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Tumor immunotherapy has become one of the most promising approaches to

tumor treatment. This study aimed to screen genes involved in the response of

clear cell renal cell carcinoma (ccRCC) to immunotherapy and analyze their

function. Based on the Gene Expression Omnibus and The Cancer Genome

Atlas datasets, we screened out nine differentially expressed genes (TYROBP,

APOC1, CSTA, LY96, LAPTM5, CD300A, ALOX5, C1QA, and C1QB) associated

with clinical traits and prognosis. A risk signature constructed by these nine

genes could predict the survival probability for patients at 1 year, 3 years, and

5 years. The immune checkpoint blockade response rate in the high-risk group

was significantly higher than in the low-risk group (49.25% vs. 24.72%, p ≤
0.001). The nine prognosis-related genes were negatively correlated with

activated dendritic cells in the low-risk group but not in the high-risk

group. qRT-PCR, immunohistochemistry, and immunofluorescence showed

that the nine prognosis-related genes were associated with dendritic cell

activity and the PD-1 positive staining rate. In conclusion, the nine

prognosis-related genes have a high prognostic value. The patients in the

high-risk group were more likely to benefit from immunotherapy, and the

mechanism might be related to the release of dendritic cell-mediated

immunosuppression.
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Introduction

Clear cell renal cell carcinoma (ccRCC) is a malignant tumor

of the urinary system, accounting for approximately 75% of renal

cancers (Deleuze et al., 2020). Immunotherapy drugs for ccRCC

have made great progress, from the initial use of interleukin and

interferon to the emergence of immune checkpoint inhibitors

(ICIs) (Brown et al., 2020; Motzer et al., 2020). An immune

checkpoint (IC) is an inhibitory pathway of the immune system,

and its main function is to prevent the immune system from

harming normal cells during a state of over-activation (Li et al.,

2019). ICs are closely related to the immune escape of tumors,

and inhibition of key molecules of ICs has become the main

approach to tumor immunotherapy (Petitprez et al., 2020).

Common targeted IC molecules include programmed death

receptor-1 (PD-1)/programmed cell death 1-ligand 1 (PD-L1),

and cytotoxic T lymphocytes (CTLA4). In addition, mismatch

repair (MMR)/microsatellite instability (MSI) and TMB are also

used for tumor immunotherapy evaluation (Zhu et al., 2018). The

expression levels of these indicators are very different in different

tumors, which seriously restricts the application of

immunotherapy. A study of the positive rates of PD-L1, TMB,

and MSI in 155 kidney cancer samples found that the positive

rates of TMB and MSI were only 1/155 each, while the positive

rate of PD-L1 was higher (46/155), and 108/155 tumors were

negative for all three (Vanderwalde et al., 2018). Another study

involving 244 patients with renal transitional cell carcinoma

found that high TMB (>20 mutations/Mb) occurred in only

6.3% of cases (Chalmers et al., 2017). Therefore, lack of molecular

markers that can effectively predict treatment outcomes remains

a major challenge for clinicians.

TIDE scores, a new scoring system that integrates T-cell

dysfunction and cell rejection markers to simulate tumor

immune escape, can predict ICB response rates and have been

shown to be superior to PD-L1 and TMB in predicting the

immunotherapy responses of malignant melanoma (Jiang et al.,

2018). However, there are no clinical studies of TIDE in ccRCC to

date. The emergence of a new generation of genetic detection

technology opens the door to big data research, and various new

molecular markers are constantly emerging. A clinical study

conducted genetic testing on 212 high-risk ccRCC samples.

Sixteen prognostic genes were selected and used to construct a

recurrence risk signature for ccRCC, and the efficacy of sunitinib

was predicted and evaluated for tumors with different risk levels.

The potential application of this study is related to FDA approval

of sunitinib as an adjunct therapy for patients at high risk of

kidney cancer recurrence (Rini et al., 2018).

In this study, the transcriptome data and clinical data of

ccRCC were downloaded from the GEO and TCGA databases,

the differentially expressed genes (DEGs) related to prognosis

were screened, the risk signature was constructed, and the risk

score was calculated. Then, we further explored the diagnostic

and prognostic values of the risk score and its role in

immunotherapy, aiming to provide new predictive methods

and therapeutic targets for immunotherapy of tumors.

Data and methods

Dataset acquisition

Three gene microarrays with ccRCC (GSE14994, GSE15641,

and GSE53757) were obtained from the Gene Expression

Omnibus (GEO) dataset (https://www.ncbi.nlm.nih.gov/gds/).

