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Abstract

This paper proposes some high-ordered integer-valued auto-regressive time series process

of order p (INAR(p)) with Zero-Inflated and Poisson-mixtures innovation distributions,

wherein the predictor functions in these mentioned distributions allow for covariate specifi-

cation, in particular, time-dependent covariates. The proposed time series structures are

tested suitable to model the SARs-CoV-2 series in Mauritius which demonstrates excess

zeros and hence significant over-dispersion with non-stationary trend. In addition, the INAR

models allow the assessment of possible causes of COVID-19 in Mauritius. The results illus-

trate that the event of Vaccination and COVID-19 Stringency index are the most influential

factors that can reduce the locally acquired COVID-19 cases and ultimately, the associated

death cases. Moreover, the INAR(7) with Zero-inflated Negative Binomial innovations pro-

vides the best fitting and reliable Root Mean Square Errors, based on some short term fore-

casts. Undeniably, these information will hugely be useful to Mauritian authorities for

implementation of comprehensive policies.

Introduction

In early March 2021, Mauritius was struck by a second wave of the Novel Coronavirus 2019

(COVID-19) pandemic among the local community after officially recording a long sequence

of zero locally acquired active cases. In fact, it is worth to mention that during the first wave of

the COVID-19 pandemic, and especially after detecting the first set of local cases, on 18 March
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2020, Mauritius implemented timely strict sanitary measures in terms of national lockdown,

safe shopping guidelines, mandatory face covering in public places, minimal public gathering

followed by COVID-19 related legislations like the Quarantine Bill and COVID-19 Miscella-

neous Bill [1]. Moreover, as a pro-active strategy, the vaccination campaigns among front-lin-

ers in the disciplined forces and health sectors, kick-started in January 2021. A variety of

vaccines notably Oxford-AstraZeneca/Covishield, Covaxin and Sinopharm were obtained

from country partners and consequently, the targeted audience for vaccination expanded, cov-

ering old-aged persons, people with comorbidities, and personnel working in the education,

retail and other economic sectors. As at May 2021, around 18 percent of the total Mauritian

population has already received the first jab of the vaccine. This process is still ongoing with

aim to vaccinate at least 60% of the population in general, by end of July 2021 thus attaining

herd-immunity before opening of the frontier. Even the vaccination exercise for the second

doses has already started and has been running successfully.

The second wave which was of a sporadic transmission mode based on some identifiable

clusters, was immediately controlled by the authorities. The Ministry of Health and Wellness

accelerated the contact tracing exercise and to contain the virus more rapidly, law enforcers

implemented novel localised mobility restrictions in regions (“red-zoned” areas) with large

number of contaminations under the Temporary Restrictions of Movement Order. In terms of

evidenced based policies, Mauritius is indeed well positioned but on the other hand, the

uncommon patterns in the COVID-19 series raise some concerns in the research community

especially in the midst of statistics and data analytics. The COVID-19 new cases series in Mau-

ritius has some distinctive features like a purely unique serial trend with excess of zeros and

some oscillations, leading to over-dispersion, while the corresponding COVID-19-related

death series describes a preponderance of excess zeros. These series thus imply that the simple

integer-valued auto-regressive model (INAR(1)) with Poisson or extra-Poisson innovations is

surely insufficient in this context [2–4] and ignoring the excess of zeros will lead to biasedness

in the estimated parameters and standard errors [5]. To remedy, this paper proposes to con-

struct a novel high-ordered integer-valued auto-regressive process (INAR) with Zero-Inflated

(ZI) innovation distributions. This novel construction bridges two important gaps. Firstly, as

seen in the literature, the ZI models have extensively been used in regression contexts only

(See [6, 7] and the references therein) while its applications in counting time series modelling

is quite restricted to first order only [8–17].

