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Phylogeny, recombination, and invasiveness of group B
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Abstract
Capsular polysaccharide (CPS) genes and pilus islands encode important virulence factors for group B Streptococcus (GBS)
genomes. This study aims to detect phylogenetic inconsistency in CPS genes and pilus islands in GBSs and to explore its
relationship with invasiveness. A total of 1016 GBS genomes were downloaded from the NCBI public database. The multi-
locus sequence typing (MLST) and Bayesian analysis of Population Structure (BAPS) analyses were both conducted for
phylogeny construction. Serotyping and pilus typing were determined in silico using the genomic sequences. The CPS and pilus
typing results were generally consistent withMLST and BAPS clustering. GBS isolates of serotype II and of the PI-1 + PI-2b and
PI-2a types were more prone to phylogenetic inconsistency than the others. Isolates of serotype Ib and of PI-1 + PI-2a were more
likely to appear as colonizing strains, whereas PI-2b was more likely to appear in invasive strains. For serotype V, phylogenetic
inconsistency occurred more commonly in colonizing isolates, while for serotype III, the opposite occurred. The present study
profiles for the first time the phylogenetic inconsistency of CPS genes and pilus islands in global GBS isolates, which is helpful
for infection control and the development of new vaccines for the prevention of GBS occurrence.
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Introduction

Group B Streptococcus (GBS, Streptococcus agalactiae) was
initially described as the cause of bovine mastitis [1]. In
humans, GBS usually occurs in the genitourinary or gastroin-
testinal tract of adult males and females and is not pathogenic.

In the birthing process, however, GBS from the genital tract of
pregnant women can infect the lower gastrointestinal and up-
per respiratory tracts of newborns [2], resulting in neo-
natal sepsis and meningitis. Even with the appropriate
antibiotic treatment, the mortality rates of late-onset
GBS infection (age 7–90 days [3]) are high [4].
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Additionally, during the past decade, GBS has been
increasingly associated with skin and soft tissue infec-
tions and bacteremia in nonpregnant adults [5].

Capsular polysaccharides (CPS) are considered to play a
vital role as virulence factors [6]. The sialic acid residue on the
CPS accelerates the dissociation of the C3 convertase, thereby
inhibiting the complement cascade and escaping detection by
the host’s immune system. By identifying specific sequences
in the CPS gene cluster, GBS can be subdivided into ten types
[7–9]. The virulence of different CPS types varies: five major
CPS types (Ia, Ib, II, III, and V) account for 96% and 88%,
respectively, of the cases of invasive GBS infections in neo-
nates and adults [10, 11]. Accordingly, similar to that found in
Streptococcus pneumoniae, CPS is an essential target for the
development of the GBS vaccine [12]. Currently, there is no
vaccine on the market yet for GBS. The vaccines under de-
velopment mainly target CPS Ia, Ib, II, III, and V [13–15].

It is well known that, in many bacterial pathogens, the use
of vaccines can exert intense selective pressure upon bacterial
evolution and change the epidemiological pattern. In
S. pneumoniae, for example, the introduction of a 7-valent
pneumococcal conjugate vaccine (PCV7) showed a decline
of vaccine type (VT) and an increase of nonvaccine type
(NVT) pneumococci in disease and nasopharyngeal carriage
[16]. This alternation is achieved by capsule switching, which
results actually from the recombination of essential CPS de-
terminant genes [11, 17, 18]. GBS is naturally not transform-
able, and the rate of its capsular transformation shown by
in vivo experiment is low [17]. Paradoxically, capsular
switching has been frequently reported in GBS by a number
of epidemiological studies, in particular in the clonal complex
(CC) 1 and 17 [11, 18–22]. While most of these studies were
conducted within the research subjects limited within a city or
a country, the level of capsule switching on a global
scale is still unclear. This information is of particular
importance for the development of GBS vaccines be-
cause the propensity for capsule switching, if it really
exists, would easily lead to “vaccine escape” once the
monovalent vaccines start to use in the future.

