
Copyedited by: ES MANUSCRIPT CATEGORY: Article

[15:04 9/10/2012 Sysbio-sys055.tex] Page: 955 955–972

Syst. Biol. 61(6):955–972, 2012
© The Author(s) 2012. Published by Oxford University Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
DOI:10.1093/sysbio/sys055
Advance Access publication on May 30, 2012

Assessing Parameter Identifiability in Phylogenetic Models Using Data Cloning

JOSÉ MIGUEL PONCIANO∗, J. GORDON BURLEIGH, EDWARD L. BRAUN, AND MARK L. TAPER

Department of Biology, University of Florida, Gainesville, FL 32611, USA;
∗Correspondence to be sent to: Department of Biology, University of Florida, Gainesville, FL 32611, USA;

E-mail: josemi@ufl.edu.

Received 17 November 2011; reviews returned 2 February 2012; accepted 25 May 2012
Associate Editor: Cécile Ané

Abstract.—The success of model-based methods in phylogenetics has motivated much research aimed at generating new,
biologically informative models. This new computer-intensive approach to phylogenetics demands validation studies and
sound measures of performance. To date there has been little practical guidance available as to when and why the parameters
in a particular model can be identified reliably. Here, we illustrate how Data Cloning (DC), a recently developed methodology
to compute the maximum likelihood estimates along with their asymptotic variance, can be used to diagnose structural
parameter nonidentifiability (NI) and distinguish it from other parameter estimability problems, including when parameters
are structurally identifiable, but are not estimable in a given data set (INE), and when parameters are identifiable, and
estimable, but only weakly so (WE). The application of the DC theorem uses well-known and widely used Bayesian
computational techniques. With the DC approach, practitioners can use Bayesian phylogenetics software to diagnose
nonidentifiability. Theoreticians and practitioners alike now have a powerful, yet simple tool to detect nonidentifiability while
investigating complex modeling scenarios, where getting closed-form expressions in a probabilistic study is complicated.
Furthermore, here we also show how DC can be used as a tool to examine and eliminate the influence of the priors,
in particular if the process of prior elicitation is not straightforward. Finally, when applied to phylogenetic inference,
DC can be used to study at least two important statistical questions: assessing identifiability of discrete parameters,
like the tree topology, and developing efficient sampling methods for computationally expensive posterior densities.
[Bayesian estimation in Phylogenetics; Data Cloning; diagnostics; Maximum Likelihood; parameter estimability; Parameter
Identifiability.]

In recent years, statistical phylogenetics has seen
a profusion of model-based inference methods using
either maximum likelihood or Bayesian methods
Felsenstein (2004). This relatively recent emphasis on
a computer-intensive approach to phylogenetics begs
for compelling validation studies and examination of
performance measures. The performance of statistical
phylogenetic analyses is usually evaluated using
either simulation studies (Abdo et al. 2005; Hillis
et al. 1994; Huelsenbeck and Rannala 2004; Pickett
and Randle 2005; Ripplinger and Sullivan 2008;
Schwartz and Mueller 2010; Sullivan et al. 2005;
Sullivan and Joyce 2005; Sullivan and Swofford 2001;
Yang and Rannala 2005), studies using “known”
phylogenies (Hillis et al. 1992; Naylor and Brown
1998), and mathematical analysis, which has revealed
for instance that the parsimony and compatibility
methods are inconsistent in some cases (Felsenstein
1978; Hendy and Penny 1989). Careful statistical
analysis has also exposed the asymptotic properties
of various methods of phylogenetic estimation (Chang
1996; Felsenstein 1983; Kim 2000; Matsen and Steel
2007). Finally, a probabilistic approach has been
used to assess parameter identifiability for some of
the models commonly used in maximum likelihood
(ML) and Bayesian Markov chain Monte Carlo
(MCMC) phylogenetic estimation (e.g., Allman et al.
2008; Allman and Rhodes 2006, 2008; Chai and
Housworth 2011; Mossel and Vigoda 2005; Rogers
1997, 2001).

To a great extent, these validation approaches have
been used as a justification for proposing new even
more biologically relevant phylogenetic models. Still,
the underlying processes of organismal evolution are
certainly more complex than the models commonly
used for phylogenetic estimation, such as the GTR+
I+� model and its submodels. Indeed, the additional
complexities associated with patterns of genomic
evolution are likely to include population genetics
factors (Cartwright et al. 2011; Maddison 1997), complex
mutational patterns (Siepel and Haussler 2004), the
potential for action of natural selection on genome-
scale features (Akashi and Gojobori 2002), and other
types of interactions between genomic properties and
organismal phenotypes (e.g., Chojnowski and Braun
2008; Chojnowski et al. 2007; Jobson and Qiu 2011). The
recognition of the complexity of patterns of genomic and
organismal evolution has motivated the development
of novel phylogenetic models that attempt to capture a
large number of features enhancing biological realism
(Drummond et al. 2006; Felsenstein 2004; Fisher 2008;
Huelsenbeck et al. 2000; Thorne et al. 1998; Yang
and Rannala 2006). Hierarchical models to reconstruct
species trees from multilocus sequence data (e.g., Liu
2008) provide an excellent example of such an approach.
However, the goal of a reliable understanding of
phylogenetic processes through these complex models
has often proved to be an elusive target, mostly due to the
difficulties of implementing such models and because of
the paucity of papers providing practical guidance as to
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when and why the parameters in a particular model can
be identified reliably (Rannala 2002; Yang and Rannala
2006).

Nonestimability of parameters arises when the
maximum value of the likelihood function given the data
at hand occurs at more than one set of parameter values
(Lele et al. 2010; Rannala 2002; Rothenberg 1971). In that
case, the asymptotic properties of ML estimation cannot
be used. Two different scenarios leading to a parameter
being nonestimable must be distinguished. The first
one occurs when the model has been written in such
a way that two or more parameters are nonseparable.
The nonseparable parameters are not estimable with any
data set. In this case, the parameters are often referred
to as nonidentifiable (NI). Rannala (2002) showed
a simple exponential modeling case with this type
of nonidentifiability. Importantly, the specification of
further biological realism, like that brought about by the
hidden components in a hierarchical stochastic process
setting, often inadvertently results in the introduction
of such NI parameters that even in the presence of an
infinite amount of data cannot be teased apart (Lele
et al. 2010; McCulloch and Searle 2001; Rannala 2002;
Yang and Rannala 2006). The second scenario leading to
nonestimability takes place when by pure happenstance,
the sampled data contains absolutely no information
about the parameter of interest, yet other data sets might.
We term such cases as identifiable but nonestimable
(INE). In phylogenetics, INE could materialize if there
is no sequence variation within an alignment. Even if a
parameter is estimable, the precision with which it can
be estimated may vary. For instance, if the curvature
of the likelihood is sharp, then the parameter will be
estimated accurately (i.e., with smaller variance). On
the other hand, if the curvature of the likelihood is
almost nonexistent then the parameter estimates will
have greater variance. We distinguish these last two
cases as strongly estimable (SE) and weakly estimable
(WE). Although WE and INE can be prevented by better
sampling practices (like using more sequence data) or
by bringing external information into the analysis (i.e.,
Huelsenbeck et al. 2008, but see Felsenstein 2004; Pickett
and Randle 2005; Zwickl and Holder 2004 and Brandley
et al. 2006), the first scenario (NI) is difficult to detect
because it may be determined by complex interactions
among the components of the model.

Nonidentifiability is not always regarded as an
inferential problem. For instance, under subjective
Bayesianism (Eberly and Carlin 2000; Gelfand and Sahu
1999; Robert 2007), when the data contain no information
to estimate the parameter of interest, it is the prior
distribution that conveys such information and thus
provides a starting point for the Bayesian learning
process (Lindley 1972, 2000; Rannala 2002) but see (Lele
and Dennis 2009). Indeed, an often repeated justification
for using the Bayesian solution in complex model-based
problems is the ability to bring into the analysis external,
a priori information concerning the parameters of interest
(Huelsenbeck et al. 2002; Alfaro and Holder 2006;
Huelsenbeck et al. 2008; Rannala 2002). Another case

where nonidentifiability does not affect the statistical
inference of the biological parameters of interest is when
it occurs between parameters that can effectively be
viewed as nuisance parameters.

