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Theuse ofmaximum length sequence (m-sequence) has been found beneficial for recovering both linear and nonlinear components
at rapid stimulation. Since m-sequence is fully characterized by a primitive polynomial of different orders, the selection of
polynomial order can be problematic in practice. Usually, the m-sequence is repetitively delivered in a looped fashion. Ensemble
averaging is carried out as the first step and followed by the cross-correlation analysis to deconvolve linear/nonlinear responses.
According to the classical noise reduction property based on additive noise model, theoretical equations have been derived in
measuring noise attenuation ratios (NARs) after the averaging and correlation processes in the present study. A computer simulation
experiment was conducted to test the derived equations, and a nonlinear deconvolution experiment was also conducted using order
7 and 9 m-sequences to address this issue with real data. Both theoretical and experimental results show that the NAR is essentially
independent of the m-sequence order and is decided by the total length of valid data, as well as stimulation rate. The present study
offers a guideline for m-sequence selections, which can be used to estimate required recording time and signal-to-noise ratio in
designing m-sequence experiments.

1. Introduction

Maximum length sequence (m-sequence) has been found
useful in the study of linear and nonlinear responsive com-
ponents in the auditory system [1, 2]. Convoluted auditory
evoked potentials (AEPs) can be elicited by an m-sequence
of stimuli with its interstimulus intervals (ISIs) varying
pseudorandomly. The cross-correlation technique has been
developed to deconvolute linear/nonlinear components in
AEPs [3, 4] fromoverlapped responses.The linear component
reflects evoked responses to individual stimuli independently,
and the nonlinear component reflects the temporal inter-
action of two or more stimuli. Therefore, the m-sequence
method provides a unique tool in characterizing the human
auditory system.

Usually, AEPs are highly contaminated with background
electroencephalograms (EEGs) from various sources of noise
or artifacts. An ensemble averaging technique has to be

applied to enhance the signal-to-noise ratio (SNR) before
deconvolution. It is well-known that noise power level is
attenuated inversely proportional to number of signal sweeps
to be averaged. The noise property of AEPs obtained using
m-sequence can be studied from different perspectives. For
example, Marsh [5] presented an intuitive explanation of
noise constraints for m-sequence to extract the linear com-
ponents of auditory brain stem response (ABR) using a sub-
averaging technique and demonstrated that ABR elicited by
an m-sequence was noisier than conventional ABR obtained
with same number of stimuli. Thornton [6, 7] presented a
simple estimation method for SNR improvement using m-
sequence in acquisition of otoacoustic emissions (OAEs).
This estimation is based on an assumption of no adaptation
effect for OAEs and estimated 3 dB SNR improvement for an
m-sequence eliciting OAEs. Late on, Van Veen and Lasky [8]
provided a general matrix-based framework for the response
to arbitrary stimulus sequences and derived estimated SNR
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formula for m-sequences. Inspired by the success of m-
sequence AEP, other deconvolution techniques have been
rapidly advanced for various application scenarios (e.g., [9–
11]). Delgado and Ozdamar [12] proposed a deconvolu-
tion method called continuous loop average deconvolution
(CLAD), which provided a computational efficient solution
to the problem and a capability of SNR estimation in the
frequency domain. Based on the similar idea, they then
employed Parseval’s theorem to derive an SNR formulation
for m-sequence and proved that m-sequence offers the
highest SNR as compared with any CLAD sequences [13].

Conventionally, the raw EEG is epoched into EEG sweeps
for averaging.A sweep of EEG is usually short in length equiv-
alent to the ISI of the corresponding isochronic stimulus-
sequence. The length of a signal sweep of m-sequence is
much longer since EEGs to be averaged are in response to
a full length of m-sequence containing a number of stimulus
events, which is determined by the order of an m-sequence.
The factmeans that the number of EEG sweeps to be averaged
has to be greatly reduced given a fixed EEG recording time,
which gives rise to a problem of how to select the best m-
sequence in terms of SNR. Although less number of sweeps
will sacrifice SNR at the averaging step, the next cross-
correlation step is expected to be able to attenuate more noise
that may compensate its SNR loss. In the present study, we
investigated the noise attenuation property of m-sequence
with different orders using the cross-correlation technique.
Based on the well-established noise attenuation relationship
from the ensemble averaging process, we derived a noise
attenuation ratio (NAR) metric for the m-sequence decon-
volution procedure including both averaging and correlation
processes. We then employed computer synthetic data and
a real nonlinear AEP experiment to validate the proposed
formula.