The pilus-like structure in bacteria is another critical
virulence factor and candidate target of vaccine develop-
ment in GBS [23]. The structure consists of three compo-
nents: a skeleton pilus protein and two accessory proteins
that are involved in bacterial binding to host cells [24]. The
GBS pilus is encoded by two loci in different regions of the
genome, namely Pilus islands 1 and 2 (PI-1 and PI-2). The
latter can be further divided into two distinct variants, PI-
2a and PI-2b [25]. As a horizontal transfer element, typing
based on pilus islands can be inconsistent with the true
phylogeny of GBS [26]. Similar to CPS, knowledge on this
on the global scale will benefit the development of GBS
vaccines. Furthermore, when a certain GBS lineage

possesses a phylogenetic inconsistent pilus type, it is un-
known whether the lineage is more prone or more reluctant
to a phylogenetic inconsistent CPS type, i.e., whether the
recombination at the two loci will affect each other. It is
also unknown whether these phylogenetic inconsistencies
are associated with pathogenicity such as invasiveness.

The rapid development of WGS has made it cheaper for
sequencing entire genomes. To date there have accumulat-
ed over 1000 GBS genomes in the public database, there-
fore providing good materials for addressing the above
issues on a global scale. In the present study, we performed
in silico prediction of the phylogeny, CPS, and pilus types
for the GBS genomes in the NCBI Genbank database, and
more importantly, investigated the relationship between
the phylogenetic inconsistency and invasiveness of these
isolates. It is hoped that this study helps better elucidate the
relevance of recombination to GBS virulence and guide the
development of GBS vaccines.

Methods

Bacterial isolates studied

All of the GBS genomes were downloaded from the NCBI
Genbank database (downloaded on March 2, 2019; see
Supplementary Table 1). The geographic and host information
was extracted from the corresponding Biosample files. The
pathogenicity of the human isolates was further divided as
being invasive or colonizing based on the source information:
those isolated from blood, cerebrospinal fluid, and placenta
were considered invasive; those isolated from the genital tract
or oral cavity were considered colonizing.

Phylogeny construction

The 7-gene multi-locus sequence typing (MLST) analysis
(based on seven housekeeping genes) was performed using
the online service, BacWGSTdb [27, 28]. MLST alleles and
sequence types (STs) were assigned through the comparison
of whole-genome data to the GBS MLST database (http://
pubmlst.org/sagalactiae) [29]. The STs that differed by 1 or
2 alleles were further grouped to the same CC, following the
nomenclature adopted by E. S. Björnsdóttir et al. [30].

Tree-independent hierarchical Bayesian clusteringwas per-
formed to determine the population structure using hierBAPS
(http://www.helsinki.fi/bsg/software/BAPS/). Briefly, the
core genomemulti-locus sequence typing (cgMLST) was per-
formed using the BacWGSTdb service; the obtained allele
matrix was used as input for the hierBAPS program; three
levels of clustering were performed within the hierarchy, and
a prior upper boundary of 20 clusters was established. A
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neighbor-joining tree based on the concatenation of whole-
genome single-nucleotide polymorphisms (SNPs) were built
by using the BacWGSTdb service; the strain GBS-M002 (ac-
cession CP013908; serotype VI; pilus type 1, 2a; MLST ST1;
collection region: Taiwan) was used as the reference genome.

CPS typing and pilus typing

For CPS typing, an in-house BLAST database was built based
on information in the literature [31, 32], which included
unique CPS genes for CPS identification. A sequence homol-
ogy of > 95%with an alignment length of > 95% for the target
gene was used as the threshold for predicting gene presence/
absence. The CPS genes of CPS type IV and IX were too
similar to be distinguished at the genomic level; thus, the
two CPS types were split according to the SNPs at positions
327, 551, 1018, 1123, 1140, 1368, 1627, and 1832 [9, 33].

For pilus typing, an in-house BLAST database was
established based on the literature [25, 34], which included all
unique genes for pilus identification. A sequence homology of
> 95% with an alignment length > 95% for the target gene was
used as the threshold to predict gene presence/absence.

The inconsistency of phylogeny with CPS or pilus typing
was defined as follows. Assume that CPS/pilus type a was
most frequent within the BAPS cluster A whereas type b
was the secondary one; meanwhile, majority of isolates of
CPS/pilus type b belonged to another BAPS cluster B. Then
we defined that the isolates of the BAPS cluster A carrying the
CPS/pilus type b showed the inconsistency.