Secondly, the proposed time series model allows for covariate specification, which in the

context of the COVID-19 analysis, is primordial. In fact, it is important to identify the signifi-

cant factors contributing to the propagation of SARS-CoV-2 in the local community, while

also detecting the expected impact of the covariates on the COVID-19 infection in the local

community. Thereon, such information will extremely be useful to the local concerned author-

ities and for forecasting purposes. As regards to the factors, in the first wave, several factors

such as public health measures, strong political engagement, stricter legislations, population

behaviour to established sanitary norms [18], sensitization campaigns and the institution of

quarantine centers were found to successfully curb the spread of the virus [1]. Considering the

second wave, new covariates like the reproduction rate (ReR), the COVID-19 Risk due to

weather conditions (CRW), the major event of vaccination and the COVID-19 Stringency

Index need to be assessed in the Mauritian context. Besides, in the European and Asian

regions, ReR [19–21], CRW [22, 23] and vaccinations [24] have largely demonstrated their

association with COVID-19 transmission while during the first wave in Mauritius, the

COVID-19 Stringency index was the most significant factor in curbing the virus [4]. Further

details on the covariates are provided in Section 3. An accurate forecasting with acceptable

RMSE is also targeted because most restorative and preparedness policy decisions, be it in
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terms of adequate vaccines, financial requirement and re-opening of frontier, will be based on

the new COVID-19 cases’ projections.

The organization of the paper is as follows: In Section 2, the local active COVID-19 data

structures and its descriptive statistics are provided. Section 3 emphasizes on the INAR model

construction with some novel innovations and ZI distributions. The inferential properties of

the INAR process are also discussed. Section 4 focuses on the fitting of the various INAR mod-

els and providing the possible short term forecasts. This section also comprises of the discus-

sions on the several significant factors. The concluding remarks and some limitations are

provided in Section 5.

Materials and methods

The SARS-CoV-2 series data for Mauritius

The daily new COVID-19 infection and death series for Mauritius, covering the period from

18 March 2020 to 25 April 2021, summing to a total of 404 observations, were extracted from

the official portal for European data (See https://data.europa.eu/data/datasets/covid-

19-coronavirus-data?locale=en). The evolution of the COVID-19 new infection cases series

and the death series are displayed below:

From Fig 1, it can be deduced that at the beginning of COVID-19 pandemic, the situation

was worrisome with the climbing number of daily deaths cases(in red), associated with the

increasing trend in the number of new daily COVID-19 infection cases (in blue). As from

April 2020 till December 2020, the spread of the SARS-CoV-2 in the local community has

plunged and a long sequence of zero daily locally acquired new COVID-19 cases and deaths

cases were reported. Note that a few COVID-19-related death cases were reported in March

and April 2020, especially among patients with comorbidities. Next, new imported cases of

COVID-19 infection cases were detected in October 2020 after the frontier was re-opened but

these were successfully mitigated in quarantine centers. The mandatory 14-days of isolation in

established quarantine centers proved its optimal effectiveness.

Fig 2 covers the period from January to April 2021. In January and February 2021, a few

active local cases among front-liners were reported but by accelerating the vaccination cam-

paigns, the severity of the disease was reduced. It was in March 2021, that a sudden increase in

the number of local infection was reported among some identifiable clusters. As for the death

series, a long series of zero cases were reported.

Fig 1. The COVID-19 cases versus death series in 2020.

https://doi.org/10.1371/journal.pone.0263515.g001
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The relationship between the COVID-19 Stringency index in Mauritius (Refer to https://

ourworldindata.org/covid-stringency-index) and the number of daily new locally acquired

COVID-19 active cases also plays a significant role, as proven in [4] and as shown in Fig 3

above. The COVID-19 Stringency index was near 100 in March 2020 considering the immedi-

ate imposition of various sanitary measures like the sanitary curfew and national lockdown,

closure of borders, minimal gathering and other health-related measures. This index moved

from above 80 to below 25 from July 2020 to February 2021 because since the number of new

COVID-19 cases were decreasing considerably, the sanitary restrictions were lessened. How-

ever, post the resurgence in March 2021, with the re-introduction of the sanitary measures, the

index again shot upward to 100, indicating strictness of the policies.

