Zizzo and Cohen Journal of Inflammation (2015) 12:36
DOI 10.1186/512950-015-0081-4 JOURNAL OF
INFLAMMATION

RESEARCH Open Access

The PPAR-y antagonist GW9662 elicits differentiation
of M2c-like cells and upregulation of the MerTK/
Gas6 axis: a key role for PPAR-y in human
macrophage polarization

Gaetano Zizzo'” and Philip L Cohen'?"

Abstract

Background: The nuclear receptors PPAR-y and LXRs regulate macrophage lipid metabolism and macrophage
mediated inflammation. We examined the influence of these molecules on macrophage alternative activation, with
particular focus on differentiation of “M2c” anti-inflammatory cells.

Methods: We cultured human monocytes in MO, M1, M2a or M2c macrophage differentiating conditions, in the
presence or absence of PPAR-y and LXR ligands. Flow cytometry was used to analyze membrane expression of
phenotypic markers. Basal and LPS-stimulated production of soluble mediators was measured by ELISA. Efferocytosis
assays were performed by coincubating monocytes/macrophages with apoptotic neutrophils.

Results: We found that PPAR-y inhibition, using the PPAR-y antagonist GW9662, elicits differentiation of M2c-like
(CD206" CD163* CD16") cells and upregulation of the MerTK/Gas6 axis. Exposure of differentiating macrophages to
IFN-y, GM-CSF or LPS (M1 conditions), however, hampers GW9662 induction of MerTK and Gas6. When macrophages
are differentiated with IL-4 (M2a conditions), addition of GW9662 results into an M2a (CD206" CD209" CD163~ MerTK")
to M2c (CD206M9" CD209~ CD163* MerTK™) polarization shift. Conversely, in the presence of dexamethasone
(M2c conditions), the PPAR-y agonist rosiglitazone attenuates CD163 and MerTK upregulation. The LXR agonist
T0901317 induces MerTK independently of M2c polarization; indeed, CD206, CD163 and CD16 are downregulated.
GWo662-differentiated M2c-like cells secrete high levels of Gas6 and low amounts of TNF-a and IL-10, mimicking
dexamethasone effects in vitro. However, unlike conventional M2c cells, GW9662-differentiated cells do not show
enhanced efferocytic ability.

Conclusions: Our results provide new insights into the role of PPAR-y and LXR receptors in human macrophage
activation and reveal the existence of different patterns regulating MerTK expression. Unexpectedly, PPAR-y
appears to negatively control the expansion of a discrete subset of M2c-like anti-inflammatory macrophages.
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Background

Macrophages are heterogeneous cells endowed with great
plasticity. Traditionally, macrophage activation broadly di-
vides these cells into: “classical” or “M1” oriented, thought
to mediate innate immune responses against pathogens
and recruitment of adaptive responses through antigen
processing and presentation; and “alternative” or “M2”
oriented, important in resolution of inflammation, tissue
repair and homeostasis [1,2]. M1 macrophages are in-
duced by interferon-gamma (IFN-y), lipopolysaccharide
(LPS), tumor necrosis factor-alpha (TNF-«) and/or granu-
locyte macrophage colony stimulating factor (GM-CSE),
and are responsible for pathogen phagocytosis, oxidative
burst and intracellular killing, as well as for stimulation of
T helper (Th) 1 and Th17 responses [1-3]. M2 macro-
phages are further subdivided into several subsets: M2a
[CD206/mannose receptor’ CD209/DC-SIGN" CD163~
CD16™ Mer receptor tyrosine kinase (MerTK)™], induced
by interleukin (IL)-4 and/or IL-13, prone to endocytosis,
wound-healing, and stimulation of Th2 response; M2b, in-
duced by immune complexes, characterized by a mixed
production of IL-10 and inflammatory cytokines (prima-
rily described in mice); and M2c (CD206™&" CD209
CD163" CD16" MerTK"), induced by macrophage colony
stimulating factor (M-CSF) plus IL-10 or by glucocorti-
coids, involved in anti-inflammatory responses and desig-
nated to the clearance of apoptotic cells (ACs) through
MerTK and its ligands Growth arrest-specific 6 (Gas6)
and Protein S [1-5].

The activation state of macrophages is closely related
to their metabolic state. While in acutely inflamed hyp-
oxic tissues, anaerobic glycolysis fuels the microbicidal
program of M1 macrophages [6], aerobic metabolism
might instead fuel M2 activation, thereby allowing long-
term macrophage responses best suited for helminth in-
fections or other chronic conditions [7,8]. Lipid handling
and metabolism are associated with immune regulatory
macrophage responses, finely controlled by the nuclear
receptor superfamily members peroxisome proliferator
activated receptor-gamma (PPAR-y) and liver X recep-
tors (LXRs). These transcription factors are tightly inter-
linked, and act as heterodimers with the same partner,
the retinoid X receptor RXR-a [9]. PPAR-y can be acti-
vated by purely metabolic signals [i.e., polyunsaturated
fatty acids and lipoproteins, such as hydroxyoctade-
cadienoic acids (HODEs), hydroxyeicosatetraenoic acids
(HETEs) and oxidized low density lipoproteins (oxLDLs)]
[10,11], by molecules at the crossroads between lipid
metabolism and inflammation [i.e., eicosanoids, such as
15-deoxy-delta-12,14-prostaglandin J,] [11], or by purely
immunologic signals (i.e., cytokines, such as IL-4, IL-13,
and GM-CSF] [12-17]. In turn, PPAR-y activation results
in lipid uptake through the scavenger receptor CD36
and B-oxidation of fatty acids [7,9], modulation of the
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phospholipase A2/cyclooxygenase-2 axis [18], and ma-
crophage differentiation via STAT-6 into M2a cells
[7,8,12,17,19]. LXRs are cholesterol sensors, induced by
several oxysterols and by ACs [9,20]. LXR activation re-
sults in a positive feedback loop driving further uptake of
ACs through the induction of MerTK [20], inhibition of
lipoprotein uptake [21] and reverse cholesterol transport
from macrophages to high density lipoproteins [9].