Statistical analysis

The data were analyzed for potential associations between
such variables as CPS types and invasiveness using the
SPSS program (Version 21.0 for Windows), utilizing the
chi-square test of independence. The P value was further ad-
justed by FDR method when multiple comparisons were
made. The significant level was set at P < 0.05.

Results

Phylogeny of GBS worldwide

All of the 1016 GBS genomes were downloaded from the
NCBI Genbank database (Supplementary Table 1). These ana-
lyzed isolates were collected from 28 countries in Asia, Europe,
South America, Africa, Australia, and North America
(Supplementary Table 2). The seven gene-based MLST was
performed to study the species’ phylogeny. The predominant
CCs of the isolates were identified as CC1, CC61, CC23,
CC17, and CC19, accounting for 20.2% (n = 205), 16.7% (n

= 170), 15.3% (n = 156), 11.8% (n = 120), and 10.8% (n = 110)
of the total isolates, respectively. Since housekeeping genes
used for MLST may also undergo recombination that distorts
the real phylogenetic relationships, we extracted the sequences
of the core genomes and used a Bayesian clustering method
(BAPS) for phylogeny reconstruction (Fig. 1). Thirteen BAPS
clusters were identified based on the allele matrix of core ge-
nome MLST (cgMLST), including the most common cluster 3
(142 isolates, 14.0%), cluster 4 (142, 14.0%), cluster 2 (132,
13.0%), cluster 12 (120, 11.8%), cluster 5 (110, 10.8%), and
cluster 8 (106, 10.4%).

Part of the BAPS clusters matched CCs perfectly, such as
the BAPS cluster 3 corresponding to CC12, cluster 12 to
CC17, and cluster 5 to CC19, whereas part of CCs seemed
to exhibit a greater diversity as they comprised more than one
BAPS cluster (Table 1; Fig. 1). For example, CC1 comprised
BAPS clusters 4 and 11, CC23 comprised clusters 6, 8, and
10, CC61 comprised clusters 1 and 2. Overall, the two results
were not contradictory to each other, showing the great com-
patibility of the two typing systems.

CPS typing of global GBS isolates

The CPS typing results demonstrated that CPS type II (250
isolates, 24.6%) was the most prevalent, followed by III (238,
23.4%), Ia (151, 14.9%), V (144, 14.2%), Ib (119, 11.7%),
and IV (86, 8.5%). For a few BAPS clusters, their isolates
possessed homogeneous CPS forms (Table 1; Fig. 1). For
example, all isolates of BAPS cluster 6 possessed CPS type
IV; cluster 7 possessed CPS type II; and cluster 13 possessed
CPS type Ib. For the other BAPS clusters, however, their
isolates showed miscellaneous CPS forms, with one CPS type
appearing to be dominant and the secondary types likely to be
phylogenetically inconsistent (Table 1). Statistically, the
BAPS clusters 3, 4, and 5 were prone to such inconsistency,
whereas BAPS clusters 2, 8, 9, 12, and 13 were reluctant to
such inconsistency (Table 1).

From the view of CPS types, many CPS types had their
infrequent BAPS clusters. While CPS type II was mostly
found in BAPS clusters 1, 2, and 7, 27.6% (69/250) of its
isolates appeared in BAPS clusters 3, 4, 5, 10, and 11.
Similarly, 18.6% (16/86) of CPS type IV, 18.1% (26/144) of
CPS type V, 14.3% (34/238) of CPS type III, and 2.0%
(3/151) of CPS type Ia appeared in their infrequent BAPS
clusters. Consequently, CPS types Ib and Ia were seldom in-
volved in phylogenetical inconsistency, whereas CPS type II
was most prone to phylogenetical inconsistency (Table 2).

Identification of Pilus Islands in GBS

Of the 1016 GBS isolates, 463 (45.8%) were found to carry
one pilus island and 535 (52.7%) to carry two. PI-1, PI-2a, and
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PI-2b appeared in 540 (53.1%), 581 (57.2%), and 416 (40.9%)
isolates. The most common form of pilus island in these iso-
lates involved the simultaneous carriage of PI-1 + PI-2a (398,
39.2%). To further elaborate, all isolates of the BAPS cluster 2
carried PI-2b only, while most isolates of cluster 5 carried PI-1
+ PI-2a (105/110, 95.5%), and most of cluster 8 carried PI-2a
(105/106, 99.1%) (Fig. 1).