2. Method

2.1. Nonlinear m-Sequence Model. In general, a nonlinear
system can be represented by a Volterra or Wiener series
provided that the system is time-invariant with finitememory
[14, 15]. The output of such a nonlinear system can be
expressed by summations of multiorder convolutions of
Volterra kernels:

𝑦 (𝑡) = ℎ0 + ∫
𝑇

𝜏=0
ℎ1 (𝜏) 𝑠 (𝑡 − 𝜏) 𝑑𝜏

+ ∫𝑇
𝜏1=0

∫𝑇
𝜏2=0

ℎ2 (𝜏1, 𝜏2) 𝑠 (𝑡 − 𝜏1) 𝑠 (𝑡 − 𝜏2) 𝑑𝜏1𝑑𝜏2
+ ⋅ ⋅ ⋅ + ∫𝑇

𝜏1=0
⋅ ⋅ ⋅ ∫𝑇
𝜏𝑝=0

ℎ𝑝 (𝜏1, . . . , 𝜏𝑝)
⋅ 𝑠 (𝑡 − 𝜏1) ⋅ ⋅ ⋅ 𝑠 (𝑡 − 𝜏𝑝) 𝑑𝜏1 ⋅ ⋅ ⋅ 𝑑𝜏𝑝,

(1)

where ℎ1(𝜏), ℎ2(𝜏1, 𝜏2), . . ., and ℎ𝑝(𝜏1, . . . , 𝜏𝑝) are the first,
second, and 𝑝th-order Volterra kernels of the system; 𝑇
is the system memory length; 𝑠(⋅) is the system input or
the stimulation in this context. The Volterra kernels are

m-sequence of order 5

(a)

Recovery sequence sr(t)

(b)

Figure 1: An instance of order 5 m-sequence (a) and the corre-
sponding recovery sequence (b). The positive pulse train represents
digit “1” of the m-sequence that indicates the occurrence of a sound
stimulus, for example, a click. The negative pulse in the recovery
sequence represents digit “−1” used to calculate the deconvolution
process. The interpulse interval is padded with zeros to adjust the
stimulation rate for specific application.

equivalent to orthogonal Wiener kernels, which can be esti-
mated by amethod developed by Lee and Schetzen [16] using
Gaussian white noise input. The Gaussian white noise input
is unsuitable for transient AEPs that are usually elicited by
individual short sound elements. Using binary m-sequence,
Sutter [17] developed a computational efficient method to
estimate the nonlinear kernels that are referred to as binary
kernels based on the cross-correlation techniques [16]. Shi
andHecox [4] further extended it tom-pulse sequence which
is in linewith the linear applicationm-sequence firstly carried
out by Eysholdt and Schreiner [3] in extracting the linearABR
at fast stimulus rate.

Mathematically, an m-sequence derived from a primitive
polynomial is usually implemented by a number of shift-
registers with different orders [18], say 𝑟. And the number
of binary values or the length of an m-sequence is 𝐿 =2𝑟 − 1. The m-pulse sequence proposed by Shi and Hecox
[4] modified the m-sequence of binary element of {−1, +1}
to a pulse sequence of {1, 0} element, where the digit “1”
is used to designate the occurrence of a transient stimulus,
and digit “0” represents the silence of stimulation. In the
discrete implementation of stimulations, the original m-
sequence actually represents the most condensed stimulation
rate that is practically unfeasible. Given the sampling rate 𝑓𝑠
in practice, we have to sparsify an m-sequence by padding
zeros between the neighboring binary elements. The number
of zeros denoted by 𝑞 is called sparse factor. In this case,
the stimulation rates for an m-sequence can be derived
from the reciprocal of the maximum ISI, the minimum
ISI, and the mean ISI of an m-sequence. An instance of
stimulation impulses derived from an order 5 m-sequence
is shown in Figure 1. For every m-pulse sequence, a unique
recovery sequence can be defined by an inverse operation
on the original m-sequence (Figure 1). A unique mathematic
property of m-sequence is that the cross-correlation function
between the m-pulse sequence and the recovery sequence
is an impulse function, which makes the deconvolution
problem solvable and computational efficient.