GSE14994 included 90 ccRCC samples and 48 normal renal

cortex samples, GSE15641 included 32 ccRCC samples and

23 normal kidney samples, and GSE53757 included 72 ccRCC

samples and 72 matched normal kidney samples. In addition, the

transcriptome data and clinical information of ccRCC were

downloaded from The Cancer Genome Atlas (TCGA)

datasets, including 534 tumor samples and 72 normal samples.

Differentially expressed gene (DEG)
analysis

GEO2R was used to analyze the DEGs of the three gene

microarrays based on a threshold value with |log2 fold change

(FC)| > 1 and p value <0.05. The DEGs were visualized by the

ggplot2 package (v3.3.3) in R. The intersection genes of each

dataset were analyzed using the R package “Venn”.

Weighted gene co-expression network
analysis (WGCNA)

WGCNA was performed with the R package “WGCNA”

(v1.69) on tumor samples from the TCGA dataset. The clinical

traits such as age, sex, stage, and grade were included in the

WGCNA to screen the module that was most closely related to

these traits. Then, the expression of the genes assigned to the

module was visualized by the ggplot2 package, comparing tumor

samples and normal samples from the TCGA datasets.

Univariate andmultivariate Cox regression
analyses

Kaplan–Meier (K-M) Plotter (http://kmplot.com/analysis/)

was applied to screen the genes related to the overall survival

(OS) of ccRCC, excluding genes with p value >0.05 and obtaining
nine prognosis-related genes. Then, the 533 ccRCC samples were

randomly divided into the training set (n = 373) and the

verification set (n = 160) at a ratio of 7:3. The prognosis-

related genes were included in the univariate and multivariate

Cox regression analyses by using the R package “survival” in the
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training set to obtain the regression coefficient of each gene. To

avoid missing some important factors, we did not perform

screening at this step. The nine genes were used to construct

the risk signature, and risk scores were calculated by using the

linear model and predicting the coxph function based on the gene

expression values after regression coefficient weighting (Liu et al.,

2019). The risk score formula was as follows:

Risk score � ∑
N

i�1Expi × βi,

where Exp is the expression value of each gene in the sample and

β: is the regression coefficient of the multivariate Cox regression

analysis for each gene.

On the basis of this formula, the risk scores of each patient

from the training set and verification set were calculated. Then,

according to the median risk score, the samples were divided into

high-risk and low-risk groups in both the training and

verification sets. The K–M curve and receiver operating

characteristic (ROC) curve were visualized by using the

survminer package and survivalROC package, respectively, in R.

In addition, the risk score and clinical traits, including age,

sex, stage, and grade, were included in the multivariate Cox

regression analysis to evaluate the independent prognostic

factors with a threshold value of p value <0.05. The

nomogram (Cox) was constructed by using the rms package

(v5.1-4) in R to predict the patient’s survival probability at 1, 3,

and 5 years. The consistency of the nomogram (Cox) was

assessed by calibration curves. The nomogram (logistic) was

constructed by a logistic regression model in R to predict the

patient’s risk of death.

Functional enrichment analysis

Functional enrichment analysis (GO-BP) of the nine

prognosis-related genes was performed and is shown by the

ClueGO plug-in of Cytoscape software (v3.7.2).

Immunotherapy evaluation

Mutation data of ccRCC patients were downloaded from the

TCGA datasets, the values of the tumor mutation burden (TMB)

of each sample were calculated by using the R package

“TCGAmutations,” and the results were visualized by using

the “ggplot2” package.

According to the transcriptome data of ccRCC patients from

the TCGA datasets, the Tumor Immune Dysfunction and

Exclusion (TIDE) of each sample was analyzed by the TIDE

algorithm (http://tide.dfci.harvard.edu/) (Jiang et al., 2018) and

visualized by the “ggplot2” package.

The immunophenoscore (IPS) is an immunotherapy

evaluation index that only uses the expression of PD-L1 in

tumor-related immune cells (lymphocytes, macrophages, etc.)

as an evaluation index to distinguish benefiting cohorts (Liu et al.,

2020). The IPS data of ccRCC patients were downloaded from

The Cancer Immunome Atlas (TCIA, https://tcia.at/home)

datasets and visualized by the “ggplot2” package.

Immune infiltration analysis

To further explore the mechanisms of action of the

prognosis-related genes, the ESTIMATE algorithm (https://

bioinformatics.mdanderson.org/estimate/) was employed to

analyze the relationship between the risk score and stromal

and immune cells. The tumor-infiltrating immune cell fraction

of each ccRCC and matched normal sample was calculated by

the CIBERSORT algorithm (https://cibersort.stanford.edu/

index.php) and visualized by the “ggplot2” package.