Since both the CPS typing and pilus typing results
were overall consistent with BAPS clustering, majority
of CPS type corresponded to a specific pilus type. The
isolates carrying PI-1 + PI-2b were mainly of CPS type
III (100/137, 73.0%), and the isolates of the type PI-2a
were mainly of CPS types Ia and II (147/183, 80.3%).
Conversely, the isolates of CPS type Ib mainly carried
the PI-1 + PI-2a or PI-2b pilus (99/119, 83.2%), the
isolates of CPS type III mainly carried the PI-1 + PI-
2a or PI-1 + PI-2b pilus (203/238, 85.3%), and the
isolates of CPS type V mainly carried the PI-1 + PI-
2a pilus (125/144, 86.8%).

However, inconsistencies still existed between the pi-
lus typing and the BAPS clustering. Taking the BAPS
cluster as the unit, clusters 3 and 11 were prone to such
inconsistency, whereas clusters 2, 8, 9, and 13 were
reluctant to such inconsistency (Table 1). Taking the
pilus type as the unit, isolates of the PI-1 + PI-2b and
PI-2a types were prone to the phylogenetic inconsisten-
cy than the others, whereas isolates of the PI-1 + PI-2a
type were reluctant to the inconsistency (Table 2).

Invasiveness of GBS

Of the total of 1016 isolates, 489 (48.1%) were of human
sources. In detail, 187 isolates were derived from human blood,
cerebrospinal fluid, and placenta and thus considered invasive.
The remaining 302 isolates, mostly from the genital tract (125/
302, 41.4%), were considered colonizing isolates. The BAPS
clusters 4, 6, 7, and 12 appeared to be more virulent than the
others, with > 40% of their isolates being invasive (Table 1).

Regarding the relationship with the CPS typing results, the
invasive isolates were mainly distributed in CPS types III (69/
187, 36.9%) and V (40/187, 21.4%) (Table 3). Although the
numbers of invasiveness in these two CPS types was relative-
ly high, the P value had not yet reached a significant level (P >
0.05). In contrast, CPS type Ib was more likely to appear in
colonizing isolates than the other types (P < 0.05).

Regarding the distribution of the pilus types, the PI-2b type
was more likely to appear in invasive isolates than other pilus
types (P < 0.05; Table 3). In colonizing isolates, the PI-1 + PI-2a
type was more common than the other types (P < 0.05; Table 3).

Relationships between recombination and
invasiveness

Next, we analyzed whether the phylogenetically inconsistent
isolates were concentrated in invasive isolates. For CPS type
III isolates, 10 out of the 69 invasive isolates (14.5%) showed
phylogenetic inconsistency; this proportion decreased to 2.1%

Fig. 1 Phylogeny and its relationship with BAPS, MLST, CPS type, and pilus type. The inner neighbor-joining tree was built based on the whole-
genome SNPs. The rings from inner to outer represent BAPS cluster, clonal complex (CC) by 7-gene MLST, CPS type, and pilus type, respectively
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(2/94) in the colonizing isolates (Fig. 2a). The situation in CPS
type V was the converse: phylogenetic inconsistency in CPS
type V isolates was more common in colonizing isolates (14/
57, 24.6%) than invasive ones (2/40, 5.0%, P < 0.05; Fig. 2a).

For each pilus type, we did not find an uneven recombina-
tion distribution between invasive and colonizing isolates.

Discussion

This study determines the distribution of CPS types and pilus
types among global GBS isolates and, in particular,

investigates whether the recombination events occur within
CPSs and pilus islands. The motivation for this study is that
capsular switching through recombination has been observed
during the last decade in S. pneumoniae as the primary ap-
proach by which the pathogen eludes vaccines. As CPS and
pilus typing has been frequently reported to show phylogenet-
ic inconsistency in GBS, this pathogen is very likely to adopt
the same strategy to S. pneumoniae to escape the host’s im-
mune system when vaccine starts to use in the future. It is
therefore imperative to profile the global recombination pat-
tern in these loci before GBS vaccines go into commercial use.