In Table 1 below, we provide the descriptive statistics and preliminary test results to con-

firm the nature of both data series along with their respective Auto Correlation Function

(ACF) and Partial Auto Correlation Function (PACF) plots to determine the orders:

Based on the qcc.overdispersion.test in R statistical software via the ‘qcc’ package, it is con-

firmed that the data is over-dispersed and due to the excess zeros in the data, the Vuong test,

refer to Table 5 in S1 Appendix, and Van den Broek tests were also significant, proving that

the series is zero-inflated as well. The Ljung-Box test ascertains the existence of serial

Fig 2. The COVID-19 cases versus deaths series in 2021.

https://doi.org/10.1371/journal.pone.0263515.g002

Fig 3. The relationship between new COVID-19 cases and COVID-19 stringency index.

https://doi.org/10.1371/journal.pone.0263515.g003
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correlation in the series. The presence of trend was also significant. In fact, via the Cox-Stuart

tests, it was found that the COVID-19 new cases has a decreasing trend and death series does

not have an increasing trend. Details on these tests are shown in the S1 Appendix.

Refer to Fig 4, the ACF plots for both series demonstrate a slow decaying over 20 lags, and

this is a basis of non-stationary for the time-series while the PACF plots confirm that both

series are high-ordered (order = 7).

To address the non-stationarity issue, it is thus proposed to allow for covariate specification,

which in the context of the COVID-19 analysis, is important. The following time-dependent

covariates were considered:

• The COVID-19 Stringency Index (SI): This variable has been calculated from nine metrics,

namely school closures; workplace closures; cancellation of public events; restrictions on

public gatherings; closures of public transport; stay-at-home requirements; public informa-

tion campaigns; restrictions on internal movements; and international travel controls and is

available on a daily basis at https://ourworldindata.org/covid-stringency-index. This index

gives an indication of the strictness of government policies to the COVID-19 pandemic. The

score is between 0 to 100 where an index nearing 100 indicates strict response otherwise less

strict response [25]. In this study, the logarithm of the nominal value of the SI (log(SI)) was

used for analysis purposes.

• The event of vaccination (Vaccine): This is an important time-varying variable because as at

date, the vaccine roll-outs in Mauritius is rising given the authorities’s aim to achieve herd

immunity. More than 1 million vaccine doses have already been obtained through bilateral

Table 1. Descriptive statistics and test results for COVID-19 active cases and deaths series in Mauritius.

Descriptive Statistics New COVID-19 cases Deaths

Mean 3.0 0.04

Variance 57.9 0.07

Vuong and Jan Van den Broek tests for zero-inflation 2e-16 2e-16

Over-dispersion test using qcc 0 0

Cox-Stuart test for presence of trend 4.82e-05 0.066

Box-Ljung 2e-16 0.01

Order 7 7

https://doi.org/10.1371/journal.pone.0263515.t001

Fig 4. The ACF and PACF plots for COVID-19 new cases and death series.

https://doi.org/10.1371/journal.pone.0263515.g004
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agreements with India and China even though there is an intense competition between

countries for the purchase the COVID-19 vaccine. For this study, the event of vaccination

was categorised into two possibilities (binary) where 1 indicates that the event for vaccina-

tion is being done and 0 (ref) that the event of vaccination is not being done. Data on vacci-

nation was obtained from https://ourworldindata.org/covid-vaccinations [26] and from the

official COVID-19 platform in Mauritius, falling under the aegis of the Ministry of Health

and Wellness https://covid19.mu/.

• The reproduction rate (ReR): This covariate refers to the degree of propagation of SARS--

CoV-2 from one person to another. The data on ReR was obtained from https://

ourworldindata.org/covid-cases and the logarithm of the nominal value of ReR (log(ReR))

was considered. To note that this reproduction rate relates to the degree of transmissibility

of the “original” SARS-CoV-2 and was used as a proxy to understand the severity of the

coronavirus, considering that nowadays, constant mutation of the SARS-CoV-2 has been

observed. In terms of proactive health related measures, this rate can be highly indicative.