Detecting nonidentifiability remains an important
inferential problem when the prior elicitation process
cannot easily be informed by any method, including
expert opinion (Lele and Allen 2006). While analyzing
Hidden Markov models and/or state-space models, it
is not always clear how to go about the process of
prior elicitation for a quantity that by definition cannot
be observed (Hastie and Green 2012; Lele and Dennis
2009; Lele et al. 2010). For these complex hierarchical
models, the only practical way to obtain a prior for
Bayesian inference is the use of expert opinion, which
may be difficult to justify under these circumstances.
Finally, in the context of phylogenetics, nonidentifiability
is particularly important when it implies that a section of
the phylogeny of interest cannot be resolved even with
infinite amounts of data.

In this article, we develop diagnostic tools for the early
detection of nonidentifiability in phylogenetic analyses
for continuous and discrete parameters. Such diagnostic
tools use a recently developed computer-intensive
method for ML estimation and inference called Data
Cloning (DC) (Lele et al. 2007; Ponciano et al. 2009) that
has been proved to work with continuous parameters
(Lele et al. 2010). We show how this method can provide
a very simple way to assess nonidentifiability for many
phylogenetic models and tree topologies by embedding
rooted binary trees in a metric space associated with the
Billera, Holmes and Vogtmann (BHV) distance (Billera
et al. 2001). Importantly, this diagnostic procedure can
be easily implemented using existing Bayesian MCMC
software for phylogenetic inference and used with
empirical data matrices. We demonstrate that, despite
the presence of a nearly flat likelihood, our diagnostic
tool can distinguish cases of weak estimability from
nonidentifiability. With this work, we hope to provide
useful guidance for practitioners focused on empirical
problems who wish to run a careful diagnosis of
parameter identifiability in their data analyses.

Despite the simplicity of the DC methods, a
phylogenetics practitioner can draw a remarkable set
of conclusions using DC. In what follows, we illustrate
the implementation of DC for phylogenetic analyses and
discuss the breadth of implications of applying these
results to currently relevant problems in phylogenetics.

METHODS

DC: A Computationally-Intensive ML Method
Developed in the context of hierarchical models in

ecology, DC is a general technique that uses MCMC
algorithms to compute ML estimates along with their
asymptotic variance estimates (Lele et al. 2007, 2010;
Ponciano et al. 2009). DC was anticipated in the works
of (Robert 1993), (Doucet et al. 2002), (Kuk 2003) and
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(Jacquier et al. 2007). With DC the ML estimates can
be calculated whenever a Bayesian solution can be
computed. Instead of relying on exact or numerical
differentiation methods to maximize the likelihood, DC
only relies on the computation of means and variances
of posterior distributions.

An often repeated justification of the Bayesian
approach is the fact that, as sample size increases,
the Bayesian solution approaches the ML solution
(Walker 1969). DC works by applying the Bayesian
methodology to a data set constructed by duplicating
(cloning) the original data set enough times so that
the resulting posterior approaches the ML solution.
Indeed, as the number of replicates, r, increases,
the posterior distribution becomes nearly degenerate,
and its mean vector converges to the ML estimates.
Furthermore, for continuous parameters, its variance–
covariance matrix converges to 1/r times the inverse of
the observed Fisher’s information matrix. Hence, the
estimated variances can be used to obtain Wald-type
confidence intervals (Lele et al., 2007, 2010). In what
follows we provide a detailed explanation of DC. It is
important to realize that cloning the data is not a remedy
to alleviate the problems of having small sample sizes. It
is just an algorithmic device to facilitate the computation
of the ML estimates along with their variance. Should
software already be available to calculate the likelihood
and its second derivative, DC would not improve the
analysis. Note, while (Lele et al. 2007, 2010; Ponciano
et al. 2009) use k to denote the number of clones, we
used r in order to keep the notation of (Rannala 2002) as
well as the model parametrization which he extensively
used.

Let Yt×n denote a sequence alignment, where n is the
length of the sequence alignment and t is the number
of taxa. Such observations are supposed to arise from a
probabilistic, Markovian model of sequence evolution.
The most efficient way to derive information about the
evolutionary process from the sequence alignment data
is to connect it with a proposed model of character
evolution through the specification of a likelihood
function. The likelihood function, denoted L(θ;Y), is
a function of the vector of model parameters θ. The
value of the likelihood at θ is the value of the joint
probability density function for the random variables
Yt×n =[Y1,Y2,...,Yn] evaluated at the data set at hand
and at θ. Here, Y i,i=1,2,...,n corresponds to the t×1
vector of character states for the t taxa at the i-th position
in the sequence. The Markovian structure of the data
allows the joint distribution of the observations, denoted
by g(Y;θ), to be computed as an explicit function of
the evolutionary parameters of interest, θ (Felsenstein
2004). Thus, the joint probability distribution is crucial
as it provides the connection between the probabilistic
description of the model of character evolution and the
data set Y (but see (Sprott 2000), page 10 for a precise
definition of the likelihood). The ML estimates of the
vector of model parameters θ are those parameter values
that make the observed data “most probable”, i.e., they
maximize the likelihood function for the observations.

In a Bayesian framework, parameters are viewed as
random variables and inference about the process and
the parameters of interest is achieved via the posterior
distribution

�(θ|Y)= L(θ;Y)�(θ)
C(Y)

,

where C(Y)=∫ L(θ;Y)�(θ)dθ, L(θ;Y)=g(Y;θ) and �(θ)
corresponds to the joint prior distribution of the model
parameters. Bayesian methods have been used with
increasing frequency because computational methods
allow the estimation of the posterior for many complex
models where an explicit likelihood function is difficult
to write and solve. However, the influence of the prior
distribution in Bayesian inference has been the source of
much debate (Brown et al. 2010; Felsenstein 2004; Yang
and Rannala 2005).

A heuristic description of DC is as follows: suppose
that in r independent experiments recording a sequence
alignment for t taxa and n base pairs, just by pure
coincidence, exactly the same set of observations Y is
recorded every single time. Then, the likelihood function
for these r independent experiments would be simply
written as [L(θ;Y)]r and the posterior distribution of θ

given the data Y(1)
t×n,...,Y(r)

t×n would be written as

�(θ|Y)(r) = [L(θ;Y)]r�(θ)
C(r,Y)

.

In the equation above, C(r,Y)=∫ [g(Y;θ)
]r

�(θ)dθ is the
constant of integration and the posterior superscript (r)
emphasizes the fact that this distribution is obtained by
using the r identical realizations of the data. For large
enough r and under certain regularity conditions (see
Lele et al. 2010), the mean vector and the variance–
covariance matrix of �(θ|Y)(r) converge respectively to
the vector of ML estimates and to 1

r times the inverse of
the observed Fisher’s information matrix. Thus, Wald’s
(Wald 1948) asymptotic variance of the ML estimate can
be estimated by multiplying r times the variance of
the r-th cloned posterior distribution, a quantity that
in what follows we call the “DC variance estimate”.
Proofs of these convergence results were published by
Lele et al. (2010). These authors showed that, because
the data set copies are not independent, the convergence
results used by Walker (1969) do not apply. Rather than
corresponding to the probabilistic convergence results
used in (Walker, 1969), the convergences that validate
the DC methodology are deterministic convergences of
a sequence of functions.