As a genetic event for laterally exchanging DNA, recom-
bination is universally present in bacteria and results in an
incongruent phylogeny between local recombinant fragments
and adjacent regions. In the past decades, MLST has been
considered a gold standard typing tool for characterizing bac-
terial isolates from the sequences of internal fragments of
(usually) seven housekeeping genes. Nevertheless, recombi-
nation in the housekeeping genes has been reported in a num-
ber of bacterial pathogens, including Escherichia coli,
Salmonella enterica, and Staphylococcus aureus [35–37].
The MLST-based phylogeny is not entirely free from the
noise created by recombination, and scientists have turned to
WGS to minimize this interference. By comparing the results
of the genome-wide BAPS and the 7-gene MLST, we found
that the two results matched well with each other, suggesting
that the seven genes used for MLST in GBS had undergone
little recombination and were good candidates for within-spe-
cies typing. A combination of both BAPS clustering and
MLST is expected to better accurately assess the bacte-
rial phylogeny, based on which we further predicted the
strains’ phylogenetic consistency with the CPS and pilus
typing results.

Table 2 Percentage of isolates
with phylogenetic inconsistency
in each CPS and pilus type

Phylogenetically inconsistent Phylogenetically consistent P value

Capsular genotype

Ia 3 (2.0%) 148 (98.0%) 0.000

Ib 0 (0.0%) 119 (100.0%) 0.000

II 69 (27.6%) 181 (72.4%) 0.000

III 34 (14.3%) 204 (85.7%) 0.731

V 26 (18.1%) 118 (81.9%) 0.263

IV 16 (18.6%) 70 (81.4%) 0.324

Total 148 (15.0%) 840 (85.0%)

Pilus type

1 + 2a 0 (0.0%) 398 (100.0%) 0.000

1 + 2b 33 (24.1%) 104 (75.9%) 0.000

2a 43 (23.5%) 140 (76.5%) 0.000

2b 24 (8.6%) 255 (91.4%) 0.349

Total 100 (10.0%) 897 (90.0%)

Note: minor CPS type or pilus type (< 1% of total isolates) are excluded from this analysis

Table 3 The association between invasiveness and CPS and pilus
typing

Invasive isolates Colonizing isolates P value

CPS type

Ia 22 (29.7%) 52 (70.3%) 0.102

Ib 2 (8.7%) 21 (91.3%) 0.003

II 16 (33.3%) 32 (66.7%) 0.461

III 69 (42.3%) 94 (57.7%) 0.188

IV 35 (46.1%) 41 (53.9%) 0.127

V 40 (41.2%) 57 (58.8%) 0.498

Pilus type

1 + 2a 87 (33.6%) 172 (66.4%) 0.025

1 + 2b 36 (40.4%) 53 (59.6%) 0.636

2a 33 (34.0%) 64 (66.0%) 0.339

2b 30 (75.0%) 10 (25.0%) 0.000

Note: minor CPS type or pilus type (< 1% of total isolates) are excluded
from this analysis
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Epidemiologically, CPS types have been shown to vary
between years and nations. Evenmore importantly, CPS types
may be linked with human diseases such as early-onset (age
0–6 days) sepsis and meningitis [38, 39]. The varying patho-
genic property is likely to be attributed to a specific CPS, but
may also likely be due to a combination of virulence factors
specific to the particular genetic lineage. Here, our analysis of
global isolates revealed that the human invasive isolates were
mainly concentrated in CPS types III and V, whereas CPS
type Ib is more likely to appear in colonizing isolates than
other types. Several studies based on other techniques than
WGS have also found that CPS type V exhibits high invasive-
ness; this includes research performed in Shanghai, China [5];
England and Wales [40]; Portugal [41]; and Alberta, Canada
[42]. Fortunately, the multivalent vaccines employed in the
present trial currently have already covered CPS type V as
well as Ia, Ib, II, III, and IV [13–15].