The logarithm of the nominal value of ReR (log(ReR)) was considered.

• The Relative COVID-19 Risk due to Weather and Air Pollution (CRW): This variable repre-

sents some environmental factors and explains their impact on COVID-19 transmission.

Weather factors like average and diurnal temperature, ultraviolet (UV) index, humidity,

pressure, precipitation and air pollutants (SO2 and Ozone) were considered while comput-

ing this index. In this paper, the CRW was categorised into 0 and 1 (binary) where 0 (ref) is

when an index is below 1 referring to relatively lower impact of weather factors on spread of

COVID-19 and 1 is when an index is above 1, indicating otherwise. Data has been extracted

from https://projects.iq.harvard.edu/covid19 and imputation based on observations were

done for missing values.

Also, to cater for the long sequence of zeros and high autocorrelation, this paper

bring forward the Zero-inflated (ZI) with different Poisson-mixture innovations models

and the INAR(p) models because as illustrated in [2–4], ignoring the excess of zeros will lead

to biasedness in the estimated parameters and standard errors [5]. More on these novel ZI

models and the inferential part of the general INAR processes are provided in the subsequent

Section.

The Zero-inflated poisson mixture models

The Zero Inflated (ZI) models, introduced by [6], are suitable for over-dispersed count data

that exhibit excessive zeros. These data are commonly encountered in social sciences, likewise

in the analysis of drug addicts [27], crimes [28], adolescents’ drinking patterns [29], counsel-

ling session attendance [30], or in the financial sectors such as in the modelling of insurance

claims [31], and in health studies such as in dental caries [32], in injection cessation in HIV

patients [33] and among many other applications areas mentioned in [7].

Basically the ZI models is a mixture of two distributions: Firstly, a probability distribution

that degenerates at zero and on the second stage, mixed with a standard probability model

such as the Poisson or Negative Binomial (NB) model. The general form is given by:

PðRt ¼ rtÞ ¼ ptg1ðRtÞ þ ð1 � ptÞg2ðRtÞ

where πt, the mixing proportion and lies in the interval between 0 and 1, indicates as well the

rate of zero inflation and g1(.) and g2(.) are the corresponding densities.
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By replacing g1(.) with a probability distribution that generates at zero and g2(.) by the Pois-

son distribution with parameter λt, we derive the ZI Poisson (ZIP) as:

PðRt ¼ rtÞ ¼ pt þ ð1 � ptÞe� lt ;

PðRt ¼ rtÞ ¼ ð1 � ptÞ
lt

rt e� lt

r!
; t ¼ 1; 2; 3; . . .

and the corresponding probability generating function (PGF) is

GRt
ðsÞ ¼ pt þ ð1 � ptÞeltðs� 1Þ: ð1Þ

Similarly we can write the ZI Negative Binomial (ZI NB) with parameter (λt, ν−1)

PðRt ¼ rtÞ ¼ pt þ ð1 � ptÞ
n� 1

lt þ n
� 1

� �n� 1

;

PðRt ¼ rtÞ ¼ ð1 � ptÞ
GðRt þ n

� 1Þ

r!Gðn� 1Þ

n� 1

lt þ n
� 1

� �n� 1

lt

lt þ n
� 1

� �Rt
( )

; r ¼ 1; 2; 3; . . . ;

GRt
ðsÞ ¼ pt þ ð1 � ptÞ½1þ nltð1 � sÞ�� n

� 1

;

and, recently, [34] proposed the ZI COM-Poisson model (ZI-CMP) where,

PðRt ¼ rtÞ ¼ pt þ ð1 � ptÞ
1

Zðlt; nÞ
;

PðRt ¼ rtÞ ¼ ð1 � ptÞ
1

Zðlt; nÞ

lt
Rt

ðRt!Þ
n ; t ¼ 1; 2; 3; . . .