PPAR-y and LXR activities are finely coordinated.
PPAR-y is in fact able to activate LXRs [9]. The integra-
tion between these two networks ensures a link between
lipid uptake and cholesterol efflux, thereby protecting
macrophages from lipid overload and conversion to
foam cells. Coordination between PPAR-y and LXRs is
also explained by similar functions in regard to scaven-
ging of modified lipoproteins, ACs and pathogens, and
by the fact that both receptors are involved in mo-
dulatory responses, including SUMOylation-dependent
transrepression of NF-xB [22] and inhibition of several
inflammatory genes [9,23-25]. On the other hand, in cer-
tain conditions, PPAR-y and LXRs exert opposing roles.
In M2a macrophages, IL-4 stimulates the expression of
PPAR-y as well as the production of its ligands 13-HODE
and 15-HETE through the induction of 12/15-lipoxygenase
(15-LOX) [12]; however, 15-LOX activation also results in
LXR-a downregulation, so that in this M2 subtype, PPAR-y
is strongly induced but LXR-« is inhibited [26]. Ultimately,
PPAR-y and LXRs appear to regulate analogous cell
functions by controlling different molecular pathways.
The PPAR-y network includes a spectrum of scavenger re-
ceptors (i.e., class B receptors SR-BI and CD36) [12,13,19],
apoptotic receptors (i.e, CD36, thrombospondin-1, and
transglutaminase-2, all involved in B3 integrin mediated
pathways) [26-29] and pathogen receptors (ie., CD36,
dectin-1) [19,30] which is different from the panel of
receptors upregulated by LXRs (ie., class A receptor
MARCO, MerTK, and apoptosis inhibitory factor AIM/
SP-a/Api6, respectively) [20,31].

In the present study, we investigated the effects of
PPAR-y and LXRs in differentiation of M2c macro-
phages and induction of the MerTK/Gas6 axis. We
found that PPAR-y obstructs whereas LXRs promote
MerTK upregulation. Importantly, MerTK expression
induced by the PPAR-y antagonist GW9662 is asso-
ciated with M2c polarization, whereas LXR induction
of MerTK occurs regardless of M2c phenotype acquisi-
tion. GW9662-driven M2c-like cells also release high
amounts of Gas6 and low levels of TNF-a, but differ
from conventional M2c cells by not showing enhanced
clearance of ACs. These data contribute to better define
the role of PPAR-y and LXRs in human macrophage ac-
tivation, and point out the existence of distinct regula-
tion patterns for MerTK expression. The unexpected
finding that PPAR-y negatively controls the expansion
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of a discrete subset of anti-inflammatory macrophages
may also have clinical implications.

Methods

Cell cultures

Monocytes from buffy coats of healthy blood donors were
isolated by Ficoll-Paque™ Plus gradient (GE Healthcare Life
Sciences, Pittsburgh, PA, USA) and magnetic separation,
using a kit for human monocyte enrichment by negative se-
lection (EasySep™, StemCell Technologies, Vancouver, BC,
Canada), according to the manufacturer’s instruction.
CD14+ cells were cultured at 0.8x10° cells/ml in non-
tissue culture treated 24-well plates in X-Vivo™15 medium
(Lonza, Walkersville, MD, USA) at 37°C in 5% CO, for
4 days, in the presence of rosiglitazone (PPAR-y agonist,
0.1-10 uM), GW9662 (PPAR-y antagonist, 0.01-10 uM) or
T0901317 (LXR agonist, 0.001-1 pM) (Cayman Chemical,
Ann Arbor, MI, USA). GW9662 (lot 0417082-20) was
reconstituted in ethanol 2 mg/ml. T0901317 and rosiglita-
zone were reconstituted in dimethylsulfoxide (DMSO) 5
and 10 mg/ml, respectively. Serial dilutions were performed
using culture medium. Cells were ultimately exposed to
working solutions containing non-cytotoxic amounts of
ethanol or DMSO (<0.1%). In some experiments using high
concentrations of reagent (i.e., rosiglitazone 50-100 pM)
and vehicle (i.e., DMSO > 0.15%), vehicle controls were in-
cluded. When specified, cells were differentiated in the
presence of GM-CSF 100 ng/ml (Peprotech, Rocky Hill, NJ,
USA) or IFN-y 2.5 ng/ml (R&D Systems, Minneapolis,
MN, USA) for M1 differentiation, IL-4 20 ng/ml (Novus Bi-
ologicals, Littleton, CO, USA) for M2a differentiation, and
dexamethasone 100 nM (Sigma-Aldrich, St. Louis, MO,
USA) for M2c differentiation. In some experiments, cells
were coincubated with low doses of LPS (50 ng/ml; ex-
tracted from E. Coli 026:B6, Sigma-Aldrich) to stimulate
cytokine secretion. After differentiation, cells were incu-
bated for 20 minutes at 37°C with a detaching buffer con-
taining EDTA 10 mM and lidocaine 15 mM in sterile
Phosphate Buffered Saline (PBS). Cells were then washed
and harvested by centrifugation. Pellets were resuspended
in PBS containing 2% bovine serum albumin and freshly
analyzed by flow cytometry. Supernatants were collected
and immediately stored at —-20°C before being tested by
ELISA. Participants gave informed consent to donate their
blood samples. The study was approved by the Institutional
Review Board of Temple University.

Flow cytometry

Phenotypic analysis was carried out on cultured monocytes/
macrophages by using the following mouse monoclonal
antibodies: anti-CD14 (PE-Cy7), anti-CD163 (APC), anti-
CD206 (APC-Cy7), anti-CD209 (PerCP-Cy5.5) (Biolegend,
San Diego, CA, USA); anti-CD16 (APC-Cy7) (BD
Biosciences, San Jose, CA, USA); and anti-MerTK (clone
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125518; PE) (R&D Systems). MerTK expression was
evaluated using appropriate PE-labeled isotype control
(Biolegend). Cells were analyzed using FACSCalibur™ (BD
Biosciences) and FlowJo software (Tree Star, Ashland,
OR, USA).

