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Abstract: Chronic disease burdens continue to rise in highly dense urban environments where
clustering of type II diabetes mellitus, acute myocardial infarction, stroke, or any combination of
these three conditions is occurring. Many individuals suffering from these conditions will require
longer-term care and access to clinics which specialize in managing their illness. With Singapore
as a case study, we utilized census data in an agent-modeling approach at an individual level to
estimate prevalence in 2020 and found high-risk clusters with >14,000 type II diabetes mellitus cases
and 2000–2500 estimated stroke cases. For comorbidities, 10% of those with type II diabetes mellitus
had a past acute myocardial infarction episode, while 6% had a past stroke. The western region
of Singapore had the highest number of high-risk individuals at 173,000 with at least one chronic
condition, followed by the east at 169,000 and the north with the least at 137,000. Such estimates can
assist in healthcare resource planning, which requires these spatial distributions for evidence-based
policymaking and to investigate why such heterogeneities exist. The methodologies presented can be
utilized within any urban setting where census data exists.

Keywords: statistical modeling; chronic disease; spatial epidemiology; urbanization; environmen-
tal health

1. Introduction

Chronic diseases are the main cause of mortality and morbidity in developed countries,
and constitute a large proportion of the healthcare burden [1]. The direct medical costs of
various chronic diseases have been estimated to be US$3200–4700 for each type II diabetes
mellitus (DM) case annually [2], and US$ 14,000 and US$ 25,000 for each episode of acute
myocardial infarction (AMI) and acute ischaemic stroke, respectively [3]. Globally, rising
life expectancy has resulted in aging populations such as those in Japan and Taiwan. From
2006 to 2015, the DM prevalence in Japan increased from 12.3% to 19.5% for men and 8.2%
to 9.2% for women [4]. For Taiwan, the prevalence of multiple chronic conditions increased
from 9.6% to 17.1% from 2000 to 2010 [5]. Singapore, an island city state, experienced an
increase in DM prevalence from 8.3% to 8.6% from 2010 to 2017 [6], and from 2007 to 2016,
the annual number of AMI and stroke cases increased from 6817 to 10,728 [7] and 5578 to
7413 [8]. As the number of chronic disease cases continues to rise, health systems need to
evaluate the accessibility of healthcare facilities and whether they can meet the increase in
demand.

To evaluate accessibility and capacity planning, health systems need to identify where
cases are in physical space. A method to perform such an analysis would be to use electronic
medical records, registries, or other databases that record incident cases [9]. Another way
would be to conduct cross-sectional observational studies with the aim of investigating
incidence and prevalence [10]. However, there are certain downsides. Electronic medical
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records only contain information on when an individual made contact with a particular
health service which could introduce bias [11]. Multiple regional health systems also
have differing diagnostic criteria and capture patient information differently, leading to
challenges in linkage to create a single coherent dataset for analysis [12–14]. Health data
being held by different organizations or institutions further exacerbates the problem of
linkage [13]. The same individual who developed two chronic conditions such as AMI
and stroke would be entered into different registries or hospital records, making these
data sources challenging to work with to answer research questions on comorbidities.
Surveys and cross-sectional studies provide a useful single estimate for a point in time, but
performing regular cross-sectional studies akin to that of annual population health surveys
quickly becomes time and resource intensive [15]. An alternative to answer these research
questions is using computational epidemiological methods that provides a quick way to
obtain data-driven estimates of incidence or prevalence for research or capacity planning
purposes [16].

As computing power improves, computational simulation models are becoming
more widely used in public health research. Specifically, chronic diseases develop over
a long period of time, and as repeated epidemiological studies are costly and infeasible,
computational approaches are useful tools to obtain preliminary estimates, a statement
echoed by Barhak et al. [17]. Models such as the Population Health Model in Canada and
the United Kingdom Prospective Diabetes Study risk engine are examples of simulation
tools that have benefited public health research by providing chronic disease estimates to
inform policy [18,19]. For geospatial analyses, a study in New York City developed models
from claims data to predict diabetes, hypertension, and asthma prevalence by census
tract and visualized the results on a map, creating a view of the geographic distribution
of chronic diseases that is easy to understand at a glance [20]. Together, these studies
showcase some applications of computational modeling to improve population health.

