eggs into physical water, and the population of parasites
(worm eggs and worm larvae) as well as population of vector
host (copepods) in the physical water environment could
eventually contribute in eradicating GWD completely from
the community.
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