Excluding the immune cells that were not significantly

different between the ccRCC samples and normal samples,

the correlations of the prognosis-related genes and the

differential immune cells were calculated by Pearson’s

correlation analysis and visualized by the R package

“ggcorrplot”. The molecular markers of the activated

dendritic cells were downloaded from the TCIA datasets,

and the correlation of the expression patterns of the markers

and the prognosis-related genes was calculated by Pearson’s

correlation analysis and visualized by Cytoscape software.

Real-time fluorescence quantitative PCR

Paraffin tissue blocks and clinical data from 22 ccRCC

patients were collected from Shaanxi Provincial People’s

Hospital. RT-PCR was employed to detect the expression of

the prognosis-related genes and activated dendritic cell markers.

A DNA/RNA extraction kit (AmoyDx, Xiamen, China) was used

to extract RNA from the tissue paraffin blocks. The Evo M-MLV

RT kit and SYBR® Green Premix Pro Taq HS kit (Accurate

Biology, Changsha, China) were used to conduct two-step

fluorescence quantitative PCR. The Cq value was employed to

calculate the gene expression based on 2−ΔΔCt. The internal

reference gene was GAPDH.

Immunohistochemistry

Paraffin slices were produced from tissue paraffin blocks and

dewaxed and dehydrated. Then, we used H2O2 to block

endogenous peroxides and conducted antigenic thermal repair.

The slices were blocked with fetal bovine serum (FBS) at 37°C for

30 min, incubated with the primary antibody (PD-1 and PD-L1

antibodies, Abcam, United Kingdom) at 4°C overnight, and then

incubated with the secondary antibody at 37°C for 1 h. DAB-
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H2O2 was dropped onto the slices to color the sites of the

antibody binding for approximately 10 min. The slices were

counterstained with hematoxylin, and then the conventional

slide-sealing process was conducted. Images were collected

with an optical microscope (Olympus, Japan), with 400×

magnification. The positive cell ratio, H-score, and

immunohistochemical staining results (IRS) were analyzed by

three pathologists with intermediate professional titles.

Immunofluorescence

The aforementioned slices were blocked with FBS and

incubated with a fluorescently labeled primary antibody (PD-

1 and CD11c antibodies, Abcam, United Kingdom) at 4°C

overnight and then incubated with a fluorescently labeled

secondary antibody at room temperature for 1 h in the

dark. DAPI was dropped onto the slices to color the sites

of antibody binding for approximately 10 min, and then the

conventional slide-sealing process was conducted. Images

were collected with a fluorescence microscope (Olympus,

Japan), 1,000×.

Statistical analysis

All statistics were analyzed by R software (v4.1.0). The

statistical significance of the continuous variables was

analyzed by the Wilcoxon rank-sum test. The correlation was

analyzed by Pearson’s correlation analysis. A two-sided p

value <0.05 was considered statistically significant.

Results

Screening of the DEGs in ccRCC

According to a threshold value with |log2 FC| > 1 and p

value <0.05, we obtained 458, 547, and 1,289 DEGs between the

ccRCC samples and normal samples from GSE14994

(Figure 1A), GSE15641 (Figure 1B), and GSE53757

(Figure 1C), respectively. Then, we used a Venn diagram to

intersect the downregulated DEGs and upregulated DEGs of the

three genemicroarrays, obtaining 86 common upregulated DEGs

(Figure 1D) and 51 common downregulated DEGs (Figure 1E).

Furthermore, we intersected these genes with those in the TCGA

FIGURE 1
Screening for DEGs. (A) Screening for DEGs of GSE14994. (B) Screening for DEGs of GSE15641. (C) Screening for DEGs of GSE53757. (D) Venn
diagram presents common upregulated DEGs for the three gene microarrays. (E) Venn diagram presents common downregulated DEGs for the
three genemicroarrays. (F) Venn diagram presents the downregulated and upregulated DEGs common to the three genemicroarrays and the TCGA
database.
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database, obtaining 47 downregulated DEGs and 81 upregulated

DEGs (Figure 1F). These 128 DEGs were shared by the three gene

microarrays and the TCGA database.