(Robert 1993) described an alternative scheme to
obtain �(θ|Y)(r) that he deemed the “prior feedback
method”. The r-th posterior �(θ|Y)(r) can be thought
of as resulting from the hypothetical experiment of
computing the posterior distribution iteratively, starting
with the original likelihood L(θ;Y) and prior distribution
�(θ) and at each iteration using the preceding posterior
distribution as the prior distribution. It is easy to show by
induction that the two formulations are equivalent, and
thus, as the number of iterations r tends to ∞, the ML
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convergence results proved by (Lele et al. 2010) applies.
Importantly, the ML estimates and their covariances are
invariant to the choice of the prior distribution.

In practice, the DC methodology poses no
other difficulties. For a given value of r, DC is
implemented by simply copying the original data set
(see sample files in the online Appendix, available from
http://sysbio.oxfordjournals.org) r times and feeding
the cloned data to any Bayesian software for phylogenetic
analysis. As the number of clones r increases, if the
parameters are identifiable, the marginal variance
of each parameter in the r-th posterior distribution
should converge to 0 (see Lele et al. 2010) at a rate
of 1/r. As a consequence, the largest eigenvalue of
the variance–covariance matrix of the r-th posterior
distribution should also converge to 0 at a rate of 1/r. If,
however, the likelihood surface is flat, as the number of
clones is increased, the effect of the prior in the posterior
distribution decreases too, and the r-th posterior
distribution is dominated by a flat likelihood function.
In this case, as r grows large, the variances of such
posterior distribution do not converge to 0. Therefore,
a useful statistic to assess parameter identifiability is to
perform DC with multiple values of r, and each time,
compute the first eigenvalue of the resulting posterior
distribution. If these eigenvalues are standardized by
the first eigenvalue of the first posterior distribution’s
variance, and if the parameters are identifiable, then the
plot of the first eigenvalue of each of these r-th posterior
distributions variances as a function of r should decrease
at a rate equal to 1/r. However, if the parameters are
non-identifiable, then the r-th posterior distribution
converges to a distribution truncated over the space of
nonestimable parameter values (Lele et al. 2010). The
largest eigenvalue of such a posterior distribution will
not converge to 0. Thus, DC can be used as a precise tool
to diagnose nonidentifiability.

Asymptotic likelihood based inference is available
for a wide array of models, including hierarchical
models and many problems that were heretofore only
accessible through Bayesian inference. Indeed, the DC
methodology was originally derived as a means to deal
with any hierarchical model of the following form (Lele
et al. 2007; Ponciano et al. 2009):

Y ∼ f (y|X=x,φ)
X ∼ g(x;θ),

where Y is a vector of observations, and X is a vector
of unobserved random quantities (often called latent
variables or random effects) on which the observations
depend. While modeling ecological or evolutionary
dynamics, X often represents a stochastic process of
biological relevance, specified using the parameters
θ. For both, Bayesians and frequentists alike, X is a
random vector. Bayesians also think of θ as random
quantities. Frequentists, however, regard the parameters
θ as constants, unless another hierarchy of stochasticity
with biological meaning is added to the model (i.e., if
a stochastic processes giving rise to these parameters is

specified to get a better understanding of the biology). In
the context of phylogenetics, for instance, X could denote
a birth–death model of speciations and extinctions,
θ the vector of rates parameters at which these
processes occur, while Y would represent the random
samples from this stochastic process, obtained by an
adequate statistical sampling model with parameters φ.
In those cases, the likelihood function is obtained by
averaging the probability of the observations, specified
by the statistical sampling model, over all the possible
realizations of the process:

L(θ,φ;y)=
∫

...

∫
f (y|x;φ)g(x;θ)dx.

Note that the dimension of the integral is the same as
the number of components in the vector X. Because
the Bayesian approach completely circumvents the
problem of high-dimensional integration by using
MCMC algorithms to sample from the joint posterior

�(θ,φ,X|y)∝ f (y|x;φ)g(x;θ)�(θ,φ),

where �(θ,φ) is a joint prior of the model parameters,
ML estimation for θ and φ is made possible using
DC by sampling instead from the r-th joint posterior
distribution

�(θ,φ,X|y)∝[f (y|x;φ)g(x;θ)
]r

�(θ,φ),

for r large enough. Provided enough data are
available, further layers of hierarchy can be added
to this basic model. Furthermore, model selection,
hypothesis testing, and likelihood profiles can all be
computed efficiently for these hierarchical models using
“likelihood ratios for DC” (Ponciano et al. 2009). In the
context of phylogenetics, using this modeling approach,
one could assume that for each transition, nature selects
at random from a set of models (Evans and Sullivan
2012; Huelsenbeck et al. 2004) and that the main
parameter of interest is the tree topology. The model
identity can therefore be specified as another layer of
latent components and the tree topology estimation
could be performed after averaging over all possible
models. Finally, in other applications, it has been shown
that nonparametric mixture distributions, change-point
processes, and general stochastic process, models with
added sampling error can all be analyzed using a
likelihood framework eased by DC (Lele et al. 2010)

Instead of focusing on the reaches of DC as an
estimation tool, here we would like to address the
usefulness of this novel approach as a tool to distinguish
between the different identifiability and estimability
scenarios mentioned above. We show that in so doing,
DC emerges as a practical diagnostic methodology,
regardless of the inferential paradigm adopted.

RESULTS

The results are divided in three sections. In the first
section, we illustrate the implementation of DC under
three different estimability scenarios: SE, NI, and WE.
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In all three cases cases, we present a closed analytical
form of the cloned posterior distribution, its moments,
and its limiting behavior as the number of clones
increases. We use examples built on Rannala’s (Rannala
2002) simple models used to illustrate nonidentifiability
of parameters in Bayesian phylogenetics inference. In the
second and third sections we explore the properties of
DC as a diagnostic tool for the tree topology estimation
problem and to assess the extent to which increasing the
length of a sequence alignment improves the parameter
estimation process. We illustrate INE in this later
phylogenetic context.

Implementing DC: Three Simple Analytical Examples

Strong Estimable parameters.—Rannala (2002) demons-
trated the issues associated with parameter
identifiability using two simple Bayesian statistical
models, one of which was over parametrized. In the first
model, the parameter of interest is Strong-Estimable SE.
The observations Y1,Y2,...,Yn are assumed to be iid
exponentially distributed with parameter �. Let

∑n
i=1

Yi =�. Then, the likelihood of the observations is

L(�;Y)=�ne−��.

Before delving into the Bayesian approach for this first
model, note that by setting the derivative of L(�) equal to
0 and solving for �, the ML estimate of �, �̂, is found to be
n/�=1/ȳ, i.e., the inverse of the sample mean. Because
the set of values of � that maximizes the likelihood
contains only the point 1/ȳ, here, the exponential rate � is
indeed an example of an identifiable parameter. Fisher’s
information I(�) and the asymptotic variance of the ML
estimate �̂ (Wald, 1948) are

I(�)=−E

[
d2lnL(�)

d�2

]
= n

�2

and

Var(�̂)=
[
I(�̂)

]−1 = n
�2 .

On the other hand, using the Bayesian approach,
we could assume that the prior distribution for the
model parameter � is Gamma distributed with shape
and scale parameters k and �, respectively, and pdf
g(�)= �k

�(k)�
k−1e−�� (Rannala 2002). Different priors can

therefore be specified by changing the values of � and k.
The posterior distribution of �, �(�|Y) is

�(�|Y)=
(
�ne−��

)
�k

�(k)�
k−1e−��∫∞

0 �ne−�� �k

�(k)�
k−1e−��d�

= (�+�)n+k�n+k−1e−�(�+�)

�(n+k)
,

which is the pdf of a gamma distribution with
parameters n+k and �+�. Note that the parameters of

this gamma posterior distribution depend on the prior
parameters � and k. Hence, specifying different prior
distributions through changes in these parameters will
result in changes in the posterior distribution. Recall now
that in DC we write down the posterior distribution just
as if by pure chance we had recorded r independent data
sets that happen to be identical. That is, if we clone the
data r times, the r-th posterior distribution is written as

�(�|Y)(r) =
(
�ne−��

)r �k

�(k)�
k−1e−��∫∞

0
(
�ne−��

)r �k

�(k)�
k−1e−��d�

= (�+�)nr+k�nr+k−1e−�(�r+�)

�(nr+k)
,

which is again a gamma distribution, but with
parameters nr+k and �r+�. Note that the mean and
the variance of the r-th posterior distribution are now

E[�|Y]= nr+k
�r+�

and Var[�|Y]= nr+k
(�r+�)2

and, just as it was mentioned above,

lim
r→∞E[�|Y]= n

�
= �̂, the ML estimate of � and

lim
r→∞r×Var[�|Y]= n

�2 =
[
I(�̂)

]−1
, the asymptotic

variance of �̂.