ELISA

Gas6, IL-10 and TNF-a levels were measured in super-
natants of cell cultures using sandwich ELISA according
to standard procedure [32]. Briefly, 96-well plates were
precoated overnight with a capture antibody. Samples
from cell culture supernatants were applied to precoated
plates in duplicate. Serial dilutions of purified recombi-
nant rhGas6 (R&D Systems) were used to construct a
standard curve. Blank wells received serum-free X-Vivo™15
medium. A purified goat polyclonal anti-human Gas6 anti-
body (R&D Systems) was used for capture. Biotinylated
goat polyclonal anti-human Gas6 antibody (R&D Systems),
followed by HRP-conjugated streptavidin (Biolegend),
was used for detection. The plates were developed with
3,3",5,5 -tetramethylbenzidine substrate. The reaction was
stopped with 2 N sulfuric acid. Absorbance was detected at
450 nm and read with a reference wavelength set at
570 nm using a VersaMAX ELISA microplate reader
(Molecular Devices, Sunnyvale, CA, USA). The optical
density for each point was the average of duplicate samples.
Concentrations were determined using SoftMax software
(Molecular Devices) by applying four-parameter logistic re-
gression to the standard curve. IL-10 and TNF-a levels
were measured using human IL-10 ELISA MAX Stand-
ard kit and TNF-a ELISA MAX Standard kit
(Biolegend), following the manufacturer’s instructions.

Apoptotic cell phagocytosis assay

Human neutrophils were isolated from Ficoll-Hypaque
pellets through dextran erythrocyte sedimentation and
lysis of contaminating erythrocytes by incubation with ice-
cold ammonium chloride (0.15 M) and potassium bicar-
bonate (0.01 M) solution. Neutrophils were resuspended
at 1x10° cell/ml in 10% fetal bovine serum (FBS) - RPMI
1640 medium, labeled with 2.5 uM carboxyfluorescein
succinimidyl ester (CESE; Sigma-Aldrich), and incubated
for 20 hours at 37°C in 5% CO,. Allophycocyanin-
conjugated annexin V (BD Biosciences) and propidium
iodide (PL Sigma-Aldrich) were used to measure apoptosis
by flow cytometry. The composition of neutrophils rou-
tinely obtained after incubation was 77.50 + 10.05% for
early apoptotic cells (ACs) (annexin V" PI*), 4.59 + 2.34%
for late ACs (annexin V* PI"), and 0.38 + 0.29% for nec-
rotic cells (annexin V' PI"). Macrophages were diffe-
rentiated in X-Vivo™15 medium supplemented with 10%
human AB serum, 5% FBS, L-glutamine, penicillin and
streptomycin, in the presence or absence of GW9662
(10 uM), for 6 days. In some experiments, cells were
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cultured in the presence of IL-4 (20 ng/ml) to obtain M2a
macrophages. On day 6, apoptotic neutrophils were added
for 30 minutes to cultured macrophages at a 5:1 ratio. Flow
cytometry was used to quantify percentages of CD14-
labeled macrophages that phagocytosed CFSE-labeled ACs.

Statistical analysis

Data are expressed as mean = SEM. Statistical signifi-
cance among different cell treatments was assessed by
Student’s paired ¢-test, or one-way repeated measures
ANOVA with Newman-Keuls multiple comparisons test
if more than two treatment groups were compared. Sta-
tistical significance was defined as P <0.05. Analysis and
graphing were performed using Prism™ software (GraphPad
Software, La Jolla, CA, USA).

Results

The PPAR-y antagonist GW9662 inhibits IL-4-driven
macrophage alternative activation by inducing a
phenotypic M2a-to-M2c switch

Many of IL-4’s effects on macrophage alternative (M2)
differentiation are mediated by PPAR-y via STAT6
[7,8,12,17,19]. IL-4 specifically induces the “M2a” pheno-
type, which is characterized by expression of the univer-
sal M2 marker CD206, high levels of CD209 and low
membrane expression of CD163 and MerTK [4]. IL-4
hinders induction of the “M2c” phenotype, which is in-
stead characterized by high levels of CD206, CD163 and
MerTK and low levels of CD209 [4,33]. Here, we used
flow cytometry to assess the effects of PPAR-y inhibition
on the phenotype of IL-4 exposed cells. Differentiation
of monocytes/macrophages in the presence of IL-4 and
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the PPAR-y antagonist GW9662 resulted in brighter ex-
pression of CD206, inhibition of CD209 induction, and
upregulation of CD163 and MerTK. GW9662 effects were
dose-dependent (Figures 1A-B). Thus, blocking PPAR-y ac-
tivation during M2a differentiation provokes a phenotypic
switch from M?2a (CD206" CD209*" CD163~ MerTK") to
M2c (CD206"¢" CD209™ CD163" MerTK") cells.

M1 polarizing agents IFN-y and GM-CSF act to oppose
GW9662 effects on macrophage phenotype

M1 stimulating cytokines such as IFN-y and GM-CSF
downregulate membrane expression of MerTK and CD163
[4]. IFN-y also hinders dexamethasone induction of the
M2c phenotype [33]. Unlike IFN-y, GM-CSF is able to up-
regulate CD206 [4]. Herein, we investigated the effects of
GW9662 in the presence of either IFN-y or GM-CSF. We
found that both IFN-y and GM-CSF were permissive for
GW9662 induction of the M2c receptor CD163, resulting
in its significant upregulation. In parallel to what was re-
ported above in the presence of IL-4 (Figure 1), in the
presence of GM-CSE, GW9662 also led to significantly en-
hanced expression of CD206. However, in the presence of
IEN-y, CD206 expression did not increase, and neither
IFN-y nor GM-CSF allowed significant MerTK upregula-
tion (Figure 2A-B). Therefore, similarly to what is observed
for dexamethasone [33], the presence of M1 cytokines ob-
structs the effects of GW9662 on the M2c phenotype.