and its PGF is

GRt
ðsÞ ¼ pt þ ð1 � ptÞ

Zðlts; nÞ
Zðlt; nÞ

;

where the Z(λt, ν) is computed from [35] as:

Zðlt; nÞ ¼
expfnlt

1=n
g

lt
ðn� 1Þ=2n

ð2ptÞ
ðn� 1Þ=2 ffiffiffi

n
p 1þ c1ðnlt

1=n
Þ
� 1
þ c2ðnlt

1=n
Þ
� 2
þ Oðlt

� 3=ltÞ

� �

ð2Þ

as λ!1 and where,

c1 ¼
n2 � 1

24

c2 � c1
2=2 ¼

n2 � 1

48
:

Next, the Poisson-Tweedie (PT) model in [36] has also shown its efficacy in handling over-

dispersed and to some extent, data with excess zero, as discussed in [37–39]. The PGF of the

PLOS ONE The SARS-CoV-2 series in Mauritius and an extended integer-valued time series models

PLOS ONE | https://doi.org/10.1371/journal.pone.0263515 February 8, 2022 7 / 17

https://doi.org/10.1371/journal.pone.0263515


PT model is given by:

GRt
ðsÞ ¼

exp
b
a ð1 � cÞa � ð1 � csÞað Þ
� �

; a 6¼ 0;

ð1 � cÞb

ð1 � csÞb

" #

; a ¼ 0:

8
>>>>>>><

>>>>>>>:

ð3Þ

and its zero-inflated PGF (ZI-PT) is simply given by pt þ ð1 � ptÞGRt
ðsÞ. Furthermore, the PT

function can be re-parameterized in terms of λt, σ2, Dt ¼
s2

t
lt

and a where;

ct ¼
Dt � 1

Dt � a
;

bt ¼
ltð1 � ctÞ

1� a

ct
¼

ltð1 � aÞ1� a

ðDt � 1ÞðDt � aÞ� a :

Note the probability distribution of the PT model cannot be generally written in its explicit

form (See [37]) whilst its probability values can be computed recursively as in [36] or using the

method of [40], explained in the next subsection. It also important to note that a = 0 in Eq (3)

corresponds to NB.

Apart from these models, the recently studied Cosine-Geometric models [4, 41] is also

proven useful for count data modelling. The PGF of WCG is given by:

GRt
ðsÞ ¼

Cl�t ;n

2

1

1 � l
�

t s
þ

1 � l
�

t s cosð2nÞ
1 � 2l

�

t s cosð2nÞ þ ðl
�

t sÞ2

" #

; s < � lnðl�t Þ;

where l
�

t ¼
lt

1þlt
and l

�

t 2 ð0; 1Þ and n 2 0; p
2

� �
. The PGF of the ZI-WCG is

pt þ ð1 � ptÞ � GRt
ðsÞ.

In the event we have some explanatory variables, given by the vector xt, which are known to

influence the tth response variable y = yt, then xt = [x1, x2, . . ., xp], and lt ¼ expðxt
TbÞ, for the

tth term. In this context, p = 4, with x1 = ReR, . . ., x4 = CRW. For the zero inflated part, we

assume the probability of zero is denoted by πt for y = yt, where pt ¼
expðxt

TbÞ

1þexpðxt
TbÞ

where η = [η1,

η2, . . ., ηp]T.

Overall, for the interested reader, the ZI data can easily be generated in R using ifelse(rbi-
nom(n, size = 1, prob = π)>0, 0, rdis(n, λ�, ν)), where for the Poisson model, ‘rdis’ is rpois(n,λ =

μ), for NB model, ‘rdis’ is rnbinom(n, size ¼ 1

n
, mean=λ) and for COM-Poisson, ‘rdis’ is rcmp

(n,λ,ν), (similar for the PT model, refer to the poistweedie package in R) or alternatively, the

data can be obtained from ZIM [42], iZID [43], bZinb [44] and ZiC packages [45].