The above limits also imply that limr→∞Var[�|Y]=0,
i.e., the variance of the r-th posterior distribution as
r→∞ converges to 0. Indeed, this is expected when
a parameter is identifiable Lele et al. (2010). Finally,
note that these convergence results are valid regardless
of the specified prior distributions. Any change in the
prior accomplished through changes in � and k does
not affect the resulting limiting expressions for the mean
and variance of the r-th posterior distribution. The above
description is just a heuristic example. The formal proof
of convergence of the mean and variance of the r-th
posterior distribution to the ML estimate and to Wald’s
asymptotic variance of the ML estimate respectively, can
be found in Lele et al. (2010). For now, it suffices to
mention that such convergence occurs provided some
regularity conditions are met (see Lele et al. 2010, for
details).

NI parameters.—In Rannala’s second example, the
observations Y1,Y2,...,Yn are again exponentially
distributed, but the exponential rate parameter � is
now assumed to be a sum of � parameters, i.e., �=
�1 +�2 +···+��. The likelihood of the observations is
then written as

L(�1,�2,...,��)=
(

�∑
i=1

�i

)n

e−�
∑�

i=1�i =�ne−��.

Note that when
∑�

i=1�i is replaced by �, this likelihood
is identical to the likelihood in the first example. Hence,
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there is a single value of � that maximizes this likelihood
function. However, because for every value of � there
is an infinite combination of values of �1,�2,...,��

such that �=∑�
i=1�i, there exists an infinite number of

solutions to the problem of maximizing the likelihood
function. Therefore, the parameters �i,i=1,...,� are non-
identifiable. The sum of these parameters, however, is
identifiable and its ML estimate is identical to the ML
estimate of � in the first example, n/�.

While describing the Bayesian analysis for this
model, Rannala (2002) assumed that the priors for
the parameters �i were exponentially distributed with
parameter �. Accordingly, the joint prior distribution is

�(�1,�2,...,��)=��e−��.

It follows that the joint posterior distribution
�(�1,�2,...,��|Y) is

�(�1,�2,...,��|Y)= �ne−�(�+�)(�+�)n+2�(�)
�(n+�)

.

To keep the implementation of DC simple, in what
follows we use �=2, so that �=�1 +�2. Then, the joint
posterior above simplifies to

�(�1,�2|Y)= (�1 +�2)ne−(�1+�2)(�+�)(�+�)n+2

�(n+2)
.

When DC is implemented with r clones, the r-th joint
posterior distribution is:

�(�1,�2|Y)(r) = (�1 +�2)nre−(�1+�2)(�r+�)(�r+�)nr+2

�(nr+2)
.

The simplicity of this joint posterior distribution allows
us to write down a closed expression for the marginal
posterior density for each of the two parameters, �1 and
�2 (see Appendix 1). As a consequence, we can find
the mean and variance for each marginal distribution,
as well as the posterior covariance between these two
parameters. Also, because the algebraic form of the joint
posterior distribution for �1 and �2 is symmetric with
respect to these two parameters, both marginal posterior
distributions are identical. The expected value and the
variance of the r-th marginal posterior for �i,i=1,2 are
(see Appendix 1):

E[�i|Y]= nr+2
2(�r+�)

and (1)

Var[�i|Y]= (2+nr)(6+nr)
12(�r+�)2 . (2)

Finally, the r-th posterior correlation between �1 and �2
is found to be (see Appendix 1)

Corr(�1,�2|Y)=− nr
nr+6

. (3)

Elementary calculations (Appendix 1) show
that the posterior variances for both �1 and �2
[Equation (2)] do not converge to 0 as the number
of clones tends to infinity. Instead, we have that

the limr→∞Var[�i|Y]= n2

12�2 , for i=1,2. Therefore,
marginally, neither parameter is identifiable; however,
the sum of the two parameters is identifiable. This
result can be verified by looking at the distribution
of a number (say 5000) of MCMC samples from the
cloned posterior distribution of �1, �2 and �1 +�2. As
the number of clones goes from one to 200, the variance
of the cloned posterior distribution of the sum goes
to zero, whereas the variance of �1 and �2 does not
(Figure 1). To see why the sum is identifiable whereas
the individual components �1 and �2 are not in this
case, first note that limr→∞E[�1|Y]= n

2�
and hence

limr→∞E[(�1 +�2)|Y]=n/�, which is exactly the ML
estimate of the sum of these parameters. Second, the
variance of the sum of these parameters does converge
to 0 as the number of clones increase. Indeed, noting
that limr→∞Corr(�1,�2|Y)=−1 we get that

lim
r→∞Var[(�1 +�2)|Y]= lim

r→∞
(
2Var[�1|Y]

+2 Cov(�1,�2|Y)
)

=2 lim
r→∞

(
Var[�1|Y]

+ Var[�1|Y]Corr(�1,�2|Y)
)

=2

(
n2

12�2 + n2

12�2 (−1)

)
=0.

Rannala (2002), noting that the posterior correlation
(without cloning) between �1 and �2 was equal
to −n/(n+6), mentioned that, even as sample size
increases, the correlation between the parameters does
not decrease but rather converges to −1. He thus
concluded that over parametrization can be diagnosed
with the presence of a strong correlation in the posterior
parameters despite having a very large sample size.
Yet, he included a cautionary note mentioning that
parameters may still be correlated and identifiable at
the same time in some cases. Therefore, such correlation
among parameters is not an unequivocal diagnostic tool.
In contrast, DC does provide an unequivocal diagnostic
of nonidentifiability, namely, the nonconvergence to 0
of the variance of the r-th posterior distribution of the
parameter of interest. To check for such convergence,
the first eigenvalue of the posterior distribution can be
compared to the first (scaled) eigenvalue for the r-th
posterior distribution, for various values of r (Lele et al.
2010).

WE parameters.—Here, we present an extension of
Rannala’s second model in which we add increasing
amounts of information to tease apart the two
parameters�1 and�2 from each other, and we implement
DC with simulated samples from such scenarios. When
the model parameters are identifiable but there is little
data to estimate separately the parameters of interest, the
likelihood surface will be nearly flat and thus result in
WE parameters. This scenario poses practical difficulties
if one wishes to ascertain whether the problem at hand
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a) b) c)

d) e) f)

FIGURE 1. Posterior distribution for �1, �2 and �1 +�2 in a standard Bayesian analysis (first row) and using DC, with the number of clones
r=200 (second row). Note that as the number of clones increases (from no clones in a), b), c) to 200 in d), f), g)), the variance of the posterior
distributions for �1 and �2 do not converge to 0, yet the variance of the posterior distribution for the sum does converge to 0 (bottom right
panel).

cannot be resolved because of lack of data or because
it is impossible to resolve, even with infinite amounts
of data. Here, we show that weak identifiability can
be clearly diagnosed and distinguished from the case
where there is exact nonidentifiability.