GW9662 induces M2c-like cells that express MerTK and
produce the MerTK ligand Gas6

Subsequently, we examined the M2c polarizing effects of
GW9662 on otherwise untreated cells (MO conditions).
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Figure 1 GW9662 inhibits IL-4-driven alternative activation by inducing a phenotypic M2a-to-M2c switch. (A-B) Human monocytes were sorted
from healthy PBMCs through negative selection magnetic beads and cultured in serum-free medium in the presence of IL-4 (20 ng/ml; M2a
differentiation), with or without the PPAR-y antagonist GW9662 (0.01-10 uM), for 4 days. Expression of the M2 markers CD206 (mannose receptor),
CD209 (DC-SIGN), CD163 and MerTK was measured by flow cytometry. (B) Pooled data are represented as mean values + SEM. Analysis was
performed using one-way repeated measures ANOVA with Newman-Keuls multiple comparisons test. *P < 0.05; **P < 0.01; ***P < 0.001. Data are
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Figure 2 M1 stimulation with IFN-y or GM-CSF opposes GW9662 effects on macrophage phenotype. (A-B) Healthy monocytes were cultured in
serum-free medium in the presence of IFN-y (2.5 ng/ml) or GM-CSF (100 ng/ml; M1 differentiation), with or without the PPAR-y antagonist GW9662
(10 uM), for 4 days. Expression of CD206, CD163 and MerTK was measured by flow cytometry. (B) Pooled data are represented as mean values + SEM.

experiments.

Analysis was performed using Student’s paired t-test. *P < 0.05; **P < 0.01; n.s., not significant. Data are representative of three independent

Inhibition of PPAR-y resulted in a dose-dependent upreg-
ulation of MerTK along with a strongly significant induc-
tion of the M2c-associated receptors CD163 and CD16
(Figure 3A-C). Addition of rosiglitazone (1 pM) exerted
suppressive effects which were inversely proportional to
the strength of GW9662 induction: in fact, rosiglitazone
was able to neutralize the effects of GW9662 on MerTK
and, partially, on CD16 expression, but failed to reverse
the more robust upregulation of CD163 (Figure 3A-C).
Furthermore, we looked by ELISA at the effects of
GW9662 on macrophage production of the MerTK ligand
Gas6. Gas6 was previously shown to be released by both
M2c and M2a macrophages [4]. In line with its role favo-
ring M2c polarization, GW9662 strongly increased Gas6
protein levels in supernatants of otherwise untreated cells
(Figure 3D). Of note, GW9662 induction of Gas6 was
neutralized by LPS (Figure 3D), suggesting an inhibitory

role of TLR signaling on Gas6 production. Remarkably,
opposite effects were observed for GW9662 on Gas6 pro-
duction in M2a conditions. In line with its inhibitory role
on M?2a polarization, in fact, GW9662 suppressed Gas6
production by IL-4 stimulated cells (Figure 3E).

Hence, GW9662 promotes differentiation of cells ex-
pressing the M2c (MerTK" CD163" CD16") phenotype,
so mimicking the effects previously observed with dexa-
methasone or with M-CSF plus IL-10 costimulation [4].
Accordingly, GW9662 stimulates Gas6 production by
M2c differentiating cells, but inhibits Gas6 production by
M2a differentiating cells.

The PPAR-y agonist rosiglitazone attenuates M2c
polarization induced by dexamethasone

We cultured monocytes/macrophages in the presence of
dexamethasone (M2c conditions), with or without the
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Figure 3 GW9662 induces M2c-like cells that upregulate MerTK and its ligand Gasé. (A-C) Healthy monocytes were cultured in serum-free medium in
the absence of cytokines or growth factors (MO differentiation), with or without the PPAR-y antagonist GW9662 (2.5-10 uM), for 4 days; when specified,
the PPAR-y agonist rosiglitazone (1 uM) was added. Expression of MerTK, CD163 and CD16 was measured by flow cytometry. (D-E) Gas6 production
levels were quantified by ELISA in culture medium, upon incubation with or without GW9662 (2.5-10 uM) of otherwise untreated cells (MO conditions),
LPS (50 ng/ml; M1 conditions) or IL-4 (20 ng/ml; M2a conditions) exposed cells. (A-E) Pooled data are represented as mean values + SEM. Analysis was
performed using one-way repeated measures ANOVA with Newman-Keuls multiple comparisons test. *P < 0.05; **P < 0.01; ***P < 0.001; ***P < 0.0001.
When not specified by additional graphic signs, statistical annotations (asterisks) refer to comparisons with respect to the relative GW9662 untreated
control group. Each set of data is representative of three independent experiments.

PPAR-y agonist rosiglitazone. Consistent with the in-
duction of M2c polarization by its antagonist GW9662,
rosiglitazone (50—-100 uM) was found to impede the upre-
gulatory effects of dexamethasone (1 nM) on MerTK and
CD163 expression (Figure 4A-C). Inhibitory effects were
not due to vehicle toxicity (i.e., DMSO 0.18% for rosiglita-
zone 50 uM and DMSO 0.36% for rosiglitazone 100 puM)
(Figure 4A), nor to significant effects of rosiglitazone on
cell viability and morphology, as assessed by forward and
side scatter by flow cytometry (Figure 4D). However, no
significant inhibitory effects of rosiglitazone were seen in
the presence of higher concentrations of dexamethasone
(10 nM) (not shown) and/or lower doses of rosiglitazone
(1-10 uM).

In otherwise untreated cells (MO conditions), addition
of rosiglitazone alone did not significantly change the
expression of MerTK and CD163, although it modestly
increased CD16 expression (Figure 5A-B).