In this study, we aimed to estimate the present health risk of the resident population
of Singapore, an island city state measuring 50 by 27 kilometers, for DM, specifically type
II DM, AMI, and stroke using an individual-based model and identify where cases are
located geospatially. This model allows us to investigate the presence of comorbidities
in the local population quickly without the need to link up patient identifiers between
different registries while at the same time provide information as to where these cases are
concentrated in physical space. Given that individuals with multiple comorbidities are
high-risk and are most likely to seek medical care, we aggregated the number of high-risk
individuals by regional health system to generate estimates that are useful for capacity
planning in local health institutions.

2. Materials and Methods

To perform spatial imputation for a given population, information on the demographic
breakdown of the population and the relationship between demographics and geography is
required. In this study, we used a temporally explicit agent-based model of the population
of Singapore with the demographic attributes of ethnicity, gender, and age by Phan et al. to
create a synthetic population of Singapore [21]. This model simulates the population of
Singapore from 1990 to 2050 by aging the population year on year, allowing individuals
to develop disease such as DM, as well as give birth and die with rates derived from the
birth and death registry of Singapore. The population engine was further augmented with
disease models of AMI and stroke by Tan et al. to simulate onset of AMI and stroke to create
a comprehensive population engine that simulates multiple chronic conditions [22]. As the
population engine predicts population health over 60 years, we extracted a cross-section of
the population in 2020 to investigate the spatial distribution of chronic disease cases.

The General Household Survey 2015 contains census tables that correlate demographic
attributes such as ethnicity, gender and age with physical location [23]. However, a common
limitation of censuses with the intention to protect privacy is to obscure individual-level
data by publishing anonymized aggregate statistics [24]. This is observed in the General
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Household Survey where one census table relates physical location to gender and ethnicity
while another relates physical location to age. This data was used to recreate a consistent
synthetic population across the dimensions of physical location, ethnicity, gender, and age.

A hill climbing algorithm was chosen to optimize across the multiple dimensions. The
steps of the algorithm within the context of the study are as follows:

1. Seed random initial physical locations for the synthetic population;
2. Calculate the chi-square statistic for each census table using the synthetic population

as the observed values and the census as the expected values;
3. Select two random individuals in the population and swap their physical locations;
4. Calculate the new chi-square statistic for each census table. If the new chi-square

statistic is lower than the previous one, accept the swap. If not, reject the swap and
revert the physical locations to their original values;

5. Repeat steps 2–4 until improvement in the chi-square statistic is marginal, implying
optimal convergence.

This process can be repeated for multiple attributes so long as aggregate statistics
relating the imputed attribute with existing attributes in the synthetic population are
present. For this study, imputing physical location took 10 million iterations to reach
convergence. To obtain robust estimates, we performed spatial imputation with 100 copies
of the synthetic population and reported the means.

Using this method, specific outcomes of interest were chosen for validation and
exploratory purposes. The National Health Survey 2010 is a population health survey
for Singaporean citizens and permanent residents aged 18–69. In the National Health
Survey 2010, the prevalence of DM was reported by ethnicity and gender in one table
and by age group. We recreated these tables using the synthetic population for 2020,
reporting the prevalence and the expected number of cases for validation purposes, and
did the same for the chronic conditions of AMI and stroke where there are currently limited
reported estimates at a population level. Registry data only reports annual incident cases
which is insufficient to estimate the total chronic disease burden in the entire population.
To estimate prevalence, a temporal element is required, hence our modelling approach.
With a cross-section of the population in 2020, we can then obtain prevalent cases in the
community. Singapore aggregates population statistics by planning areas, so we aggregated
and visualized these case numbers on a map at the planning area level as a simple way
to quickly assess the spatial distribution of health. Additionally, this model consolidates
all health conditions by individual and allows for detailed reporting of comorbidities at a
population level while simultaneously identifying where these high-risk individuals are
likely to be located. To understand the spatial distribution of comorbidities, we investigated
the number of individuals with DM and AMI, DM and stroke, AMI and stroke as well as
all three chronic conditions and visualized the results on a map of Singapore.