Despite the overall pronounced correlation between CPS
type and BAPS clustering, a nonnegligible proportion of GBS
isolates did show the signal of recombination in their CPS
clusters. Among the main CPS types, CPS type II was more
prone to phylogenetic inconsistency, whereas CPS type Ib and
Ia had the reverse trend. Concerning the relevance with inva-
siveness, the colonizing isolates of CPS type V are more prone
to phylogenetic inconsistency than the invasive ones. These
findings are consistent with previous reports that the coloniz-
ing isolates have a greater tendency for capsular switching
[43]. A plausible explanation is that persistent colonization
facilitates the lateral genetic transfer of GBS isolates, thereby
promoting capsular switching. Paradoxically, for CPS type III,
phylogenetic inconsistency is less frequent in colonizing than
in invasive isolates. We attribute this difference to an opposite
driving force arising from the immunogenic pressure induced
by host immunity [44]: bacteria resort to CPS switching to
evade host immunity following the host’s generation of anti-
bodies against the CPS. The eventual extent of phylogenetic

inconsistency may depend on the interaction of the above two
opposing forces and the fitness of the recombinant strain.

The pilus-like structure plays a role in GBS colonization
and pathogenicity, making it another potential target for the
vaccine development.We found that PI-1 + PI-2a accounts for
the highest proportion of pili. This combination of pilus types
is more likely to occur in colonizing isolates but is less prone
to phylogenetic inconsistency. This situation is in contrast
with that for the CPS, possibly because this pilus combination
may have adapted to a higher degree to the colonization envi-
ronment. In contrast, the isolates carrying PI-2a or PI-1 + PI-
2b have been frequently involved in phylogenetic inconsisten-
cy. According to previous reports, PI-2b is associated with
invasive infections in neonates, and PI-2a with invasive dis-
eases in adults [26, 31, 32, 45]. It is unclear whether this
phenomenon results from the different immune statuses of
children and adults. Here, we have only observed the associ-
ation between PI-2b and invasiveness, probably due to the
sampling bias of the public database towards child patients.
Meanwhile, we also found that the PI-2b isolates did not en-
hance invasiveness by acquiring PI-2b in a recombinant man-
ner; instead, PI-2b was inherently present in the isolates. It is
possible that PI-2b itself benefits the evasion of the host im-
mune system, or that the genetic background of these lineages
carries other genes beneficial for invasion.

When the phylogenetic inconsistencies of the CPS
and pilus typing results were taken into consideration
together, we found that the BPAS clusters 4 and 5
had the CPS locus prone to the inconsistency whereas
the BAPS cluster 11 had the pilus locus prone to the
inconsistency. This suggests that for these lineages, re-
combination may occur independently in the two loci.
However, the BAPS cluster 3 had its both loci prone to
phylogenetic inconsistency, indicating that the double
switch at the loci may better contribute to the cluster’s
fitness instead of a single switch does.

Fig. 2 The relationship between phylogenetic inconsistency and
invasiveness. For each CPS type (in panel a) and pilus type (in panel
b), the isolates were further divided into invasive isolates and

colonizing isolates. The y-axis indicates the proportion of
phylogenetically inconsistent isolates (in blue) and phylogenetically
consistent isolates (in orange). I, invasive isolates; C, colonizing isolates
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The strength of this study was the global collection of GBS
genomes used for analysis, which meanwhile brings a few
limitations. First, many isolates lack their detailed clinical in-
formation in the public database, therefore making many anal-
yses unavailable such as the categorization between early-
onset and late-onset diseases caused by GBS. Second, al-
though the public database collects bacterial genomes world-
wide, many genomes were released from a few countries,
majority of which were from Asia, Europe, and North
America. Consequently, it is unknown whether the conclu-
sions drawn in this study applies to the countries not repre-
sented in the public database.

Conclusions

This study characterizes the global distribution of GBS’s CPS
type and pilus type as well as its relevance to invasive disease.
While we found little recombination occurring in MLST
genes, the recombination signals were detected in both CPS
and pilus genes. This suggests that GBS may rely on recom-
bination upon specific virulence genes to better defend the
host’s immune system. The present findings are beneficial
for the current development of GBS vaccines. The CPS types
and pilus types that are frequently involved in recombination
need to be covered as the primary vaccine targets.
Furthermore, continuing surveillance is required to reflect
whether capsule switching would occur when the GBS vac-
cines start to use in the future, which can be revealed by
comparison of current and future CPS distributions.
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