The LXR agonist T0901317 upregulates MerTK
independently of M2c phenotype acquisition

To investigate the potential role of the nuclear receptors
LXRs in M2c differentiation, we cultured monocytes in
the presence or absence of the LXR agonist T0901317.
In accord with results previously obtained in mice [20],
T0901317 was found to upregulate MerTK expression,
with significant effects already occurring at low doses
(0.01 uM) (Figure 5C-D). Surprisingly, MerTK upregula-
tion by T0901317 was not associated with the acquisi-
tion of the M2c phenotype. Indeed, the M2c surface
markers CD163 and CD16 (Figure 5C-D), as well as the
M2 receptor CD206 (not shown), were downregulated in
a dose-dependent manner. Therefore, in contrast to
what is observed for dexamethasone, M-CSF plus IL-10
[4] or GW9662, the MerTK expression pattern regulated
by LXRs is uncoupled to M2c differentiation.

Similarly to dexamethasone, GW9662 inhibits in vitro
macrophage production of TNF-a and IL-10

Since GW9662 appears to stimulate the expansion of
regulatory M2c cells, we sought to examine its effects on
macrophage production of proinflammatory and anti-
inflammatory cytokines. For this purpose, we measured by

ELISA TNF-a and IL-10 levels released in supernatants of
cells cultured with GW9662, without or after stimulation
with low doses of LPS, and compared the effects with
those obtained from dexamethasone cultures. In our con-
ditions, LPS was able to significantly augment cell release
of IL-10, but not TNF-« (Figure 6). GW9662 significantly
reduced spontaneous as well as LPS-triggered release of
both TNF-a (Figure 6A) and IL-10 (Figure 6B). Dexa-
methasone treatment yielded similar results (Figure 6C-D),
in agreement with previous in vitro data [34,35].

Altogether, GW9662 and dexamethasone exert analo-
gous effects: both induce differentiation toward the M2c
phenotype, upregulate the MerTK/Gas6 pathway, and
inhibit release of both TNF-a and IL-10 in vitro. With
regard to cytokine production, GW9662 and dexametha-
sone driven cell populations differ from the M2c subset
differentiated in the presence of M-CSF, which was in-
stead previously shown to produce low levels of TNF-a
but high levels of IL-10 in vitro [4].

GW9662 does not enhance macrophage phagocytosis of
apoptotic cells

Since conventional M2c macrophages, induced by dexa-
methasone or M-CSF and IL-10, are characterized by
augmented capability to phagocytose ACs (efferocytosis)
[4,33], we looked at the potential effects of GW9662 on
macrophage phagocytosis of apoptotic neutrophils. For
this purpose, CD14-labeled macrophages, differentiated in
the presence or absence of IL-4 (20 ng/ml), with or
without GW9662 (10 uM), were coincubated with CFSE-
labeled apoptotic neutrophils at a 1:5 ratio for 30 mi-
nutes, and analyzed by flow cytometry. Consistent with
previous studies supporting a central role for PPAR-y
in efferocytosis [26-29], we did not observe increased
amounts of total (CFSE+) or highly (CFSE""€") ef-
ferocytic macrophages among GW9662-treated cells.
Indeed, in otherwise untreated cells (MO conditions),
GW9662 significantly decreased efferocytosis, while in
the presence of IL-4 (M2a conditions), no signifi-
cant change was observed (Figure 7A-B). Therefore,
GW9662-driven M2c-like cells differ from conventional
M2c macrophages [4,33] because they do not show
enhanced efferocytic properties.
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Figure 4 Rosiglitazone attenuates M2c polarization induced by dexamethasone. (A-D) Healthy monocytes were cultured in serum-free medium
in the presence or absence of dexamethasone (1 nM; M2c differentiation), with or without the PPAR-y agonist rosiglitazone (1-100 pM), for 4 days.
Expression of MerTK and CD163 was measured by flow cytometry. Vehicle controls (DMSO > 0.15%) are shown in (A). Percentages of cells with
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(B-D) Pooled data are represented as mean values + SEM. Analysis was performed using one-way repeated measures ANOVA with Newman-Keuls
multiple comparisons test and Student’s paired t-test. *P < 0.05; **P < 0.01. When not specified by additional graphic signs, statistical annotations (asterisks)
refer to comparisons with respect to the relative rosiglitazone untreated control group. Data are representative of three independent experiments.
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Newman-Keuls multiple comparisons test and Student's paired t-test. *P < 0.05; **P < 0.01; ***P < 0.001; ***P < 0.0001. Each set of data is representative

of three to five independent experiments.

Discussion

In this paper, we investigated the role of PPAR-y and LXR
receptors in human M2 macrophage polarization, with
particular focus on differentiation of the “M2c” anti-
inflammatory subset. It has been reported that PPAR-y
mediates 1L-4/STAT-6 effects on M2a (CD206" CD209")
alternative macrophage activation [7,8,12,17,19], as well as
GM-CSF effects on differentiation of M1-type and alveolar
(CD206* CD11c™) macrophages [15,16,27], and the effects
of both GM-CSF and IL-4 on differentiation of immature
(CD209" CD1a") dendritic cells [17,36]. Here we show that
inhibition of PPAR-y during monocyte-to-macrophage
maturation, by means of the PPAR-y antagonist GW9662,
elicits differentiation of cells carrying the M2c phenotype
(CD206™€" CD209~ CD163" CD16" TNF-a”) and upregu-
lates the MerTK/Gas6 pathway. In the presence of IL-4