Note, since the marginal distribution of the counting series is not known, we follow the

approach in [46] by conditioning on F t ¼ ½Yt� 1;Yt� 2; . . . ;Yt� p� to obtain

GRt jF t
ðsÞ ¼

Yp

l¼1

ð1 � rl þ rlsÞ
Yt� l

" #

� GRt
ðsÞ ð4Þ

and from here, the probability density values for Yt, t = p + 1, . . ., T can be obtained using the

inversion technique [40].
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INAR (p) model

From [2, 3, 47], the simple integer-valued autoregressive process of order 1 (INAR(1)) is writ-

ten as:

Yt ¼ r � Yt� 1 þ Rt; ð5Þ

where t = 1, 2, 3, . . ., T, subject to fRtg
T
t¼1

is an identically and independently distributed set of

innovation term with, say, E(Rt) = μt and VarðRtÞ ¼ s
2
t . The relation between Rt and the previ-

ous lagged observations, yt−k, for k 2 Zþ, is given as Cov(Yt−k, Rt) = 0. The operator ‘�’ is the

binomial thinning with constant parameter ρ; ρ 2 [0, 1), that is defined from [48–54] as r �

Y ¼
PY

s¼0
bsðrÞ where bs(ρ) is an i.i.d Bernoulli r.v with probabilities ρ, and hence ρ � Y|

Y* Binomial(Y,ρ), with probability generating function Gρ�Y|Y(s) = (1 − ρ + ρs)Y and hence,

GYt jYt� 1
ðsÞ ¼ ð1 � rþ rsÞYt� 1 � GRt

ðsÞ

The INAR(p) process, based on Eq (1) is extended to:

Yt ¼ r1 � Yt� 1 þ r2 � Yt� 2 þ � � � þ rp � Yt� p þ Rt; ð6Þ

where the Bernoulli sequence {bj,k} in ρk � Yt−k and {bj,k0} in ρk0 � Yt−k0 are independent. Sup-

pose, F t ¼ fYt� 1; . . . ;Yt� pg, then,

1.

fyt jFt
¼ Fyt jFt

ðytÞ � Fyt jFt
ðyt� 1Þ

2. From [40],

FYt jF t
¼

1

2
�
p

2

Z p

� p

Re
GYt jFt

expð� iaÞ � expð� iaÞYt

1 � expð� iaÞ

� �

da

and hence the log-likelihood equation is obtained as:

PrðYtjYt� 1;Yt� 2;Yt� 3; . . . ;Yt� pÞ ¼
XminðYt� 1 ;YtÞ

i1¼0

Yt� 1

i1

 !

r
i1
1 ð1 � r1Þ

Yt� 1 � i1

�
XminðYt� 2 ;Yt� i1 Þ

i2¼0

Yt� 2

i2

 !

r
i2
2 ð1 � r2Þ

Yt� 2 � i2 � � � �

�
X

minðYt� p ;Yt� ði1þi2þ���þipÞÞ

ip¼0

Yt� p

ip

0

@

1

Ar
ip
p ð1 � rpÞ

Yt� p � ip

�f�tðYt � ði1 þ i2 þ � � � þ ipÞÞ

ð7Þ

which is solved using the optim function in R. From [51], the vector of unknown parameters

denoted by ŷ � y � Nð0; IðŷÞÞ where I(θ) is the Hessian and is obtained from the optim$hes-
sian in R.

The properties of the INAR(p) process have been further studied in [4, 46, 55, 56]. The R

codes can be made available on request.
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Results

Following the model descriptions and properties, we apply the high ordered INAR to analyze

the new COVID-19 infected series. We present the results in the Tables 2 and 3 below:

The results in Tables 2 and 3 and Table 6 in S1 Appendix, were obtained assuming the

training dataset from 18 March 2020 to 25 April 2021. It can be deduced that the Zero-Inflated

Negative Binomial model (ZI-NB), given its lowest Akaike Information Criteria (AIC), outper-

formed the other competing ZI-PT, ZI-WCG and Poisson mixture models (See the results of

Poisson mixture models in the S1 Appendix).