In Singapore, healthcare providers are organized into three regional health systems
in the western, northern, and eastern parts of Singapore, thus for capacity planning, we
aggregated our results by health system, a superset of physical location. We presented the
total number of high-risk individuals with at least one chronic condition in each of the
three regional health systems as these individuals are most likely to seek medical care for
chronic conditions.

3. Results

Table 1 provides estimates of the number and prevalence of DM, AMI, and stroke
cases in the Singapore population aged 18–69 in 2020. In 2010, the National Health Survey
reported overall DM prevalence of 11.3%. Females show significantly lower susceptibility
to DM in contrast with males [25], with 10.1% of females and 15.3% of males having DM.
Ethnicity is also a big risk factor with Malays (males: 20.0%, females: 17.1%) and Indians
(males: 23.2%, females: 20.3%) showing significantly higher prevalence of DM as compared
to their Chinese counterparts (males: 13.2%, females: 7.8%) regardless of gender, echoing
previous results by Phan et al. and the National Health Survey 2010 stating that the burden
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of DM would be borne disproportionately [21,26]. This susceptibility to DM translates to
higher prevalence in males for both AMI and stroke (AMI: 5.0%, stroke: 2.5%) as compared
to females (AMI: 0.9%, stroke: 1.3%) with about seven times more males with past AMI
and two times more with stroke. These results are consistent with annual reports from
the Singapore Myocardial Infarction Registry and the Singapore Stroke Registry which
reported from 2008 to 2017 that males had incidence rates approximately twice that of
females for AMI and 1.3 times that of females for stroke [27,28]. Although there are no
published estimates of past AMI prevalence to validate our estimate of 3.0% in Singapore,
the prevalence of stroke was 3.65% across the entire population in 2006 [29], suggesting
that our estimate for those aged 18–69 of 1.9% is plausible.

Table 1. Estimated case numbers and prevalence of Diabetes Mellitus (DM), past acute myocardial infarction (AMI) and
stroke for those aged 18–69 in 2020 stratified by ethnicity and gender. Brackets indicate the 95% confidence intervals over
100 iterations.

Demographic
Group

DM Cases
(thousands)

AMI Cases
(thousands)

Stroke Cases
(thousands)

DM
Prevalence

Past AMI
Prevalence

Stroke
Prevalence

Chinese males 152.3 (151.7, 153.0) 41.2 (40.8, 41.5) 28.0 (27.7, 28.4) 13.2 (13.2, 13.3) 3.6 (3.5, 3.6) 2.4 (2.4, 2.5)
Chinese
females 87.6 (87.0, 88.1) 6.2 (6.1, 6.3) 12.9 (12.6, 13.1) 7.8 (7.7, 7.8) 0.6 (0.5, 0.6) 1.1 (1.1, 1.2)

Malay males 38.8 (38.5, 39.1) 18.1 (17.8, 18.3) 7.2 (7.0, 7.3) 20.0 (19.9, 20.2) 9.3 (9.2, 9.5) 3.7 (3.6, 3.8)
Malay females 32.6 (32.3, 33.0) 3.9 (3.8, 4.0) 4.1 (4.0, 4.3) 17.1 (16.9, 17.2) 2.0 (2.0, 2.1) 2.2 (2.1, 2.2)
Indian males 43.6 (43.2, 43.9) 15.5 (15.2, 15.7) 3.9 (3.8, 4.1) 23.2 (23.1, 23.4) 8.3 (8.1, 8.4) 2.1 (2.1, 2.2)