(M2a conditions), GW9662 amplifies CD206 expres-
sion, downregulates CD209, and upregulates CD163 and
MerTK, thereby producing a phenotypic M2a-to-M2c
shift. Similar to what we observed for dexamethasone-
induced M2c differentiation [33], IFN-y, GM-CSF or LPS
(M1 conditions) impede GW9662 upregulation of MerTK
and Gas6, although GW9662 still reverses CD163 down-
regulation provoked by M1 cytokines and - as occurs with
IL-4 - it further amplifies CD206 expression induced by
GM-CSEF. In opposition to the M2c polarizing effects of
GW9662, the PPAR-y agonist rosiglitazone attenuates
MerTK and CD163 upregulation occurring in the pre-
sence of dexamethasone (M2c conditions). Like dexametha-
sone, GW9662 also inhibits macrophage in vitro production
of TNF-a and IL-10. But, unlike dexamethasone-induced
M2c cells, GW9662-induced M2c-like cells do not show
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Figure 6 GW9662, like dexamethasone, inhibits in vitro production of TNF-a and IL-10. TNF-a (A and C) and IL-10 (B and D) production levels
were quantified by ELISA in culture medium of cells incubated for 3 days in the presence or absence of GW9662 (2.5-10 uM) (n=3) (A and B) or
dexamethasone (1-100 nM) (n=4) (C and D). When specified, LPS (50 ng/ml) was added in the last 48 hours. Data are represented as mean
values + SEM. Analysis was performed using one-way repeated measures ANOVA with Newman-Keuls multiple comparisons test. *P < 0.05; **P < 0.01;
P < 0.001; ****P < 0.0001. Comparison between spontaneous and LPS-triggered cytokine release was performed using Student’s paired t-test. When
not specified by additional graphic signs, statistical annotations (asterisks) refer to comparisons respect to the relative GW9662 or dexamethasone
untreated control. Each set of data is representative of three to four independent experiments.

enhanced phagocytosis of ACs; rather, efferocytosis is
impaired, in accordance with the central role previously
reported for PPAR-y in the clearance of ACs [26-29]. In
the case of IL-4-treated cells, addition of GW9662 does
not exert net effects on AC phagocytosis, suggesting
that, in M2a-to-M2c shifted macrophages, inhibition
of PPAR-y-dependent efferocytic pathways, mediated
by CD36, thrombospondin-1, transglutaminase-2, AXL,
pentraxin-3 and/or immunoglobulin receptor FcyRI
[26-29], might be compensated by enhanced MerTK-
dependent efferocytosis [4,5].

LXRs are known to mediate MerTK expression in
murine macrophages exposed to ACs. Cholesterol and
oxysterol species contained in ingested ACs drive LXR
induction of MerTK, resulting in enhancement of AC
clearance and transrepression of macrophage inflamma-
tion in response to phagocytosis [20]. In human macro-
phages, we confirm that the LXR agonist T0901317
upregulates MerTK. However, LXR induction of MerTK
is unexpectedly dissociated from acquisition of the M2c
phenotype; indeed, CD206, CD163 and CD16 are down-
regulated. In light of these data, we hypothesize that
MerTK regulation follows at least two expression pat-
terns: one linked to the M2c phenotype, driven by
M-CSF and IL-10, glucocorticoids or PPAR-y antagonists;
and another one independent from M2c polarization,

driven by LXRs through AC-derived oxysterols and non-
steroidal LXR agonists.

The present study adds to our previous research on
characterization of anti-inflammatory M2c macrophages
in humans [4,33]. We recently described the M2c subset
as CD206" CD163" CD16" MerTK" M2 macrophages,
well distinguished from IL-4-induced CD206" CD209"
M2a cells, able to release high levels of the MerTK
ligand Gas6 and specialized in phagocytosis of early apop-
totic cells via MerTK [4]. Differentiation of monocyte-
derived macrophages in the presence of M-CSF plus
serum, M-CSF plus IL-10, or glucocorticoids gives rise to
the M2c phenotype [4]. However, some differences exist
among different stimulations. For instance, M2c cells in-
duced by M-CSF and IL-10 highly express CD14, while
dexamethasone-driven M2c cells express CD14 levels
comparable to baseline. Moreover, M2c cells obtained in
the presence of M-CSF produce high levels of IL-10,
which are further amplified by Gas6 via MerTK [4],
whereas dexamethasone, as shown here, inhibits IL-10
production in vitro. Although classified as M2c stimuli
[2], we previously observed that TGF-p gives a different
phenotype, characterized by CD206 and CD16 induction,
but inhibition of CD163, MerTK and Gas6, whereas IL-10
without M-CSF gives only a partial phenotype, characte-
rized by upregulation of CD163 and Gas6, but not CD206,
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experiments.

Figure 7 GW9662 does not enhance macrophage phagocytosis of apoptotic cells. (A-B) Apoptotic cells (ACs) were obtained by incubating healthy
human neutrophils in 10% FBS-RPMI for 20 hours. CFSE-labeled ACs were added for 30 minutes, at a 5:1 ratio, to CD14-labeled macrophages cultured
for 6 days in complete medium in the absence of cytokines (untreated; MO differentiation) or in the presence of IL-4 (20 ng/ml; M2a differentiation),
with or without GW9662 (10 uM). Percentages of total (CFSE®) and highly (CFSEP™™) efferocytic macrophages are depicted. (B) Pooled data are
represented as mean values + SEM. Analysis was performed using Student’s paired t-test. *P <0.05. Data are representative of ten independent

CD16 and MerTK [4]. Herein, we further describe a new
variant of M2c-like cells induced by GW9662, reporting
similarities and differences with conventional M2c sub-
sets. Such heterogeneity among macrophage populations
recently spurred the proposal to adopt in the near future
revised macrophage nomenclature more strictly linked to
the activation standards [37].

Other authors previously investigated GW9662 and
rosiglitazone effects on human macrophage phagocytosis
of ACs and phenotype. In agreement with our findings,
Bouhlel and colleagues [19] observed that rosiglitazone
alone did not affect macrophage differentiation in basal
conditions, yet it amplified M2a polarization induced by
IL-4, including CD163 downregulation. In accord with
our results, Majai and colleagues [28] found that GW9662
decreased AC phagocytosis, owing to downregulation of
efferocytic molecules such as CD36, transglutaminase-2
and AXL, and inhibited LPS-induced IL-10 production;
also, dexamethasone was shown to share with GW9662
down-regulation of CD36, transglutaminase-2 and IL-10.
In contrast with our observations, however, these authors
failed to find significant changes in MerTK, Gas6, CD206
or CD16 expression upon GW9662 treatment, nor did
they observe GW9662 inhibition of TNF-a production. It
is important to note that Majai et al. [28] cultured mono-
cytes in medium containing M-CSF and human serum, a
combination that we demonstrated already promotes M2c
polarization in vitro [4]; thus, their experimental condi-
tions may have masked the M2c polarizing effects of
GW9662 that we observed. Our finding that PPAR-y
inhibition leads to differentiation of M2c-like monocytes/
macrophages is then novel, and may have significant
implications in several fields focusing on macrophage
biology, including studies on adipose tissue-associated
macrophages, macrophages of atherosclerotic plaques,
macrophage activation in chronic inflammatory diseases
like systemic lupus erythematosus (SLE), and tumor-
associated macrophages.