As we have established above, in Rannala’s second
model,�1 and�2 are not identifiable. If, however, another
sample of size m from an exponential distribution with
parameter �1 is observed and that information taken
into account, then �1 and �2 could be easily estimated.
As m decreases however, the extra information content
about the parameter �1 in such sample decreases and the
curvature of the likelihood around the ML estimate of
�1 becomes more and more flat, and hence, �1 becomes
WE. Let Y11,Y12,...,Y1n be the observed samples from
Rannala’s statistical model, an exponential distribution
with parameter �1 +�2. Also, let Y21,Y22,...,Y2m be
a set of samples from an exponential distribution
with parameter �1. Using the notation

∑n
i=1Y1i =�n,∑m

i=1Y2i =�m and �=�n +�m, the joint likelihood of
the two sets of observations is

L(�1,�2;Y1,Y2)= (�1 +�2)ne−(�1+�2)�n�m
1 e−�1�m ,

and the ML estimates for the parameters are found to be

�̂1 = m
�m

and �̂2 = n
�n

− m
�m

.

Using the Bayesian framework the joint posterior
distribution of the parameters is (see Appendix 2)

�(�1,�2|Y)= e−(�1(�+�)+�2(�n+�))�n+m
1

∑n
i=0

(
�2
�1

)i 1
�(i+1)�(n+1−i)(

1
�+�

)m+n+1( 1
�n+�

)∑n
i=0(m+n−i)m

(
�+�
�n+�

)i .

(4)

Here again, we assumed an exponential prior
distribution with parameter � for each of the
parameters. Also, Y denotes a concatenated vector
containing the two sets of observations and the
notation (x)� =x(x−1)(x−2)...(x−�+1) represents the
Pochhammer symbol, or falling factorial. Just as with
the second model, a closed form expression for the r-th
joint and marginal posterior distributions can be found,
along with their corresponding mean and variances.
In Figure 2, we explored via simulations and using
the exact analytical formulae presented in Appendix 2
what happens to the mean and variance of the marginal
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r-th posterior distribution for �1 in this third model,
when the sample size of the second experiment that
allows the separation between �1 and �2 decreases
progressively to 0. When the extra sample size (m) is
large, the empirical mean (blue line) of the MCMC
samples from the r-th posterior distribution matches the
ML estimate (horizontal black line) when the number
of clones r is about 11. As a check, we also plotted the
value of the analytical expression for the mean of the
r-th posterior distribution in that model [black crosses
in Figure 2, see equation also (A.8)]. Note that by the
time m=2, it takes a much higher number of clones
(about 140) for the mean of the r-th distribution to
match the value of the ML estimate. Figure 2 also shows
that as the extra sample size diminishes, the size of the
asymptotic Wald confidence intervals increases. These
confidence intervals were computed by multiplying
by 1.96 the square root of the empirical variance–
covariance matrix of the MCMC samples multiplied

by r, i.e., 1.96
√

rV̂ar[�1|Y]. Of particular interest is the
comparison between the size of the confidence intervals
when m=2 vs. the case when m=0, that is, when no
extra information about the parameter �1 is available.
As the number of clones increases, but before the mean
of the cloned posterior reaches the ML estimate, the
size of the confidence intervals seems to increase in
both cases. However, in the first case, the slope of the
DC standard deviation curve does not change as the
number of clones increase, whereas when m=0 the
slope of such curve grows notably with an increasing
cloning size. Thus, even if there is a very small amount
of extra information about a parameter that allows it to
be identifiable, like when m=2, as the number of clones
increases, the changes in the size of the confidence
intervals are linear. However, when the parameter is
non-identifiable (m=0), an early indication that the DC
asymptotic result will never be reached is the fact that
the size of the confidence intervals grows at a highly
nonlinear rate.

DC Inference for Tree Topology: The Analysis of a
Chloroplast Data Set

One of the parameters of interest in phylogenetic
analysis, the tree topology, is discrete in nature.
Unfortunately, the asymptotic results for ML estimation
in the discrete case are restricted (see for instance Lindsay
and Roeder 1987 and subsequent work). Further, the
regularity conditions under which DC has been proven
seem not to be met (see Lele et al., 2010, Appendix).
Nevertheless, biological intuition indicates that better
resolution of the tree topology can be brought about
by increasing the amount of sequence data. But, how
can we know if enough new data have been added to
reliably resolve the phylogeny of interest? Answering
this question amounts to assessing the changes in the
quality of the tree topology estimate as the amount of
sequence data included in the alignment is increased.

Thus, in this section we investigate the properties of
DC as a diagnostic tool for the tree estimation problem
despite the inherent discreteness of topologies.

We used the 83 gene chloroplast genome data set
from (Moore et al. 2010), which includes sequences from
86 seed plant taxa, to assess the properties of the tree
topology estimate when different amounts of data were
used for the analysis. We implemented DC using three
single-gene (atpB, ndhF, and rbcL) subsets of this data as
well as the entire 83 gene concatenated alignment.

Because the key DC diagnostic of estimability in
continuous parameters is the decline of the variance
of the posterior distribution toward 0 as the number
of clones increases, we studied the changes in total
variability in the posterior samples of trees for increasing
number of clones to look for analogous behavior. To
study the variation in topology space as the number
of clones increased, we adopted the approach of
(Chakerian and Holmes 2010). By embedding rooted
binary trees in a metric space associated with the BHV
distance Billera et al. (2001), these authors capitalized
on statistical methods such as multi-dimensional scaling
(MDS) to evaluate and study the properties of a posterior
distribution of trees. A measure of the variance of the
posterior distribution of trees can be taken to be the sum
of squares of all the elements of the BHV distance matrix
among the trees sampled. Therefore, we simply studied
the changes in the total sum of squared distances in the
posterior distribution of trees as the number of clones
increased and compared the rate of these changes with
the predicted rate of 1/r by the DC theory of (Lele et al.
2010) for continuous parameters.

Using the software MrBayes version 3.1.2 (Ronquist
et al. 2005) in the default settings for the GTR +I+
� model we ran an MCMC analysis for 10 million
generations using 1,2,4,8,16, and 32 clones. Samples from
each of these Markov Chains were taken every 1000
generations. The last 5000 samples of the chains were
used for the analyses. In each case, besides the 5000
samples of the continuous parameters, we also stored
the 5000 samples of the posterior tree topologies and
branch lengths. We then randomly took a subsample of
size 500 from the sampled posterior distribution of trees
and computed the matrix of BHV pairwise distances
between each of these 500 trees using the methodology
and R software described in (Chakerian and Holmes
2010). Next, we used that matrix of distances to obtain
the best representation in Euclidean space of the relative
positions of the sample of trees using nonlinear MDS in
R (Borcard et al. 2011).

The Euclidean representation of the sampled trees and
the total number of different topologies in the sample,
for each cloning size of the entire data set is shown in
Figure 3. Also shown in Figure 3 is the progression of
the total sum of squared BHV (TSS-BHV) distances as
the number of clones r increases from 1 to 16. Each of
these TSS-BHV distances was divided by the TSS-BHV
distances when r=1 to obtain a relative measure of the
total variance in the posterior sample of tree topologies.
As it can be seen in Figure 3, the TSS-BHV distances
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FIGURE 3. NMDS representation in Euclidean space of a sample of size 500 trees from the r-th posterior distribution in geodesic space of
the tree topologies, as the number of clones increase [(panels a) to e)], for the complete chloroplast data set (86 genes). Each color represents a
different topology, and the number of different topologies is specified above each plot. Panel f) depicts the reduction in the relative total variance
as the number of clones increases (see text for details).

decay very much like 1/r, which strongly suggests that
DC as a tool for ML estimation for the tree topology
works, and in particular, that the topology is indeed
estimable in this case. Note also how the number of
different topologies as well as the overall dispersion
in the non-metric MDS (NMDS) axis of the posterior
sample of the trees tends to decrease. Finally, we point
that the sum of squares used here is not traditional.
Usually, sums of squares are defined from distances to a
central point, which would correspond to a central tree
here. Both, the formal definition and proper calculation
of a “central” tree for the BHV distance is still an active
area of research (e.g., Nye 2011; Owen 2008; Owen and
Provan 2011).