Referring to results in Tables 2 and 3, the variables ‘ReR’, ‘SI’, and ‘Vaccine’ were highly sig-

nificant in reducing the number of infection in Mauritius, as compared to ‘CRW’.

The ReR is directly associated with the number of new active cases [57]. This is because by

observing the evolution of the series, it can be deduced that in October 2020 when there were

an increase in international mobility [19] following opening of frontier and in March 2021

when the second wave has resurfaced, an exponential increase in the number of active

COVID-19 cases was reported. At this point, a worrisome ‘ReR’ of above 1 was being reported,

indicating high risk of getting infected. Fortunately, based on these trends in ‘ReR’ and new

COVID-19 active cases, the authorities triggered timely health related measures like vaccina-

tion campaigns in Mauritius and consequently, the policies proved its effectiveness in April

2021, with a reduction in the number of new active COVID-19 cases, and in the ‘ReR’. At this

point, ‘ReR’ was below 0.5.

The event of vaccination indeed is playing a vital role in curbing the number in infection.

Based on the reversed estimates of ‘Vaccines’, it can be deduced that as the vaccination cam-

paigns take place, this is reflected positively in the share of Mauritian population which has

already received at least one dose of the vaccines and likewise, the risk of getting infected is

expected to decrease considerably. It has largely been proven that the COVID-19 vaccines

reduces the overall attack rate by rendering the human immunity system more resilient. The

chance for symptomatic and asymptomatic infections [58–63] and the severity of the symp-

toms [64, 65] are considerably reduced, thus entailing an adverse effect on the mortality rate

related to COVID-19. More elaborated comments are provided below. Timely imposition of

new immediate sanitary measures during the peak COVID-19 phases also play an important

role in curbing the spread of the virus. In fact, the quicker and earlier the sanitary measures are

imposed, the more rapidly is the SARS-CoV-2 contained in the local community. Conversely,

unlike other European regions, Mauritius reported its highest cases of COVID-19 in both

warmer and colder regions, and in both weather conditions—summer and Winter, so ‘CRW’

was proven to be insignificant in curbing the number of active COVID-19 cases. In fact, given

the constant mutation of the SARS-CoV-2 in different regions and Mauritius having a com-

paratively restricted regional disparity, possibly a larger dataset on ‘CRW’ will allow better

exploration of its association with the number of infection [66, 67].

Table 3 confirms that the estimates of the over-dispersion parameters in the ZI models are

significant. In addition, the death series has also been analysed using the ZI-NB model due to

its lower AIC. Below, the results have been presented.

From above Table 4, using the death series from 18 March 2020 till 25 April 2021, it can be

concluded that all covariates except ‘CRW’ is highly significant in reducing the number of

deaths related to COVID-19. The most important point to note is that in line with the results

in Table 2 and as discussed in [58], the event of vaccination and the COVID-19 Stringency

index have a substantial impact on the mortality rate related to COVID-19. As a matter of fact,

in March and April 2021, Mauritius registered worrisome 8 deaths but once the vaccine
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Ẑ

1
Ẑ
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coverage has widened and adherence to non-pharmaceutical interventions has increased, the

number of death cases has dropped to zero.

Finally, we used the regression estimates for ZI-NB, as in Table 2, to conduct short term

outsample forecasting of the number of new infected COVID-19 cases in Mauritius, from 26

April 2021 to 05 May 2021 and consequently, the ZI-NB model had the relatively lower Root

Mean Square Errors (RMSEs) of 1.41. It can also be seen that the 95% confidence interval lies

between 0 and 2 which means that during the next 10 days, that is from 26 April 2021 till 05

May 2021, there was 95% chance that the new COVID-19 infection case will lie between 0 and

2. In Fig 5 below, we demonstrate the 95% confidence interval plot:

An in-sample forecast for next 5 days, from 21 to 25 April 2021, with 95% confidence inter-

val, showed that with a RMSE of 4.36, the ZI-NB model is relatively the better model. Below, in