PPAR-y and M2 polarization in adipose tissue-associated
macrophages (ATMs)

PPAR-y agonists of the thiazolidinediones (TZDs) class, like
rosiglitazone, are currently used to treat type-2 diabetes
mellitus patients, mainly due to their insulin-sensitizing

effects. Macrophage-specific deletion of PPAR-y results in
reduced numbers of adipose tissue-associated macrophages
(ATMs) in white adipose tissue, impaired M2a polarization
and defective oxidative metabolism. Macrophage dysregu-
lation would, in turn, predispose to diet-induced obesity,
reduced production of adiponectin, glucose intolerance
and insulin resistance [8]. Previous studies demonstrated
that in both mice and humans, ATMs from obese subjects
express a mixed phenotype, in mice referred from some
authors as “M2b” [38], characterized by M2 markers (e.g.,
CD206, IL-10) and M1 proinflammatory cytokines (e.g.,
TNF-a) [38,39]; PPAR-y is upregulated in these macro-
phages, and rosiglitazone can inhibit TNF-a production,
thereby promoting a phenotypic M2b-to-M2a shift [38].
Other authors showed that ATMs from obese mice in-
clude M2a-type Macrophage Galactose binding Lectin-1*
(MGL-1") macrophages located in interstitial spaces, and
M1-type CD11c* macrophages surrounding necrotic adi-
pocytes [40]. High-fat diet (HFD) induces higher expres-
sion in MGL-1" cells of M2a markers (i.e., STAT-6) and
lower expression of M2b (i.e., SPHK-1) and M2c markers
(ie, CD163, IL-10), along with increased levels of M1
markers (i.e., IL-12p40) [41,2]. Prolonged HFD finally
elicits the expansion of cells with a mixed M2a/M1
double-positive MGL-1™*/CD11c* phenotype (IL-13"
STAT-6" IL-12p40"), which express lower levels of indu-
cible nitric oxide synthase (iNOS) and IL-1 compared to
pure M1 cells, upregulate PPAR-y coactivators and are
further expanded following administration of TZDs [41].
Altogether, PPAR-y appears to drive positive effects on
oxidative metabolism, adipogenesis and tissue remodeling
in response to obesity, in part related to M2a polarization,
but it still allows chronic low-grade macrophage inflamma-
tion, due to persistence of CD11c" IL-12p40" MI-like pro-
file and paucity of regulatory CD163" IL-10" M2c cells.
The M2c expansion that we observed by antagonizing
PPAR-y is consistent with this notion. In this regard, it is
noteworthy that although PPAR-y agonists were shown to
inhibit macrophage production of proinflammatory cyto-
kines like TNF-a and IL-6 induced by PMA [23,24], prob-
ably owing to inhibition of PKC-a membrane translocation
[42], TZDs failed to suppress LPS-induced production of
TNF-a and IL-6 [24], indeed production was even in-
creased [43].
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PPAR-y and M2 polarization in macrophages of
atherosclerotic plaques

The role of PPAR-y in macrophages from atherosclerotic
lesions is controversial. TZDs were shown to inhibit
atherogenesis in LDL-R KO and ApoE KO mouse models
[44,45] and to reduce carotid artery wall thickness in dia-
betic patients [46]. However, in vivo impact of TZDs in
atherosclerosis depends on mechanisms involving multiple
cell targets apart from macrophages, such as inhibition of
endothelial activation [45], inhibition of vascular smooth
muscle cell proliferation [47], reduction of vascular resis-
tance and blood pressure [48], increased insulin sensitivity
and adiponectin production [8], and anti-oxidant proper-
ties [49]. Moreover, although PPAR-y may limit athero-
genesis at initial phases, serious doubts arise about its role
in plaque instability. In fact, rosiglitazone was ultimately
reported to increase the risk of myocardial infarction in
diabetic patients [50,51], leading to its withdrawal from
the market in several countries. Plaque instability is
favored by enlargement of necrotic core in atherosclerotic
lesions. Cholesterol-laden macrophages undergo apop-
tosis, and apoptotic macrophages turn into secondary
necrotic cells if not promptly cleared [52,53]. Macrophage-
specific PPAR-y might have atherogenic potential by
driving phagocytosis of oxLDLs via CD36. PPAR-y is in
fact inducible by oxLXLs themselves, and is expressed in
M1I-like macrophage foam cells of human atherosclerotic
lesions [23]. On the other side, LXRs, MerTK and CD163
seem to prevent plaque instability. LXRs protect against
foam cell formation, by inducing ABC transporter-
mediated cholesterol efflux [9] and by upregulating
MerTK in mice [20] and in humans (as shown in this
paper). MerTK, in turn, inhibits uptake of lipoproteins
[54] shifting phagocytosis activity toward efficient and
non-inflammatory clearance of cholesterol-laden apoptotic
macrophages [52]. Additionally, both LXRs and MerTK
exert anti-apoptotic effects on macrophages [31,33,55].
CD163 exerts beneficial effects owing to upregulation of
heme oxygenase-1 in response to hemoglobin-haptoglobin
complexes, which ultimately results in iron clearance and
prevention of oxidative reactions, along with release of
IL-10 and anti-inflammatory heme metabolites [56].
LXR-o and MerTK were demonstrated to be atheropro-
tective in LDL-R KO and ApoE KO mouse models
[52,53,57]. In humans, non-foamy protective M2-like
CD206" macrophages expressing high levels of MerTK
[26,58] and CD163 [59,60] have been described in areas of
plaques far from the necrotic core and close to microves-
sels or microhemorrhages, respectively. We hypothesize
that the potential atherogenic role of PPAR-y may become
explicit in the presence of IL-4 or other PPAR-y agonists
like TZDs. IL-4 can in fact amplify PPAR-y expression
induced by oxLDLs [13], and at the same time down-
regulate LXR expression, so that PPAR-y activation of
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LXRs is impaired [26]. In this setting, macrophage uptake
of lipoproteins is not followed by cholesterol efflux,
thereby facilitating foam cell formation. Moreover, chronic
stimulation with IL-4 and PPAR-y activation induce apop-
tosis in macrophages [33,61], while IL-4 down-regulation
of MerTK and CD163 [4] may interfere with the clearance
of apoptotic macrophages and iron, respectively. In fact, in
both LDL-R KO and ApoE KO mice, IL-4 proved to
extend the size of atherosclerotic lesions [62,63]. Taking
together our present findings and previously reported
data, we suggest that new PPAR-y agonists not affecting
macrophage-specific PPAR-y might overcome controver-
sial effects and cardiovascular safety concerns of TZDs.
On the other hand, treatments apt to elicit the expansion
of MerTK" and CD163" cells (e.g., M2c polarizing agents
and IL-4/STAT-6 inhibitors) may help against atheroscle-
rosis progression.