Indian females 29.9 (29.6, 30.2) 2.9 (2.8, 3.0) 1.8 (1.8, 1.9) 20.3 (20.2, 20.5) 2.0 (1.9, 2.0) 1.3 (1.2, 1.3)
Other males 8.2 (8.0, 8.4) 4.9 (4.8, 5.0) 1.1 (1.0, 1.1) 14.1 (13.9, 14.5) 8.5 (8.3, 8.7) 1.9 (1.7, 2.0)

Other females 3.9 (3.7, 4.0) 0.6 (0.6, 0.7) 0.4 (0.4, 0.5) 6.7 (6.5, 6.9) 1.1 (1.0, 1.2) 0.8 (0.7, 0.8)

After stratifying by age (Table 2), we observe a standard dose response relationship
with age and disease prevalence. When comparing DM prevalence with the National
Health Survey 2010 [26], all age groups have an absolute deviation of less than 1%, ranging
from the youngest age group of 18–29 (actual: 1.0%, estimated: 1.5%) to the oldest at 60–69
(actual: 29.1%, estimated: 29.8%).

Table 2. Estimated case numbers and prevalence of DM, past AMI and stroke for those aged 18–69 in 2020 stratified by age
group. Brackets indicate the 95% confidence intervals over 100 iterations.

Age Group DM Cases
(thousands)

AMI Cases
(thousands)

Stroke Cases
(thousands)

DM
Prevalence

Past AMI
Prevalence

Stroke
Prevalence

18–29 10.2 (10.0, 10.4) 2.8 (2.7, 2.9) 1.6 (1.5, 1.7) 1.5 (1.5, 1.5) 0.4 (0.4, 0.4) 0.2 (0.2, 0.2)
30–39 34.4 (34.1, 34.7) 7.7 (7.6, 7.9) 4.2 (4.0, 4.3) 5.3 (5.3, 5.4) 1.2 (1.2, 1.2) 0.7 (0.6, 0.7)
40–49 73.0 (72.6, 73.4) 13.7 (13.5, 13.9) 7.6 (7.4, 7.8) 11.3 (11.3, 11.4) 2.1 (2.1, 2.2) 1.2 (1.2, 1.2)
50–59 124.5 (124.0, 125.0) 27.3 (26.9, 27.6) 16.7 (16.5, 16.9) 19.9 (19.8, 20.0) 4.4 (4.3, 4.4) 2.7 (2.6, 2.7)
60–69 154.8 (154.2, 155.4) 41.7 (41.4, 42.0) 29.5 (29.1, 29.8) 29.8 (29.6, 29.9) 8.0 (8.0, 8.1) 5.7 (5.6, 5.7)

Figure 1 depicts the population count and chronic disease cases for planning areas
with at least 100 individuals. Number of DM cases tends to correlate with population
density, but although DM prevalence in Singapore averages at about 12.7%, it can be
observed that prevalence varies by area, ranging from 12.5% to 12.9% (Table A1). AMI
and stroke follow the same pattern at 3.0% and 1.9%, ranging from 2.9% to 3.2% for AMI
and 1.8% to 2.1% for stroke. In terms of absolute case numbers, due to higher population
density, we observe high-risk clusters with >14,000 DM cases per planning area in the
north-eastern area of Singapore, indicating high chronic disease burden. As DM is a major
risk factor for other chronic diseases, it is reasonable to assume that this group of people are
highly susceptible to developing comorbidities, if they have not done so already. AMI has
comparatively fewer cases, with the same cluster in the northeast having approximately
4000 past AMI cases per planning area. Risk of developing a second recurrent AMI increases
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gradually over time, hence this group requires a quick response time and admittance to the
accident and emergency departments to prevent fatalities [30]. Stroke displays a more even
spatial distribution, with most planning areas having stroke cases in the 2000–2500 range.
These prevalent stroke cases require extensive psychosocial support and rehabilitation
post-stroke [31]. Therefore, it is prudent to situate psychological services and outlets for
physiotherapy in the vicinity for their benefit.