According to the cross-correlation method modified by
Shi and Hecox [4], all the impulse kernel slices are dis-
tributed within the cross-correlation signal 𝜙(𝑡) between the
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measured response 𝑦(𝑡) to a sweep of m-sequence and the
recovery sequence 𝑠𝑟(𝑡):

𝜙 (𝑡) = 2
𝐿 + 1𝑦 (𝑡) ⊗ 𝑠𝑟 (−𝑡) . (2)

The onset location of the kernel slices is determined
by a shifting function, which is determined a priori by
the primitive polynomial used to generate the specific m-
sequence. This method is essentially a deconvolution process
for an inverse problem.

In practice, the m-sequence stimulation is delivered to
human subjects repetitively, and the ensemble averaging is
applied to epoched responses to enhance SNR before the
cross-correlation analysis. Thus, the NAR in dB is

𝜂𝑎 = 20 log10 (𝜎𝑎𝜎𝑛) = −10 log10 (𝐾) (dB) , (3)

where𝐾 is the number of EEG sweeps to be averaged. 𝜎𝑎 and𝜎𝑛 are the root mean square (RMS) values of averaged and
raw EEG data, respectively. Suppose the same EEG recording
time; the𝐾will be different form-sequences of different order𝑟:

𝐾 = 𝑁
𝐿𝑞 = 𝑁

(2𝑟 − 1) 𝑞 , (4)

where 𝑁 is the length of raw EEG signal in response to
a number of m-sequence stimulations, and 𝑞 is the sparse
factor used to adjust ISI in discrete time implementation. It
is noted that lower order m-sequences attenuate noise much
better. Nevertheless, such a benefit might be neutralized in
the next correlation analysis step. Considering that measured
response 𝑦(𝑡) to a sweep of m-sequence contains additive
noise, that is, 𝑛(𝑡), which is unrelated to stimulus events,
and that 𝑠𝑟(𝑡) is a train of 𝐿 pulse functions (positive and
negative pulses, see Figure 1), the convolution operator in (2)
is essentially a superposition of 𝑦(𝑡) with its moving version
of different signs. Suppose that 𝜎 denotes the RMS value of
a signal before the correlation analysis; the noise term of
𝑦(𝑡) ⊗ 𝑠𝑟(−𝑡) will be √𝐿𝜎 therefore, since it is equivalent to
a moving summation. Thus, combining the coefficient term2/(𝐿 + 1) in (2), the NAR after (2) should be

𝜂𝜙 = 20 log10 (𝜎𝜙𝜎𝑎 ) = 20 log10 ( 2√𝐿
𝐿 + 1)

≈ 20 log102 − 10 log10𝐿 (dB) .
(5)

The approximation holds for 𝐿 ≫ 1. The overall NAR is thus
given by

𝜂𝜙𝑎 = 𝜂𝜙 + 𝜂𝑎 = 20 log10 ( 2𝐿√𝑞
(𝐿 + 1)√𝑁)

≈ 𝐶 − 10 log10𝑁(dB) ,
(6)

where 𝐶 = 20 log 2 + 10 log 𝑞 can be considered as a constant
given a fixed 𝑞 in an application. This simple equation
indicates that the overall noise attenuation is only determined

by the length of recording signal.Them-sequence order does
not affect such a noise property. The sparse factor 𝑞 controls
the average stimulation rate, which is an important parameter
in applications. An arbitrary stimulation rate can be achieved
by adjusting both 𝑞 and the sampling rate.