In Figure 4, we present the results from the analysis
of the atpB single gene data set. In this case, the overall
variance of the posterior distribution of topologies also
decreases (see insert in Figure 4, panel f), but not at
the expected rate of 1/r. This finding suggests that
the number of clones at which DC begins to stabilize
(e.g., Figure 2) and the variance begins to drop like
1/r has not been reached yet, but that the topology
parameter is indeed identifiable. Just like in the third
exponential model however, although the parameter of
interest is still identifiable with a small sample size, it
may take many more clones to get the ML estimate of the

topology and we expect the quality of the inferences (e.g.,
precision of the estimate) to be poor. Different rates of
decrease were found with the rbcL and ndhF data sets (see
online Appendix with the program), which indicates the
different amounts of information borne by the different
genes.

Chance and Estimability in Phylogenetic Analyses
We have asserted above that chance events in the

sampling of data may lead the analysis of some data sets
to have parameters that are identifiable but not estimable
while other data sets of the same size may contain
parameters that are SE or WE. We have also indicated
that estimability is not an all or nothing property. Some
data sets may have a group of INE parameters but still
have other parameters that are identifiable. Here, we
demonstrate both these claims with the re-analysis of
a real data set.

Increasing the length of the sequence alignment used
for parameter estimation certainly is a means to obtain
more precise estimates of the continuous evolutionary
model parameters. The extent to which the added
information improves the parameter estimation process
can be directly measured using statistics such as the
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FIGURE 5. Nonparametric bootstrap distribution of the first eigenvalue of the variance–covariance matrix of the r-th cloned posterior
distribution, for r=1,2,4,8,16,32 [panels b) to h)], when the resampled replicates are 14, 28, 56,112,225,449, and 898 bp long. Panel a) depicts
the rate of decrease of the first eigenvalue of the posterior distribution sample variance for the continuous parameters (in blue) and the trees (in
red, see explanation of Figure 4 in the text), and compared with the theoretical rate decrease of 1/r (in black). In panel b), the changes in the first
eigenvalue for two other data sets also of size 14 bp are followed with a red and with a blue dotted line. In one of the cases (marked with a blue
line), the size of the first eigenvalue decreases sharply as the number of clones increases. In the other case (red line), it does not.

mean squared error (MSE), or by computing the amount
by which the observed Fisher’s information improves.
Furthermore, classical asymptotic results for continuous
ML parameter estimates are readily available, and, as
a consequence, the DC methodology can unequivocally
be used as an identifiability diagnostic tool. To illustrate
such scenario, we analyzed data sets of varying sequence
length constructed by subsampling at random data sets
from increasing sequence lengths out of the well-known
primate data set (Hayasaka et al. 1988).

The “primates data set” is an alignment of 898
bp including 12 taxa. In our analysis, we re-sampled
the original data set with replacement to form
nonparametric bootstrap replicates of 14, 28, 56, 112, 225,
449, and 898 bp in length. For each of these lengths,
250 random alignments were formed, thus obtaining
7×250=1750 data sets. For each data set, we performed
DC using 2, 4, 16, and 32 clones with MrBayes by
implementing a standard Bayesian analysis using the
default settings for the GTR +I+� model. The MCMC
was ran for 10 million generations, and samples were
taken every 1000 generations. The last 5000 samples of
the chain were used for the analyses.

For each combination of alignment length, random
replicate number, and total number of clones used,
5000 samples of the multivariate posterior distribution
of the (continuous) model parameters were saved, as
well as their corresponding tree topologies and branch
lengths. For each of these matrices of 5000 rows of

the continuous parameters, the empirical variance–
covariance matrix was computed as an estimate of
the joint posterior variance–covariance matrix, from
which the first eigenvalue was computed and saved.
The boxplots for each set of 250 estimates of the first
eigenvalue are plotted in Figure 5, for each combination
of base pair length and number of clones used. Note
how, as the number of clones and the sequence length
increases, both the median and the variance of the
distributions of the first eigenvalues decrease. The plot
in the second upper panel highlights the fact that for the
same sample size, different amounts of information may
be borne by different data sets of the same size. Thus,
for the same alignment length, some randomly sampled
data sets end up containing much more information
about the continuous model parameters of interest than
others (see Figure legend for details). Note that, although
we are calling the resampled data set “bootstrap”
samples, we are not using these samples for statistical
inference for the original data set, only for illustrating
chance events in the sampling of data leading to different
estimability problems.

In the upper leftmost panel of Figure 5, we show the
results of the analysis of only one of the 250 randomly
drawn data sets of length 14 bp. For that particular
data set, we ran DC with 1, 2, 4, 8, 16, 32, 64, and 128
clones. We then plotted together the rate of decrease of
the first eigenvalue of the posterior distribution sample
variance for the continuous parameters (in blue) to
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the theoretical rate decrease of 1/r (in black). Once
the first eigenvalue size begins to decrease, it does so
at the expected rate of 1/r, thus indicating that the
continuous model parameters are identifiable (although
the size of the confidence intervals for such parameter
is expected to be relatively high). The variance of the
posterior distribution of topologies, however, seems to
stabilize at a nonnull quantity. Furthermore, the number
of topologies in the posterior sample of trees does not
drop down below 59. These results strongly suggest that
although the evolutionary model parameters may be
identifiable, the topology itself may not be estimable for
such low sample size.

DISCUSSION

Non-identifiability of parameters has long been
known in the statistical literature Rothenberg (1971) and
expositions like Rannala’s paper Rannala (2002) have
helped to introduce to the phylogenetics community
the important inferential problems it poses. Here, we
have shown how to use data cloning as an unequivocal,
easy to implement tool to detect the presence of
nonidentifiability.

Practitioners only need to clone their sequence
alignment (see Supplementary Material to see examples)
and run the cloned alignment using a Bayesian software
pertinent to the problem at hand. As the number of
clones r increases, the posterior mean of the identifiable
model parameters should stabilize numerically, whereas
their posterior variance decreases toward 0 like the
function 1/r. Non-identifiable parameters, if present,
would be exposed because their cloned posterior
variance does not decrease to 0, and rather, it would
appear to stabilize at a nonnull quantity. Hence, the value
of r times the variance of the marginal r-th posterior
distribution for these parameters, for increasing r, would
also appear as ever increasing.

Theoreticians now have a powerful tool to detect
nonidentifiability while investigating complex modeling
scenarios, where getting closed-form expressions for the
r-th posterior distribution is not as straightforward as in
the exponential model cases shown here. Even if a great
deal of thought is invested on the model formulation,
(McCulloch and Searle 2001), (Yang and Rannala 2006),
and (Lele et al. 2010) show that it is relatively easy for
nonidentifiability to be introduced inadvertently in a
model.

Nonidentifiability and weak estimability also can be
distinguished early on in the DC process. In a WE
scenario, as the number of clones is increased, the rate of
change of the DC variance does not change as strongly
as in the NI case. Indeed, because the variance of the
cloned posterior distribution does not converge to 0
when NI is present as the number of clones increases,
Wald’s asymptotic variance, computed as r times the
empirical variance of the posterior distribution, will be
an ever increasing quantity. In both cases (WE and NI),
in the beginning of the cloning process, the mean of the

cloned posterior distribution is changing. Also, in both
cases, it is possible that at the beginning of the cloning
process the variance of the cloned posterior distribution
increases instead of it diminishing (see Figure 2, two
rightmost panels of the lower row). Then, in both cases,
the graph of the DC standard deviation as a function of
r will seem monotonically increasing. However, in the
NI case, the slope of such graph changes much faster
than in the WE case. This fact may be used as an early
diagnostic tool to ascertain the particular estimability
scenario, although more research regarding this topic
in phylogenetic examples is needed.