Identification of clinical trait-related genes

A gene co-expression network of the aforementioned

128 genes was constructed by the R package “WGCNA” to

identify clinical trait-related genes. After excluding samples

with incomplete clinical traits, the 533 samples from the

TCGA database were included in the gene co-expression

network. A sample clustering tree is shown in Figure 2A. In

this study, we chose the soft-threshold β = 9 (scale free R2 = 0.8)

to construct a scale-free network (Figure 2B). The four modules

were identified according to dynamic tree clipping and average

hierarchical clustering (Figure 2C). Pearson’s correlation analysis

of the modules and the clinical traits suggested that the brown

module was the most closely related to clinical stage and grade

(Figure 2D), so this module was considered a clinical trait-related

module, which included 20 genes. These genes were all

upregulated in the ccRCC tissue samples from the TCGA

database (Figure 2E). The genes included in each module are

presented in Supplementary Table S1.

Identification of hub prognosis-related
genes

Kaplan–Meier survival analysis was performed to identify the

genes most closely related to OS in ccRCC. According to a

threshold value of p < 0.05, we obtained nine prognosis-

related genes: ALOX5, APOC1, C1QA, C1QB, CD300A,

CSTA, LAPTM5, LY96, and TYROBP (Table 1).

FIGURE 2
Identification of the clinical trait-related genes. (A) Clustering dendrogram of all samples. (B) Analyses of the scale-free index and mean
connectivity for multiple soft-threshold powers. (C)Cluster dendrogram of all genes. (D)Correlation heatmap of themodule eigengenes and clinical
traits. (E) Expression of the 20 clinical trait-related genes based on the TCGA database.
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Construction of the risk signature

To explore the predictive value of the nine prognosis-

related genes, the 533 samples were randomly divided into the

training set (n = 373) and the verification set (n = 160) at a

ratio of 7:3. In the training set, the prognosis-related genes

were included in the univariate and multivariate Cox

regression analyses (Figures 3A, B). To avoid missing some

important factors, this step did not exclude genes to obtain the

regression coefficient of each gene. Then, according to the

regression coefficient and expression data of each gene, we

calculated the risk score of each sample (Supplementary Table

S2). Based on the median value of the risk score, the samples in

the training set were divided into a high-risk group and a low-

risk group. We found that the number of deaths in the high-

risk group was higher than that in the low-risk group, and the

nine prognosis-related genes were all highly expressed in the

high-risk group (Figure 3C). In addition, the risk score had

higher accuracy for the survival prediction of ccRCC patients

(AUC1-year = 0.76, AUC3-year = 0.70, and AUC5-year = 0.66,

Figure 3D). The patients in the high-risk group had a worse

prognosis than those in the low-risk group (p = 2.1e-9, HR =

3.22, 95% CI = 2.15-4.82, Figure 3E). In addition, similar

results were obtained in the validation set (Figures 4A–E,

Supplementary Table S3). These results suggested that the risk

signature constructed from the nine prognosis-related genes

had better value for prognostication.

Relationship between the risk score and
clinical traits

We employed multivariate Cox regression analysis to

investigate the relationship between the risk score and

clinical traits. Age, sex, stage, and grade were included in the

analysis. We found that age, stage, grade, and risk score were

significantly associated with an unfavorable prognosis of

ccRCC patients (p < 0.001, Figure 5A), suggesting that the

risk score might be useful as an independent prognostic factor

for ccRCC patients. Then, we used these significant factors to

construct nomograms based on the Cox regression analysis or

logistic regression analysis. The greater the value of these four

factors, the lower the probability of survival of the patients at 1,

3, and 5 years (Figure 5B). Similarly, the greater the value of

these four factors, the greater the risk of death (Figure 5C). A

calibration curve was used to evaluate the consistency of the

nomogram. The calibration curves for 1, 3, and 5 years were

almost diagonal, indicating that the nomogram was reliable

TABLE 1 Kaplan–Meier survival analysis of 20 clinical trait-related genes.

Gene Low-expression
cohort (months)

High-expression
cohort (months)