2.2. Simulation Experiments. Since themagnitude of genuine
responses may vary with respect to the stimulation property,
for example, due to the adaptation effect of nervous systems,
the SNR property was not investigated using a specific exper-
iment. Instead, noise attenuation property was concerned by
calculating the ratio of RMS amplitude for a target noise. To
examine noise attenuation through the average and cross-
correlation processes, background EEGs were simulated with
various pink noise of 1/𝑓 power distribution, which was
considered as an appropriate model for EEG characteris-
tics [19]. In the present study, EEGs corresponding to m-
sequences of order 𝑟 = {5, 6, . . . , 12}, sparse factor 𝑞 = 40 at
20 kHz sampling rate, equivalent to 2ms minimum ISI, were
synthesized. Simulated EEGs of around 14min in length were
chosen. The exact length varied a bit to guarantee integral
multiple sweeps that was the length of an m-sequence. This
length corresponded to 100 sweeps for the m-sequence of
order 12. Since EEGs were generated randomly, each NAR
presented as a mean value over 15 EEG samples, and the
standard deviations (sd) were also presented in necessary.

2.3. Real Nonlinear Experiments. Real EEGs were acquired
from human subjects stimulated by m-sequences of order 7
and 9 (same sequences used in the previous simulation exper-
iment). Adult subjects were recruited and given informed
consent approved by the Institutional Review Board of
Southern Medical University. Nine subjects (age 21–23, six
males) were enrolled with normal hearing. EEG data were
acquired using SynAmps2 amplifier (Compumedics Ltd.,
Victoria, Australia) at the sampling rate of 20 kHz and a
100–2000Hz (12 dB/oct) bandpass filtering. Three Ag/AgCl
surface electrodes were placed on the upper forehead (active),
lower forehead (ground), and ipsilateral mastoid (reference)
with electrode impedances of less than 5 kΩ. Subjects were
seated on a deckchair in an electromagnetic shielded and
soundproof booth during EEG recording. Rarefaction clicks
were delivered monaurally to the right ear at 82 dB pSPL via
an insert earphone (ER-3A Etymotic Research, Elk Grove
Village, IL, USA).

EEGs were recorded continuously in response to stimuli
sweeps of an m-sequence and repeated for two runs. Each
run contained 2000 sweeps for order 7 m-sequence and 500
sweeps for order 9 m-sequence. The length of EEG per run
was about 8.47min for order 7 sequence and 8.52min for
order 9 sequence.

3. Results

3.1. Simulation Results. The noise attenuation in the aver-
aging process is determined by the number of sweeps to
be averaged. In this experiment, the averaging number is
dependent on the m-sequence order when the length of
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Figure 2: NARs of the average process with respect to sweep number (a), EEG recoding length (b), and the m-sequence orders (c) for the
simulated EEGs corresponding to 5–12 order m-sequences. The total recoding lengths of these EEGs are about the same, which results in
different sweep numbers to be averaged.

EEG recordings was same for different sequences. Figure 2(a)
shows the NARs with respect to the number of averaging
sweeps, which demonstrates its inversely proportional pat-
tern to the square root of the sweep number 𝐾 as indicated
in (3). Figure 2(b) shows these NARs rescaled with respect
to the time or sweep length for different order m-sequences,
which demonstrates that more sweep numbers available for
lower order m-sequence lead to different levels of NAR given
same EEG recording lengths. As the EEG sweep length varies,
which is equivalent to the time incremental spaces in these
traces (Figure 2(b)), Figure 2(c) shows these ratios with
respect to the m-sequence orders from 5 to 12. The lower
border line (the red dotted line) indicates the attenuation
ratios averaged over the same entire recording time (about
14min in these cases), and the upper border line (the
black dotted line) indicates the least number of averaging
sweeps (100 in these cases). These figures present the NAR
properties for the averaging process in various perspectives,
which coincide well with the theoretical ones as defined in
(3).

As indicated in (5), the cross-correlation process atten-
uates noise as well, as determined by the element number
of m-sequence, 𝐿, which means that the higher order m-
sequences with larger 𝐿 lead to more noise attenuation.
Simulated NARs (𝑚 ± sd) of this process are shown in
Figure 3 for the same data set as shown in Figure 2. The
inversely proportional relationship between 𝐿 and NAR can
be observed in Figure 3(a). 𝐿 exponentially increases with the

m-sequence order, since 𝐿 = 2𝑟 − 1. A linear increased m-
sequence order 𝑟 for these data is shown in Figure 3(b), which
illustrates a linear relationship of NAR to the m-sequence
order. Figure 3 also shows that the simulated results coincide
with the theoretical ones very well (red dashed lines).