Fig 6, the CI plot has been illustrated:

Note that attention is drawn to the fact that due to some unmeasurable and unpredictable

latent effects, the forecasted number of locally acquired new COVID-19 cases may not be easily

estimated, especially in the long-run. In fact, in the rise of a sudden shock or spike, the fore-

casted values are naturally disrupted, since the predictor functions in the innovation distribu-

tion may not include a new physical or latent effect. Such a situation may be circumvented by

updating the list of covariates on a daily basis and also by allowing the forecasts on a change-

point basis. Simultaneously, it is important to check the Variance Inflating factor (VIF) of the

different regressors to avoid any multi-collinearity. Likewise, in the above analysis, the factor

time was omitted due to the high VIF. We also note that in the high-ordered INAR process,

the specification of latent effects may not be easily handled due to integrating the random

effects (Refer to [1]).

Table 3. Estimates, corresponding standard errors in parentheses and p-values.

Innovation Other parameters Results

ZI-NB n̂ 0.903

(0.000)

0.000

ZI-CMP n̂ 1.058

(0.001)

0.000

ZI-PT ŝ2 0.076

(0.004)

0.000

â 1.582

(0.001)

0.000

ZI-WCG ŷ 0.223

(0.000)

0.000

https://doi.org/10.1371/journal.pone.0263515.t003

Table 4. Estimates, corresponding standard errors in parentheses and p-values for death series under ZI-NB.

Intercept ReR SI Vaccine CRW Ẑ0
Ẑ1 Ẑ2 Ẑ3

Ẑ4 AIC

0.537 0.001 -0.357 -0.625 -0.042 0.160 0.023 0.164 -0.027 0.165 10957.07

(0.000) (0.000) (0.000) (0.000) (0.101) (0.010) (0.001) (0.001) (0.001) (0.016)

0.000 0.000 0.000 0.000 0.678 0.000 0.000 0.000 0.000 0.000

https://doi.org/10.1371/journal.pone.0263515.t004
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Discussion

In this study, useful INAR-type models were applied to the daily new COVID-19 infection

cases and death cases while considering several covariates in order to understand the signifi-

cant causes of the COVID-19 series and also to provide some reliable short term forecasts.

Fig 5. Forecasted values (out-sample) with 95% confidence interval.

https://doi.org/10.1371/journal.pone.0263515.g005

Fig 6. Forecasted values (in-sample) with 95% confidence interval.

https://doi.org/10.1371/journal.pone.0263515.g006
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Based on the above results, the event of Vaccination—’Vaccine’ and the COVID-19 Stringency

Index—’SI’, are found to be highly significant in mitigating the spread of SARS-CoV-2 in the

local Mauritian context and hence, the authorities can further work on strategies to re-enforce

the ‘Vaccine’ and ‘SI’ measures. As part of COVID-19 preparedness plan, new and re-enforced

COVID-19 legislations like the most recent “Restriction of Access to Specified Institutions”,

upgrade in medical supplies and health equipment in terms of more personal protective equip-

ment (PPE), high-tech protective masks like the novel ViriMASK, hospital beds for COVID-

19 specialised hospitals amongst others, dynamic contact tracing teams, and more well-

equipped laboratories for COVID-19 testing exercises, are further encouraged. Mauritius has

it all but without the contributory support of the Mauritian population, nothing is worth. For a

“COVID-19 free” Mauritius, concerned authorities are expected to boost the sensitization

campaigns during this second wave of COVID-19 pandemic. Actually, slogans like “Sel Solu-

tion Vaccination” (Only solution is vaccination) are circulating on the social media but maybe

by considering new motivating slogans like “Vacciner pu sauve nu pays” (Get vaccinated to

save our motherland) can sensitize the population on the need to get vaccinated and the

urgency to revive the Mauritian economy during this glooming economic scenario. Finally,

the proposed INAR models can ultimately serve as an additional toolkit to the local authorities

for better analysing and monitoring the evolution of the SARs-CoV-2 series in Mauritius.
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