Although we show examples of the use of DC to
recognize NI, WE, SE, and INE, we do not include
an example of the application of DC and NI to
phylogenetics. Our results call for a variety of topics
for further research. In particular, DC may be especially
effective to check the estimability of parameters in
complex hierarchical models where it is very difficult
to elicit prior distributions, such as the recent species
tree/gene tree models (Liu and Pearl 2007).

It is unquestionably true that hierarchical models, like
the ones solved through reversible MCMC in a Bayesian
context (Evans and Sullivan 2012; Green 1995; Hastie and
Green 2012; Huelsenbeck et al. 2004), have enormously
increased the scope and complexity of modeling in
phylogenetics. However, neither hierarchical models
nor MCMC should be automatically associated with
Bayesian inference (see Felsenstein 2004; Hastie and
Green 2012; Lele and Dennis 2009; Robert and Casella
2004). As stated earlier, DC can yield likelihood inference
from an initial Bayesian formulation for hierarchical
models (Lele et al. 2010), thus a natural avenue for
further research is evaluating how, and if at all, current
Bayesian software for fitting hierarchical phylogenetic
models can be used to yield samples from the
appropriate cloned posterior. A requirement for this
to happen is that the implementation must allow the
replication of both, the data and the latent structure.
However, this article is only concerned with informing
practitioners and theoreticians about the possibility
of using DC to assess parameter identifiability, reveal
weak estimability, and quantify the effect of priors.
The extent and applicability of DC as an inferential
tool for complex model structures is a topic for further
research.

If DC detects nonestimability, it could be because the
parameters are truly NI and no additional data will
help, or it could be that some aspect of the data prevent
estimation, but estimation would be possible with other
data sets (INE). We believe that these cases could
be distinguished through suitable additions of small
random perturbations to the data, which is analogous
to a technique known as the “Infinitesimal Jackknife”
(Efron and Tibshirani 1993). Further research should
clarify if this is a useful approach. If so, this could allow
practitioners wishing to determine if it is worthwhile
to collect more data to resolve a difficult phylogenetic
problem. For instance, it might be possible to use DC as
a tool to distinguish between the case where adding data
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will never result in the resolution to a bifurcating tree
(i.e., when a hard polytomy is present) and a situation
where the addition of data would effectively resolve the
problem of estimating the divergence times of all the
lineages in the tree such that each node has only two
immediate descending branches (we note however that
in general, for DC to converge on the true parameter
value, the support of the prior distribution must include
such value). Accordingly, in order to resolve a polytomy
problem, the MCMC implementation used must include
0 as a plausible prior branch length (Braun and Kimball
2001; Edwards 2009; Lewis et al. 2005).

DC is a computer-intensive numerical device to find
the ML estimates and thus, by nature, shares some
similarity with other computer-intensive methods in
phylogenetics. While cloning the data, the analyst must
honor the structure of the data. For instance, if one is
dealing with time series data, one replicated data set is
composed of an entire time series of points (Lele et al.
2007; Ponciano et al. 2009). It is important to realize,
however, that in doing so, the quality of the inferences
is not artificially boosted by performing the cloning.
The data copies are only used to get the ML estimate,
and if the data are weakly informative, the ML estimate
and its precision will likewise have poor statistical
properties (Figure 2). Both, DC and the bootstrap seek an
estimate of the sampling distribution of the ML estimate.
However, the point of cloning the data is to retrieve
the ML estimates when the likelihood function is not
tractable. While the bootstrap is also an inferential tool,
it seeks to describe the properties of the ML estimates,
given that the ML estimates are obtainable. If DC is
fast enough to perform for a particular problem, one
could use parametric bootstrap to estimate the sampling
distribution of the ML estimates by computing them
using DC for each bootstrap sample. Finally, DC bears
some resemblance with simulated annealing, and this
has been discussed elsewhere (Lele et al. 2007; Robert
and Casella 2004).

DC can also be used as a tool to examine the influence
of the priors. To a great extent, Bayesian statistical
analysis in phylogenetics has gained popularity over the
years as an alternative to the problem of maximizing
difficult likelihood functions, rather than as a method
to incorporate prior knowledge. The process of learning
about a particular evolutionary process while taking
into account a priori information has been successfully
carried by means of subjective Bayesianism (e.g.,
Huelsenbeck et al. 2008). However, when it is not clear
at all how to elicit priors, as in the case of hierarchical
models (Lele and Dennis 2009), DC can be used as an
effective tool to accurately assess the influence of the
prior distributions on the estimation results. If the data
set happens to be very informative, the prior distribution
will carry a small weight and the posterior mode and the
ML estimate should not differ by much. Different data
sets of the same size can carry vastly different amounts of
information (see Figure 1S in Online Appendix 3, second
panel from left to right, upper row). A practitioner
does not know how informative a particular data set

is a priori and the cloning process could be used to
easily reveal by how much do the ML estimates and
the Bayesian Maximum A Posteriori (MAP) estimates
differ. Such exercise should expose the extent to which
any given prior distribution is really “non-informative”
(e.g., (Brown et al. 2010).

When applied to phylogenetic inference, DC motivates
at least two important statistical questions. First, because
we cannot use ML asymptotic theory in the discrete
tree space, the results plotted in Figures 3 and 4
show that, potentially, we could do all of our tree-
related inference in the BHV distance space using
profile likelihoods and then transfer it back to the
tree space. However, we do not know if the inference
would be transformation invariant. A strong indication
that invariance may indeed occur is the fact that the
SS-BHV total distance decreases like 1/r, just like the
predicted decrease of the variance of the cloned posterior
distribution, for continuous parameters. Hence, just as
(Chakerian and Holmes 2010) suggested, this sum of
squares can be used as a measure of the variance of
the posterior distribution in tree-distance space. Second,
because implementing DC is just like implementing
a standard Bayesian analysis, except that with more
data, running a cloning process can be computationally
expensive and difficult to tune. Recent work shows,
however, that when the statistical problem involves
computationally expensive posterior densities, efficient
sampling methods can be implemented (Bliznyuk et al.
2011) and DC can potentially be used in conjunction
with such methodology to further improve the posterior
sampling efficiency. Because DC uses MCMC, it inherits
all the technical difficulties associated with any MCMC
implementation. One of these is finding an adequate
mixing of the Markov Chain so that the parameter
space is suitably explored. Note however that, when
multi-modality in the likelihood function occurs, as the
number of clones increase in DC, the multiple modes
become less and less important while the peakedness of
the consistent mode increases (Lele et al. 2007). Because
smaller peaks can be more and more difficult to escape
from (Rannala et al. 2012), on a practical note, we strongly
suggest that when multiple independent chains are run,
convergence to the same set of posterior trees for large r
and all the chains should be sought after.

Phylogenetics has clearly come to an age where
fundamental biological questions are posed and answ-
ered by means of the language of stochastic proce-
sses and computer-intensive, model-based inference.
Relying extensively on modern computationally
techniques requires vigilant examination of the
very tools we use to learn from the natural world.
Data cloning, as a technique, has grown from being
estimation centered (Lele et al. 2007), to include
hypothesis-testing and model-selection (Lele et al., 2010;
Ponciano et al., 2009) and this study demonstrate its
virtues as a diagnostic tool. Further, we show here that
despite the peculiarities of the tree topology estimation
problem—the presence of an inherently complex
discrete parameter—DC can serve as a powerful yet
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easy to implement tool to diagnose the quality of
statistical inference in phylogenetics. Thus, data cloning
has an enormous potential to help both, practitioners
and theoreticians alike.