HR (95% CI) P value

ALOX5 70.17 31.07 2.27 (1.50–3.43) 5.9e-5

APOC1 52.97 28.17 1.61 (1.19–2.18) 0.0019

BTN3A2 85.47 120.50 0.86 (0.63–1.16) 0.3108

C1QA 118.47 66.00 1.77 (1.30–2.40) 0.0002

C1QB 118.47 73.00 1.58 (1.17–2.13) 0.0024

CD163 118.47 75.20 1.19 (0.86–1.66) 0.292

CD300A 118.47 76.63 1.38 (1.01–1.88) 0.0427

CST7 44.77 31.07 1.33 (0.98–1.79) 0.0628

CSTA 118.47 70.17 1.56 (1.14–2.13) 0.0055

HLA-DPA1 75.20 118.47 0.74 (0.53–1.02) 0.0682

HLA-DPB1 80.63 120.50 0.76 (0.56–1.02) 0.0681

ITGB2 118.47 78.10 1.28 (0.95–1.73) 0.1051

LAPTM5 118.47 73.00 1.49 (1.10–2.01) 0.0088

LY96 118.47 55.37 2.04 (1.51–2.77) 2.5e-6

MSR1 80.63 92.13 0.82 (0.59–1.14) 0.2388

PSMB9 92.13 79.53 1.23 (0.89–1.69) 0.2069

PTPRC 71.50 118.47 0.74 (0.54–1.01) 0.0568

RGS1 48.77 36.40 1.44 (0.99–2.09) 0.0558

TAP1 92.13 79.53 1.22 (0.89–1.68) 0.2201

TYROBP 45.93 27.30 1.66 (1.23–2.24) 0.0009

Note: The bold type represents a p value <0.05.
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(Figures 5D–F). These results suggested that the risk score

could not only be used as an independent prognostic factor

but could also be used to predict the survival probability and

death risk of ccRCC patients.

Functional enrichment analysis of the nine
prognosis-related genes

We used the ClueGO plug-in of Cytoscape software to

analyze the functional relationship of the nine prognosis-

related genes. The results showed that seven of the nine genes

were enriched in the immune response, among which five genes

were enriched in the immune effector process (Figure 6). This

suggested that these genes might be involved in regulating the

immune system.

The relationship between risk score and
immunotherapy

According to the previous functional enrichment analysis,

these genes may be involved in immune regulation. Thus, we

first explored the relationship between the risk score and

immunotherapy and found that the response ratio to

immune checkpoint blockers (ICBs) in the high-risk group

was significantly higher than that in the low-risk group

(49.25% vs. 24.72%, χ2 = 34.409, p ≤ 0.001, Table 2).

Similarly, the TMB score (p = 0.044, Figure 7A), IFNG (p =

1.2e-06, Figure 7B), CD8 (p = 6.5e-08, Figure 7C), TAM_M2

(p = 1.1e-08, Figure 7D), and CAF (p = 5.6e-08, Figure 7E) in

the high-risk group were significantly higher than those in the

low-risk group. The TIDE score in the high-risk group was

significantly lower than that in the low-risk group (p = 0.024,

FIGURE 3
Construction of the risk signature with nine prognosis-related genes in the training set. (A) Univariate Cox regression analysis. (B) Multivariate
Cox regression analysis. (C)Distribution of the risk score and survival of patients and the expression pattern of the nine prognosis-related genes in the
high- and low-risk groups. (D) Receiver operating characteristic (ROC) curves of overall survival (OS) at 1 year, 3 years, and 5 years (E) K–M survival
curve of the OS in the high- and low-risk groups.
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Figure 7F). PD-L1 (p = 0.13, Figure 7G), MSI_Exp_Sig (p =

0.15, Figure 7H), and MDSCs (p = 0.15, Figure 7I) were not

significantly different between the two groups. These results

suggested that patients in the high-risk group might be more

likely to benefit from immunotherapy.

In addition, the IPS score also showed that IPS scores with

PD1_pos (both CTLA4_neg and CTLA4_pos) in the high-risk

group were all significantly higher than those in the low-risk

group (CTLA4_neg_PD1_pos: 7.84 vs. 7.70, p = 0.045,

Figure 7J; CTLA4_pos_PD1_pos: 7.42 vs. 7.23, p = 0.018,

Figure 7K). However, the total IPS score (p = 0.3,

Figure 7L) and IPS scores with PD1_neg [both CTLA4_neg

(p = 0.24, Figure 7M) and CTLA4_pos (p = 0.64, Figure 7N)]

were not significantly different between the two groups. These

results further suggested that the risk score, especially in the

high-risk group, might be associated with PD-1-related

immunotherapy.

Exploration of the mechanism of action of
the nine prognosis-related genes

To further explore and illustrate the mechanism of the

nine prognosis-related genes in immune regulation, we first

analyzed the relationship between these genes and the immune

microenvironment. This analysis indicated that the immune

score (p = 9.9e-16), stromal score (p = 9.6e-09), and estimated

score (p = 8.4e-16) of the high-risk group were significantly

increased compared with those of the low-risk group

(Figure 8A). The results indicated that the nine prognosis-

FIGURE 4
Construction of the risk signature with nine prognosis-related genes in the verification set. (A)Univariate Cox regression analysis. (B)Multivariate
Cox regression analysis. (C)Distribution of the risk score and survival of patients and the expression pattern of the nine prognosis-related genes in the
high- and low-risk groups. (D) ROC curves of OS at 1 year, 3 years, and 5 years. (E) K–M survival curve of the OS in the high- and low-risk groups.
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related genes were involved in regulating the immune

microenvironment.