Figure 1. National-level maps of (A) population count (B) diabetes mellitus (DM) (C) acute myocar-
dial infarction (AMI) and (D) stroke case numbers aggregated by planning area. Areas with less than
100 residents were defined as unpopulated and are coloured gray. Simpang and Seletar Island have
been omitted as fewer than 10 individuals reside in these locations.

Beyond the scope of estimating prevalence of individual conditions, we also inves-
tigated comorbidities (Figure 2). DM with AMI was the most common combination of
chronic conditions as DM is a major biological risk factor for AMI [32], with approximately
10% of all individuals with DM also having AMI. DM and stroke is the second most
common combination, with 6% of all individuals with DM having stroke concurrently.
Panel C of Figure 2 indicates that AMI and stroke is not a common combination, as there
are at most around 200 individuals with this combination per planning area, reinforcing
that DM is a precursor to AMI and stroke. Lastly, for all three conditions, there are at
most 150–199 individuals per planning area. Most of these planning areas are also in the
northeast, supporting the notion that this area is in greatest need of healthcare amenities.
This group also represents those who have the highest mortality rates, prompting the need
for interventions to improve nutrition and physical activity in an effort to reduce mortality.

The other application of the model is to visualize aggregate data which would other-
wise require some coordination to obtain across different healthcare providers. Figure 3
illustrates this by presenting the number of individuals with at least one chronic disease,
assumed to be high-risk and therefore requiring health services, by regional health sys-
tem. Of the three different regional health systems, each of them has similar prevalence
ranging from 15.3% to 15.4%. The similar prevalence indicates that the disparity in case
numbers is driven by population density. The western region is the most populated and
therefore has the greatest number of high-risk individuals at 173,000. This is followed by
the eastern region with 169,000 and the smallest northern region at 137,000. These metrics
provide valuable insight for strategic planning teams in each of the regional healthcare
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hubs to assess whether their current healthcare facilities are adequate to sustain these
at-risk individuals.

Figure 2. National level maps of comorbidities aggregated by planning area. (A) diabetes mellitus
(DM) and acute myocardial infarction (AMI), (B) DM and stroke, (C) AMI and stroke, (D) DM, AMI,
and stroke. Areas with less than 100 residents were defined as unpopulated and are coloured gray.
Simpang and Seletar Island have been omitted as fewer than 10 individuals reside in these locations.

Figure 3. High-risk cases and prevalence by regional health system, rounded off to the nearest
thousand. High-risk cases were defined as individuals with at least one chronic disease.
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4. Discussion

Applying our model to the population of Singapore, we obtained quick estimates
of the case numbers and prevalence of DM, AMI, and stroke in Singapore. Our results
suggest that prevalence varies greatly by age, gender, and ethnicity, reinforcing previous
findings that in Singapore, disease risk is heavily influenced by demographics [33]. These
estimated prevalence values are further validated by being very similar to the reported
values in the National Health Survey. These similar age-specific prevalence values across a
decade suggest that risk within the population is not inherently changing. For additional
validation, an independent study of 2562 participants of which 1415 were aged 60–74,
reported a stroke prevalence of 5.7% which was coherent with our estimate of stroke
prevalence in those aged 60–69 at also 5.7% [34]. Of the three conditions, AMI and stroke
were comparatively harder to obtain prevalence estimates as compared to DM due to
high mortality rates, especially in the first year following the event [27,28]. Furthermore,
unlike DM, a single individual can have multiple AMIs and strokes over the course of their
lifetime and is therefore in a constant high-risk state as the conditions can recur, influenced
by age and whether an individual also has DM [35]. Timely access to healthcare is critical
for this subgroup of people who stand to lose more than the average healthcare consumer
should emergency departments be over capacity or have long waiting times [36]. The
national-level maps provide useful insights into these high-risk communities, which is
useful for evidence-driven policy making and capacity planning [37,38]. From a health
services research perspective, these maps of chronic disease risk aid urban planners and
regional health systems in ensuring that the facilities in an area are sufficient to support
the healthcare needs of the community [39]. The maps presented are cross-sectional but
indicate where hotspots of chronic disease could arise as a result of an aging population,
assuming no significant changes in inter-planning area migration patterns. Figures 2 and 3
together reiterate that access to healthcare is most required in the western region and
the cusp of the north and eastern region where we estimate the largest numbers of at-
risk individuals are located. From 2009 to 2017, the proportion of those aged 60 and
above suffering from three or more chronic conditions increased from 19.8% to 37.0% [40],
reflecting the growing chronic disease burden and prompting the need to maintain access
to adequate medical care.