Since the averaging and correlation processes attenuate
noise differently with respect to the sequence order, the effect
of both processes can be observed under the condition with
same total recording times for different m-sequence orders.
As indicated in (6), the ratio is only determined by the total
length of EEG signal involved in the deconvolved compu-
tation including both averaging and correlation processes.
Figure 4 shows the simulated and theoretical NARs of the
whole deconvolution process for EEG recordings of 14min.
Both the theoretical analysis and simulation results prove
that the m-sequence order will not affect the SNR in the
deconvolution process given the same recording time. The
averaging and correlation balance noise attenuation effect to a
rational level that is only dependent on data recording times,
but not the sequence order.

3.2. Real AEPs for 7 and 9 Order m-Sequences. The important
difference between a real AEP experiment and simulation
experiment is that acquired EEGs in the real AEP experi-
ment contain both background noise and stimulus evoked
components.The averaging and correlation processes cannot
attenuate evoked components that might cause errors in



Computational and Mathematical Methods in Medicine 5

Theoretical
True

1000 2000 3000 40000
Length (L)

−35

−30

−25

−20

−15

−10

−5
N

A
R
𝜂
𝜙

(d
B)

(a)

Theoretical
True

6 8 10 124
Order (r)

−35

−30

−25

−20

−15

−10

−5

N
A

R
𝜂
𝜙

(d
B)

(b)

Figure 3: NARs (𝑚 ± sd) of the correlation process for m-sequences of orders 5–12.
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Figure 4: NARs (𝑚 ± sd) of the whole processes of averaging and correlation for the same EEG length of about 14min.

calculating NARs. A simple way to estimate pure noise term
is to use the alternative reference technique [20], which
adds and/or subtracts EEG sweeps alternatively to cancel out
phase-locked responses. Figure 5 shows the mean NARs with
standard deviation (𝑚 ± sd) from 9 subjects with respect to
the number of sweeps in the averaging process. Conventional
averaging process using EEG containing responses (black
lines) shows much less NARs and larger deviations from
the theoretical NARs (red dashed lines). However, the NARs
calculated after the alternative reference method for noise
only estimation (blue lines) show much close patterns to
the theoretical ones (red dashed lines). The maximal sweep
numbers of about 8.5min raw EEGs used for order 7 and 9
cases are 2000 and 500, respectively.

Unlike averaging process, the correlation process can
circumscribe the onset locations of evoked responses for

both linear and nonlinear components. A location within
the correlation signal can be given by a shifting function to
locate the onset site of a component [4]. A memory length
for these responses can then be defined to isolate them,
which are usually termed kernel slices, since they represent
a response along the diagonal dimensions. Therefore, evoked
responses can be excluded fromcorrelation signals using such
a method. The NAR for the correlation process can be calcu-
lated at three conditions as shown in Figure 6, where NAR
values of each subject are indicated by a bar plot.The theoret-
ical NARs are about −21 dB for order 7 sequences and −15 dB
for order 9 sequences (red dashed lines). Figure 6(a) presents
the NARs in the correlation analysis based on the condition
of the conventional averaging process over the maximum
sweep number, which means that evoked responses are not
rejected in both averaging and correlation analyses. However,
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Figure 5: NARs of the averaging process for order 7 (a) and order 9 (b) m-sequences using the conventional averaging process that contains
evoked components and the alternative reference averaging process.
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Figure 6: NARs of correlation for order 7 (blue “—×” lines) and 9 (black “—I” lines) m-sequences for 9 subjects and under three calculation
conditions: responses involved by conventional averaging and correlation processes (a), excluding responses from correlation process (b),
and excluding responses from both correlation and averaging processes.
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Figure 7: A typical instance of the averaged response for a subject by conventional averaging (black) and noise only averaging by alternative
referencemethod (red).Them-sequence on the bottom indicates some correspondences between the stimulus clicks and the distinct response
that may be identified.