To further explore the relationship between these genes and

immune cells, we first used the CIBERSORT algorithm to analyze

the fractions of 22 immune cells in the high- and low-risk groups

(Figure 8B). Excluding the immune cells without a significant

difference between the two groups, we then calculated the

Pearson correlation between the nine prognosis-related genes

and the infiltrated immune cells in the high-risk group and low-

risk group. The results indicated that in the high-risk group, the

activated dendritic cells were only significantly negatively

correlated with three genes (Figure 8C), while in the low-risk

FIGURE 5
Correlation between the risk score and clinical traits and their predictive value. (A) Multivariate Cox regression analysis for predicting
independent prognostic factors. (B) Nomogram based on the Cox regression analysis. (C) Nomogram based on the logistic regression analysis.
(D) The calibration curve for 1 year. (E) Calibration curve for 3 years. (F) Calibration curve for 5 years.
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group, the activated dendritic cells were significantly negatively

correlated with all nine genes (Figure 8D). This suggested that a

reduction of activated dendritic cells was observed in the low-risk

group.

To further analyze the correlation of the nine prognosis-

related genes and dendritic cells, we downloaded the

molecular markers of the dendritic cells and analyzed the

correlations between the expression patterns of the markers

and prognosis-related genes in the high-risk group and low-

risk group. Consistent with the aforementioned results, there

were more markers closely related to the nine genes expressed

in the low-risk group than in the high-risk group

(Figures 8E,F, Supplementary Tables S4, S5). These results

further suggested that the nine prognosis-related genes

seemed to be closely negatively related to activated

dendritic cells in the low-risk group than in the high-risk

group.

Validation of the relationship between the
prognosis-related genes and
immunotherapy

To verify the relationship between the prognosis-related

genes and immunotherapy, we collected tissue paraffin blocks

and the clinical data of 22 ccRCC patients from Shaanxi

Provincial People’s Hospital between January 2017 and

January 2019 to identify the expression of the prognosis-

related genes and activated dendritic cell markers and verify

the correlations between them. We found that the prognosis-

related genes were significantly correlated with the three markers

(Figure 9A), further suggesting that the prognosis-related genes

were associated with activated dendritic cells. The expression of

the prognosis-related genes was significantly different between

G1/G2 patients and G3/G4 patients (Figure 9B), which is

consistent with the aforementioned results of the multivariate

Cox regression analysis. However, their expression was not

significantly different between T1/T2 patients and T3/

T4 patients or between Stage 1/2 patients and Stage 3/

4 patients (Figure 9B), which might be related to the small

sample size. Furthermore, 22 ccRCC patients were divided

into the low-risk group and high-risk group according to the

median of all patients’ risk score calculated by the expression of

nine prognosis-related genes and survival data. The follow-up

deadline was January 2022, and the median follow-up time was

48 months. The expression of the prognosis-related genes was

significantly different between the low-risk group and high-risk

group (Figure 9B).

Since the prognostic-related genes were closely related to

immunotherapy, we selected five low-risk patients and five high-

risk patients from the 22 ccRCC patients to analyze their positive

staining for PD-1 and PD-L1 (Figure 9C). The results showed

that the percentage of positive cells, H-Score, and IRS for PD-1 in

the high-risk group were significantly higher than those in the

low-risk group, but for PD-L1, they had no significant difference

between the high-risk group and low-risk group (Figure 9D),

suggesting that PD-1 positivity might be correlated with the

prognosis-related genes. Furthermore, to explore the expression

of PD-1 in dendritic cells in tumor sections from ccRCC patients,

we used the CD11c antibody (red) to label dendritic cells (Kvale

et al., 2006) and performed immunofluorescence staining

analysis with PD-1 antibody (green). The results indicated

that the localization of PD-1 protein overlapped with the

CD11c protein in the high-risk group, but not in the low-risk

group (Figure 9E), suggesting that dendritic cells might express

or bind PD-1 in the high-risk group.

Discussion

CcRCC is a malignant tumor, and it still lacks specific

diagnostic markers and therapeutic targets. To solve this

FIGURE 6
Functional enrichment analysis of the nine prognosis-related
genes.

TABLE 2 Response ratio to immune checkpoint blockers.

High-risk
group

Low-risk
group

χ2 p

n % n %

Total 266 267 34.409 ≤0.001

R 131 49.25 66 24.72

NR 135 50.75 201 75.28

Note: R: response. NR: non-response.
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problem, we analyzed the transcriptome and clinical data of

ccRCC from the TCGA database to screen prognostic genes and

verify their roles in the prognosis and immunotherapy of ccRCC.