Apart from access to timely medical care, urban planners choosing potential locations
of homes for the elderly, dialysis centers, or other primary care facilities would benefit from
information on the spatial distribution of chronic disease risk. Healthy Urban Planning is
one of the themes of the World Health Organization [41]; the objectives of this theme are to
promote healthy lifestyles, facilitate access to healthy food, and increase accessibility to
healthcare facilities through proper urban planning. Healthy Urban Planning initiatives
can make use of maps of chronic disease risk in order to improve population health through
urban design. At a population level, urban interventions allowing for greater access to
healthcare and healthier lifestyle options have a small effect at the individual-level, but can
potentially have a large cumulative effect across the whole population [42].

Globally, there is increased awareness as to the connection between urban planning
and the health of communities [43]. Our method was applied to Singapore but is applicable
to other populations to estimate the geospatial distribution of chronic disease to inform
health policy. A case study of Dortmund, Germany, identified significant associations
between green space, air quality, and socioeconomically disadvantaged communities [44].
In China, a link between population density and obesity was reported based on data
from 450 communities over 30 provinces [45]. At the national level, the Canadian Urban
Environmental Health Research Consortium was established in 2015 to consolidate a wealth
of geospatial exposure data and cohort studies for healthcare research, including features
such as transportation networks and land use [46]. All these examples illustrate that the
appropriate combination of census and geospatial information have been used to generate
geospatial distributions of risk factors and diseases. The goal is therefore to formulate
evidence-driven policy at the city scale that many planners operate in [38,47]. As the link
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between urban planning and public health continues to develop, geospatial modelling of
chronic diseases becomes more useful in deriving insights.

Potential improvements to this study would be obtaining the actual anonymized
geographic distribution of the population with detailed health information as opposed
to a synthetically reconstructed population for additional validation, although this was
not possible due to issues of data privacy. We also were not able to compare prevalence of
AMI and stroke with actual numbers as registry reports primarily report incidence, and the
last estimate of stroke prevalence was in 2006. In the evaluation of access to hospitals and
healthcare facilities, it is common to define catchment areas based on geography [48]; how-
ever, in practice numerous other factors may influence where an individual chooses to seek
medical care such as their immediate location, access to transport or personal preference.

5. Conclusions

Geographical distributions of chronic disease risk are instrumental in understanding
differences in community health at a national level and identifying high-risk communities
which is critical for evidence-based policymaking. Using Singapore as a case study, we
estimated the prevalence of DM, AMI, and stroke to be 12.7%, 3.0%, and 1.9%, respectively.
In terms of comorbidities, approximately 10.0% and 6.0% of individuals with DM had
AMI. To inform urban planning, we provided estimates of the number of high-risk cases
by regional health system in order to ensure adequate access to healthcare and to minimise
geographical disparities in health outcomes.
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Appendix A

Table A1. Population count, absolute case numbers, and prevalence for DM, AMI, and stroke by planning area.