PPAR-y and M2 polarization in systemic lupus
erythematosus (SLE)

Pathogenic macrophage populations in SLE are tra-
ditionally considered to be M1 oriented [64], in accord
with increased production of IFN-y during disease exac-
erbations [65]. More recently, SLE macrophages were
classified as M2b cells [66]. In addition to enhanced ex-
pression of iNOS and proinflammatory cytokines, in
fact, they also express high levels of IL-10 and relatively
low levels of IL-12 [66]. Excessive immune complexes
and TLR signaling occurring in SLE may in fact stimu-
late M2b polarization [2], which may partially account
for increased IL-10 levels in SLE serum [65]. By contrast,
serum levels of IL-4 are not significantly changed in
SLE, and M2a macrophages do not seem to be expanded
[64,65]. We and others recently reported higher circulat-
ing levels of MerTK and CD163 cleavage products in ac-
tive SLE patients, thereby suggesting increased turnover
of M2c cells and relative insufficiency of M2c and
MerTK activity [32,67,68]. In fact, lupus-like syndromes
arise because of defective clearance of ACs owing to im-
paired expression or function of efferocytic molecules,
as occurs in mice lacking functional MerTK [69]. The
therapeutic utility of glucocorticoids in SLE may be at
least in part attributable to M2c induction, MerTK up-
regulation and enhanced macrophage phagocytosis of
ACs [4,5,67]. Previous studies support a protective role
for both LXRs and PPAR-y in SLE: LXR-a/f3 and PPAR-y
KO mice accumulate ACs in spleens, produce anti-nuclear
autoantibodies and develop lupus-like syndrome with
glomerulonephritis [20,29]. Also, TZDs were reported to
ameliorate murine lupus [48,70,71]. However, beneficial ef-
fects of TZDs were only observed at early stages and were
mostly associated with vascular and insulin-sensitizing ef-
fects (i.e., inhibition of endothelin production, vasodilation,
reduced blood pressure, improvement of lipid metabolism)
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rather than to direct anti-inflammatory effects on macro-
phages [48,70,71]. Likewise, reduced renal inflammation
and reduced macrophage activation appeared to be an indir-
ect effect secondary to adiponectin induction [71]. Although
a rationale for using TZDs in SLE autoimmunity would be
conversion of M2b macrophages into M2a cells [38] and
promotion of PPAR-y-dependent efferocytosis [26-29], the
inhibitory role herein shown on M2c differentiation and on
MerTK expression should be taken into account.

PPAR-y and M2 polarization in tumor-associated
macrophages (TAMs)

Tumor-associated macrophages (TAMs) are generally
considered AM?2c-like macrophages, expressing CD206
and CD163 [72]. As M2c cells, TAMs also release Gas6,
which facilitates tumor cell proliferation and probably
immune tolerance to cancer [4,73]. Besides direct anti-
proliferative effects on certain tumor cells [23], PPAR-y
may exert anti-tumoral effects by acting on macrophages
through a dual mechanism. On the one hand, PPAR-y
inhibits inflammation-driven carcinogenesis by suppres-
sing NF-kB and proinflammatory genes in M1-like cells.
On the other hand, PPAR-y restores anti-tumor cyto-
toxic T lymphocyte activity by inhibiting tolerogenic
M2c-like TAMs [74]. Our finding that GW9662 inhi-
bition of PPAR-y generates M2c-like macrophages and
Gas6 release is in fact consistent with previously re-
ported GW9662 suppression of anti-tumor immune
responses [74].

Conclusions

This study extends our knowledge of the role of PPAR-y
and LXRs receptors in human macrophage activation.
We show that blocking PPAR-y during monocyte-to-
macrophage maturation elicits differentiation of M2c-like
CD206" CD163" cells and upregulation of the MerTK/
Gas6 axis. Although PPAR-y signaling may reduce M1
(and M2b) inflammatory cytokine production and poten-
tiate M2a alternative activation, results suggest that it also
impedes M2c polarization and restoration of fully anti-
inflammatory conditions in chronic settings like metabolic
syndrome and autoimmune diseases. Therapeutic advan-
tages might derive from the use of more selective PPAR-y
agonists, targeting adipose tissue PPAR-y2 isoform rather
than ubiquitously expressed PPAR-y1 isoform [75], with
the aim of exploiting beneficial effects of PPAR-y on
insulin-sensitivity and adiponectin secretion while mini-
mizing controversial effects on macrophages. Finally, we
point out that LXR stimulation upregulates MerTK inde-
pendently of M2c polarization, thus revealing the existence
of different regulation patterns for MerTK expression.
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