It was found that nine genes (TYROBP, APOC1, CSTA, LY96,

LAPTM5, CD300A, ALOX5, C1QA, and C1QB) not only had

high prognostic value but also the risk score constructed by them

was significantly correlated with immunotherapy-related

indicators such as TIDE score, TMB, PD-1, and ICB

response rate.

The risk score constructed by the nine prognostic-related

genes had an independent prognostic value and was associated

with poor prognosis of ccRCC. It could predict the 1-/3-/5-year

survival probability of patients, suggesting that these genes play

important roles in the occurrence, progression, and metastasis of

various tumors. Furthermore, the multivariate Cox regression

analysis showed that the risk score had a potential prognostic

value and a role in pathological grade and stage. Some previous

studies have also supported this hypothesis and have reported the

prognostic value of individual genes in a variety of tumors. For

example, APOC1 is closely related to poor prognosis in ccRCC

patients, as well as age, clinical stage, and pathological grade

(Xiao and Xu, 2021). C1QA and C1QB might be potential

prognostic factors and indices of tumor microenvironment

remodeling in osteosarcoma (Chen et al., 2021). Elevated

TYROBP expression predicted poor survival in patients with

low-grade glioma (Lu et al., 2021). In contrast to the

aforementioned studies, we combined multiple genes to

construct a risk score model and nomogram and found that

they had a good prognostic value. Therefore, we hope that the

score derived from these nine prognostic-related genes can

FIGURE 7
Relationship between the risk score and immunotherapy. (A) TMB score. (B) IFNG. (C) CD8. (D) TAM_M2. (E) CAF. (F) TIDE score. (G) PD-
L1. (H) MSI_Exp_Sig. (I) MDSC. (J) IPS score with CTLA4_neg_PD1_pos. (K) IPS score with CTLA4_pos_PD1_pos. (L) Total IPS score. (M) IPS
score with CTLA4_neg_PD1_neg. (N) IPS score with CTLA4_pos_PD1_neg.
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provide a predictive value for prognosis of clinical ccRCC

patients.

PD-1/PD-L1, TMB, and MSI/MMR are independent and

synergistic in immunotherapy (Vanderwalde et al., 2018). The

higher the level of each index above its cutoff, the higher the

probability the tumor will respond to immunotherapy, except

for MMR (Zhu et al., 2018; Tucker and Rini, 2020). The lack of

MMR protein expression predicts a benefit from

immunotherapy (Chen et al., 2018). The TIDE score can be

used to evaluate the response rate of patients to ICB therapy;

the higher the TIDE score, the lower the ICB response rate

(Jiang et al., 2018). These findings are consistent with our

research results. The patients in the high-risk group had lower

TIDE scores and higher TMB levels, PD-1 levels, and ICB

response rates. The TIDE score predicts outcomes in

melanoma patients who receive first-line anti-PD1 or anti-

CTLA4 therapy by mimicking two escape mechanisms of

tumors (T cell dysfunction signature and T cell exclusion

signature) more accurately than other biomarkers, such as

PD-L1 levels and mutation load (Jiang et al., 2018). However,

KIRC has a stronger propensity for T cell dysfunction

signature, so the relationship between the TIDE score and

risk signature in this article requires a large number of samples

to continue to be validated. In addition, the levels of MSI, PD-

L1, and CTLA4 showed no significant differences between the

high- and low-risk groups, which may be related to tumor

FIGURE 8
Relationship between the nine prognosis-related genes and immunity. (A) Immune score, stromal score, and ESTIMATE score. (B) Fractions
of 22 immune cells in the high- and low-risk groups. (C) Correlation heatmap between the nine prognosis-related genes and significant immune
cells in the high-risk group. (D) Correlation heatmap between the nine prognosis-related genes and significant immune cells in the low-risk
group. (E) Correlation network between the nine prognosis-related genes and markers of activated dendritic cells in the high-risk group. (F)
Correlation network between the nine prognosis-related genes and markers of activated dendritic cells in the low-risk group. × means not
significant (C–D). Red represents the nine prognosis-related genes, gray represents the markers with activated dendritic cells, and the thickness
of the lines represents the strength of the correlation (E–F).
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FIGURE 9
Validation of the relationship between the prognosis-related genes and immunotherapy. (A)Correlation of the prognosis-related genes and
the activated dendritic cell markers (red box). (B) Expression levels of the prognosis-related genes in patients grouped with different clinical traits.
T1–T4 represents T stage, which refers to the size and extent of the primary tumor, and is represented by T1–T4 in turn. G1–G4 represents
clinicopathological grades, and the larger the number, the lower the degree of tumor differentiation, and the higher the degree of
malignancy. Stage 1–Stage 4 represents clinical staging. (C) HE staining and immunohistochemistry (PD-1/PD-L1) of low-risk and high-risk
patients, 400×. (D) Percentage of positive cells, H-Score, and IRS for immunohistochemical analysis of PD-1/PD-L1. (E) Immunofluorescence of
PD-1 (green) and CD11c (red) in low-risk and high-risk patients, 1,000×, white arrows indicate red and green overlap.
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heterogeneity and the relative independence of each indicator.