Planning Area DM Cases AMI Cases Stroke Cases DM Prevalence (%) AMI Prevalence (%) Stroke Prevalence (%) Population

ANG MO KIO 16,144 3807 2424 12.68 2.97 1.91 127,072
BEDOK 15,692 3705 2341 12.85 3.02 1.91 122,710
BISHAN 8365 1954 1261 12.79 3.03 1.91 65,059
BOON LAY 6 2 1 19.31 5.16 1.44 40
BUKIT BATOK 12,753 2962 1930 12.87 3 1.95 100,088
BUKIT MERAH 18,123 4274 2709 12.79 3 1.92 141,752
BUKIT PANJANG 18,412 4372 2744 12.64 2.98 1.88 144,840
BUKIT TIMAH 8029 1871 1208 12.96 3.03 1.94 62,103
CENTRAL WATER CATCHMENT 3 1 0 15.78 5.09 1.99 21
CHANGI 263 62 37 12.49 2.98 1.76 2083
CHOA CHU KANG 8890 2067 1338 12.81 2.97 1.92 70,095
CLEMENTI 13,738 3256 2052 12.82 3 1.9 106,644
DOWNTOWN CORE 15,890 3717 2384 12.63 2.94 1.9 125,886
GEYLANG 12,921 3020 1942 12.88 3 1.94 100,403
HOUGANG 15,640 3670 2361 12.72 2.96 1.92 122,791
JURONG EAST 4911 1147 742 12.91 3.04 1.93 38,102
JURONG WEST 17,695 4163 2650 12.54 2.92 1.89 140,248
KALLANG 15,593 3650 2338 12.76 2.98 1.92 122,948
LIM CHU KANG 41 10 6 14.21 3.99 1.85 323
MANDAI 2386 561 355 12.89 3.08 1.86 18,524
MARINE PARADE 1067 253 156 12.82 3.05 1.86 8218
MUSEUM 540 130 75 12.38 2.92 1.72 4300
NEWTON 1489 352 220 13.08 3.13 1.88 11,378
NORTH-EASTERN ISLANDS 19 5 2 16.79 4.63 2.05 138
NOVENA 13,007 3030 1954 12.51 2.9 1.87 103,267
ORCHARD 173 42 24 12.66 3.05 1.71 1389
OUTRAM 12,003 2812 1797 12.87 3.01 1.93 93,343
PASIR RIS 4341 1008 654 12.85 3.04 1.88 33,857
PAYA LEBAR 9 2 1 14.47 4.22 2 62
PIONEER 9 3 1 16.01 4.72 2.44 62
PUNGGOL 16,953 3993 2546 12.69 2.96 1.91 132,833
QUEENSTOWN 13,008 3027 1965 12.64 2.93 1.9 102,433
RIVER VALLEY 232 56 33 12.58 3.16 1.74 1858
ROCHOR 15,692 3690 2364 12.74 2.98 1.92 123,289
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Table A1. Cont.

Planning Area DM Cases AMI Cases Stroke Cases DM Prevalence (%) AMI Prevalence (%) Stroke Prevalence (%) Population

SELETAR 10 2 1 14.79 4.29 2.12 66
SEMBAWANG 13,519 3170 2030 12.63 2.95 1.9 107,035
SENGKANG 15,015 3550 2256 12.89 3.03 1.94 116,560
SERANGOON 16,727 3947 2488 12.68 2.97 1.89 131,887
SINGAPORE RIVER 394 96 57 12.2 2.86 1.74 3172
SOUTHERN ISLANDS 103 25 14 12.76 3.11 1.68 832
SUNGEI KADUT 87 21 12 13.87 3.27 1.91 692
TAMPINES 14,065 3318 2108 12.76 3 1.92 110,510
TANGLIN 7460 1732 1126 12.83 2.98 1.93 58,295
TENGAH 11 2 1 16.2 3.71 2.1 67
TOA PAYOH 17,297 4071 2577 12.41 2.9 1.85 138,303
TUAS 9 2 1 15.45 4.13 1.93 60
WESTERN WATER CATCHMENT 103 25 14 12.89 3.12 1.76 809
WOODLANDS 16,492 3906 2472 12.7 2.98 1.91 129,993
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