SUPPLEMENTARY MATERIAL

Supplementary material, including data files
and/or online-only appendices, can be found at
http://datadryad.org and in the Dryad data repository
(DOI:10.5061/dryad.rr6400b4).
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APPENDIX 1
Here we derive the expected value and variance of

the r-th marginal posterior for �1 in Rannala’s second
model, along with the r-th covariance and correlation
between the parameters �1 and �2 and the limit results
involving those quantities stated in the main text. To do
so, we need to find first the marginal posterior of �1
by integrating the joint posterior distribution over the
second parameter, �2:

f�1|Y(�1)=
∫ ∞

0
�(�1,�2|Y)(r)d�2

=
∫ ∞

0

(�1 +�2)nre−(�1+�2)(�r+�)(�r+�)nr+2

�(nr+2)
d�2

= (�r+�)(nr+2)

�(nr+2)
e−�1(�r+�)

×
∫ ∞

0

( nr∑
i=0

(
nr
i

)
�i

1�
nr−i
2

)
e−�2(�r+�)d�2

= (�r+�)(nr+2)

�(nr+2)
e−�1(�r+�)

×
nr∑

i=0

(
nr
i

)
�i

1

∫ ∞

0
�nr+1−i−1

2 e−�2(�r+�)d�2

= (�r+�)(nr+2)

�(nr+2)
e−�1(�r+�)
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×
nr∑

i=0

(
nr
i

)
�i

1�(nr+1−i)
(

1
�r+�

)nr+1−i

= (�r+�)(nr+2)

�(nr+2)
e−�1(�r+�)

×
nr∑

i=0

(
nr
i

)
�i

1
�(nr+1)
�(i+1)

(
1

�r+�

)nr+1−i
(A.1)

= (�r+�)
(nr+1)

e−�1(�r+�)
nr∑

i=0

�i
1(�r+�)i

�(i+1)
,

where besides algebraic cancelations, in the step before
the last we used the fact that

(nr
i
)
�(nr+1−i) = nr(nr−1)(nr−2) ... (nr−i+1)�(nr−i+1)

i!
= nr(nr−1)(nr−2) ...�(nr−i+2)

i!
= nr�(nr)

�(i+1) = �(nr+1)
�(i+1) ,

Once a closed expression for the r-th marginal posterior
for �1 is found, it is straightforward to compute the
expected value and variance [Equations (1) and (2)] of
such distribution from their definition (see for instance
Rice 1995, chapter 4). Accordingly, the first moment is
found to be

E[�1|Y]=
∫ ∞

0
�1

(�r+�)
(nr+1)

e−�1(�r+�)
nr∑

i=0

�i
1(�r+�)i

�(i+1)
d�1

= (�r+�)
(nr+1)

nr∑
i=0

(�r+�)i

�(i+1)

∫ ∞

0
�i+2−1

1 e−�1(�r+�)d�1

(A.2)

= (�r+�)
(nr+1)

nr∑
i=0

(�r+�)i

�(i+1)
�(i+2)

(
1

�r+�

)i+2

= 1
(�r+�)(nr+1)

nr∑
i=0

(i+1)= nr+2
2(�r+�)

.

The variance is found by subtracting the squared first
moment from the second moment, that is:

Var[�1|Y]=E[�2
1|Y]−{E[�1|Y]}2

=
∫ ∞

0
�2

1
(�r+�)
(nr+1)

e−�1(�r+�)

×
nr∑

i=0

�i
1(�r+�)i

�(i+1)
d�1 −{E[�1|Y]}2

= 1
(�r+�)2(nr+1)

nr∑
i=0

(i+2)(i+1)−{E[�1|Y]}2 (A.3)

= 1
(�r+�)2

[∑nr
i=0(i+2)(i+1)

(nr+1)
− (nr+2)2

4

]

= 1
(�r+�)2

[
1
3

(2+nr)(3+nr)− (nr+2)2

4

]

= (2+nr)(6+nr)
12(�r+�)2 .

The covariance between �1 and �2 is in turn

Cov(�1,�2|Y)=E[�1�2|Y]−E[�1|Y]E[�2|Y]

=
∫ ∞

0

∫ ∞

0
�1�2�(�1,�2|Y)(r)d�2d�1 −

(
nr+2

2(�r+�)

)2

(A.4)

= 1
(�r+�)2

[∑nr
i=0(nr−i+1)(i+1)

(nr+1)
− (nr+2)2

4

]

= 1
(�r+�)2

[
1
6

(2+nr)(3+nr)− (nr+2)2

4

]

= −nr(2+nr)
12(�r+�)2 .

Noting that marginally, the r-th posterior for �1 and �2
are identical and therefore their variances are the same
and equal to Equation (2) in the main text and applying
the definition of correlation we may use the expressions
above to compute the r-th posterior correlation between
the parameters:

Cov(�1,�2|Y)√
Var[�1|Y]√Var[�2|Y] =− nr

nr+6
. (A.5)

Finally, we leave to the interested reader to
verify that in order to show that limr→∞Var[�1|Y]=
limr→∞ (2+nr)(6+nr)

12(�r+�)2 = n2

12�2 it suffices to develop both the
numerator and the denominator, simplify, and divide
both quantities by r elevated to its highest exponent in
the fraction. The limit of E[�1|Y] as r→∞ is found in the
same way.

APPENDIX 2
Here we derive the mean and variance of the r-th

marginal posterior distribution for �1 under the third
model, where extra information about this parameter
is added through an extra sample of size m from an
exponential distribution with parameter �1. Thus, the
total sample size is n+m. To derive the first two moments
of this marginal posterior distribution, first note that the
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joint posterior distribution with r=1 (i.e., the standard
bayesian posterior) of these parameters is:

�(�1,�2|Y) = L(�1,�2)�2e−(�1+�2)�∫∞
0
∫∞

0 L(�1,�2)�2e−(�1+�2)�d�1d�2

= e−(�1(�+�)+�2(�n+�))�n+m
1

∑n
i=0

(
�2
�1

)i× 1
�(i+1)�(n+1−i)(

1
�+�

)m+n+1( 1
�n+�

)∑n
i=0(m+n−i)m

(
�+�
�n+�

)i ,

(A.6)

where the notation (x)� =x(x−1)(x−2)...(x−�+1)
represents the Pochhammer symbol, or falling factorial.
To go from the first line to the second one in the above
equation we used the binomial expansion of (a+b)n

(where a,b are constants and n is an integer), various
laborious algebraic simplifications and three simple
mathematical facts:(

a
b

)
= a(a−1)(a−2)...(a−b+1)

b! = �(a+1)
�(b+1)�(a−b+1)

,

∫ ∞

0
xa−1e−bxdx=�(a)

(
1
b

)a
and (x)� = �(x+1)

�(x−�+1)
.

The closed expression for the r-th joint posterior
distribution is very similar to the standard joint posterior
distribution above:

�(�1,�2|Y)(r) =
e−(�1(�r+�)+�2(�nr+�))�

(n+m)r
1

∑nr
i=0

(
�2
�1

)i × 1
�(i+1)�(nr+1−i)(

1
�r+�

)(n+m)r+1( 1
�nr+�

)∑nr
i=0((n+m)r−i)mr

(
�r+�
�nr+�

)i
.

(A.7)

By integrating this joint distribution over �2 we find the
marginal r-th posterior distribution of the parameter �1,
with which we compute the first two moments and the

variance of �1 as a function of the number of clones,
much in the same way as what is shown in Appendix 1.
These moments are found to be

E[�1|Y]=
(

�r+�

�nr+�

)nr
∑nr

i=0(mr+i+1)mr+1

(
�nr+�
�r+�

)i

∑nr
i=0((n+m)r−i)mr

(
�r+�
�nr+�

)i ,

(A.8)

E[�2
1|Y]=

(
�r+�

�nr+�

)nr
∑nr

i=0(mr+i+2)mr+2

(
�nr+�
�r+�

)i

∑nr
i=0((n+m)r−i)mr

(
�r+�
�nr+�

)i ,

(A.9)
and the variance is

Var[�1|Y]=E[�2
1|Y]−(E[�1|Y])2. (A.10)

These quantities were then computed and compared
with the empirical mean and variance from MCMC
samples of the r-th posterior distribution as the number
of clones increases (Figure 2).
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