Among all solid tumors, the proportion of high TMB, PD-L1,

and MSI is only 73/11348 (Vanderwalde et al., 2018). In

addition, we also noticed that the level of PD-1 in the high-

risk group was higher than that in the low-risk group, while

there was no significant difference in the level of PD-L1. The

reason for this may be that, under normal circumstances, PD-1

in combination with the ligand PD-L1 downregulates the

immune system’s response to its own cells and promotes

self-tolerance. However, in tumors and during

inflammation, upregulation of PD-1 and/or PD-L1 causes

immune cells to escape the autoimmune response (Sun

et al., 2018). However, that did not affect our conclusions.

The risk score constructed from the nine prognostic-related

genes could effectively predict the response to

immunotherapy, and it might be considered a new

immunotherapy evaluation index for ccRCC.

The principle of immunotherapy mainly includes two

aspects: one is to improve autoimmunity to eliminate

tumor cells, such as the application of dendritic cell

vaccines, and the other is to reduce the immunity of tumor

cells and enhance the recognition of the autoimmune system

to eliminate the immune escape of tumor cells, finally

eliminating the tumor cells, such as the application of ICIs

(Santos and Butterfield, 2018; Waldman et al., 2020). Our

results with the correlation heatmap and PD-1

immunohistochemistry showed that the low-risk group was

significantly negatively associated with the activated dendritic

cells and had a lower PD-1 positive staining rate, suggesting

that the activated dendritic cells were more lacking in the low-

risk group, which indicated dendritic cell activation in the

high-risk group. This was also confirmed by previous results.

We detected a lower TMB in the low-risk group, indicating

that it had fewer cancer cell neoantigens that would not drive

its release and presentation to antigen-presenting cells, such as

dendritic cells, so it could maintain the function of antigen-

presenting cells and avoid tumor escape events (Chen and

Mellman, 2013; Braun et al., 2021). In contrast, the high-risk

group had higher tumor cell immune escape. At the same time,

we observed a higher PD-1 positive staining rate and a

combination of dendritic cells and PD-1 in the high-risk

group, suggesting that poor prognosis of patients in the

high-risk group may be due to the binding of dendritic cells

to PD-1, resulting in an inhibitory immune response (Yao

et al., 2009). Currently, the antibodies targeting the PD-1 and

CTLA4 immune checkpoints have been successful in renal cell

carcinoma (Bellone and Elia, 2017; Braun et al., 2021).

Emerging data suggested that patients whose tumors

overexpressed PD-1/PD-L1 by IHC had improved clinical

outcomes with anti-PD-1-directed therapy (Patel and

Kurzrock, 2015). Therefore, patients in the high-risk group

might have a better clinical outcome if they receive anti-PD-

1 immunotherapy. We deduced that if the high-risk group is

treated with ICIs, it would be easier to activate dendritic cells

than in the low-risk group and reduce the immune escape of

the tumor cells, ultimately eliminating the tumor cells to

achieve immunotherapy. Taken together, the patients in the

high-risk group were more likely to benefit from

immunotherapy.

However, this study also has certain limitations, such as a

small sample size and a lack of clinical data on immunotherapy

for verifying the relationship between the risk score and

immunotherapy. In future studies, we will expand the

sample size and focus on the relationship between the nine

prognostic-related genes/risk score and dendritic cells,

immunotherapy, and immune escape, applying both clinical

data and laboratory methods to screen for immunotherapy

targets more accurately.

In conclusion, the risk score constructed by the nine

prognostic-related genes could predict the survival rate of

ccRCC patients. Moreover, the patients in the high-risk group

were more likely to benefit from immunotherapy, and the

mechanism might be related to the release of dendritic cell-

mediated immunosuppression. Our study demonstrates the

guiding value of this risk score for immunotherapy and

enriches the known immunotherapy predictors, aiming to

provide new predictive methods and therapeutic targets for

immunotherapy of tumors.
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