the NARs are quite well consistent with the theoretical ones
for all subjects, particularly in comparison with Figure 6(b),
where evoked responses are excluded from the correlation
analysis using shifting functions, but not in the averaging
analysis.These results can be attributed to the fact that evoked
responses remain in the averaging step, which affect𝜎𝜙 and𝜎𝑎
as in (5). It suggests an interesting fact on NARs that it can be
approximately estimated with acceptable accuracy from EEG
data obtained in real AEP experiments without considering
the effect of evoked responses. Nevertheless, a more accurate
estimation can be achieved by excluding evoked responses in
both the averaging and correlation processes (Figure 6(c)).

To illustrate the evident responses after averaging, we
present an instance of averaged signals of order 7m-sequence
for subject 3 in Figure 7. The averaged response (back
trace) shows distinct larger amplitude than the noise signal
estimated by the alternative reference method (red trace)—
about 6 dB difference specifically in this case. It is also
possible to identify some distinct responses corresponding to
onsets of stimulus clicks in the m-sequence indicated by the
dotted lines. These responses may contribute mainly to the
linear AEP components.

Figure 8 illustrates the extracted linear and nonlinear
components averaged over all subjects for two m-sequences.
The figure shows almost identical linear AEPs or the main
diagonal kernel slice (KS11 in Figure 8(a)) and three well-
matched second-order nonlinear AEPs (KS21–KS23 in Fig-
ures 8(b)–8(d)). The linear component reflects the neural
responses to individual clicks that consist of the largest energy
in responses, whereas the second-order nonlinear compo-
nents reflect the temporal interaction between neighboring
clicks that are only about one-tenth amplitude as compared
with the linear component, indicating being potentially more
susceptible to noise contamination. These results demon-
strate an agreement in terms of SNR for m-sequences of
different orders.

4. Discussion

In the application of using m-sequence to investigate both
linear and nonlinear evoked components, it is faced with a

problem of selecting m-sequence with different orders and
different mathematical properties (or primitive polynomial).
It is essential to know these differences and their influences
on experimental results.The present study reports an effort of
assessing m-sequences on their noise attenuation property. A
simple formula is derived to estimate noise attenuation ratio
for a typical way of deliveringm-sequence stimulations based
on the well-established relationship of averaging theory on
additive noise conditions.

Previous studies claimed that m-sequence may reduce
recording time since rapid stimulation is achieved in the
linear deconvolution process with m-sequence [3, 21]. This
effect can also be explained and estimated by (6), which is
equivalent to reduce sparse factor 𝑞 in order to suppress
the noise term. As an example, if the mean ISI of an m-
sequence is 2𝑞, this means that the noise is √2 times larger
than the equivalent isochronic stimulation with the same
ISI. However, SNR may be balanced by suppressed response
due to the adaptation effect of nervous systems at rapid
stimulation rates [22]. Since different AEP components may
exhibit various adaptation effects, some components may
even be enhanced if they are sensitive to the jitter in m-
sequence [23, 24]. It is therefore not wise to investigate SNR
under such conditions.

Although the present study reports that the order of an
m-sequence will not affect noise attenuation provided that
entire EEG recording times are same, the selection of m-
sequence of the same order and the selection of m-sequence
order are also very important in practice. As is known, the
mathematic property of m-sequence is totally dependent
on the primitive polynomial used to generate the sequence.
There are a fixed number of primitive polynomials for an
order. A previous study reported that kernel slices distribute
differently on correlation signals that may cause distortions
for some slices from overlapped responses [25]. Higher order
m-sequences with long correlation signals naturally have a
larger tolerance onmore kernel slices. However, there are also
practical concerns in using longm-sequences. As an example,
when dealing with artifacts, entire EEG sweeps might have
to be rejected, which leads to disadvantage in using long m-
sequences.
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Figure 8: Linear and nonlinear AEP components extracted by two m-sequences, where KS11 denotes the response of linear kernel slice, and
KS21–KS23 represent three second-order nonlinear responses.
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