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Modular approach to customise 
sample preparation procedures for 
viral metagenomics: a reproducible 
protocol for virome analysis
Nádia Conceição-Neto1,2, Mark Zeller1, Hanne Lefrère1, Pieter De Bruyn1, Leen Beller1, 
Ward Deboutte1, Claude Kwe Yinda1,2, Rob Lavigne3, Piet Maes2, Marc Van Ranst2, 
Elisabeth Heylen1,* & Jelle Matthijnssens1,2,*

A major limitation for better understanding the role of the human gut virome in health and disease 
is the lack of validated methods that allow high throughput virome analysis. To overcome this, 
we evaluated the quantitative effect of homogenisation, centrifugation, filtration, chloroform 
treatment and random amplification on a mock-virome (containing nine highly diverse viruses) and 
a bacterial mock-community (containing four faecal bacterial species) using quantitative PCR and 
next-generation sequencing. This resulted in an optimised protocol that was able to recover all 
viruses present in the mock-virome and strongly alters the ratio of viral versus bacterial and 16S 
rRNA genetic material in favour of viruses (from 43.2% to 96.7% viral reads and from 47.6% to 0.19% 
bacterial reads). Furthermore, our study indicated that most of the currently used virome protocols, 
using small filter pores and/or stringent centrifugation conditions may have largely overlooked large 
viruses present in viromes. We propose NetoVIR (Novel enrichment technique of VIRomes), which 
allows for a fast, reproducible and high throughput sample preparation for viral metagenomics 
studies, introducing minimal bias. This procedure is optimised mainly for faecal samples, but with 
appropriate concentration steps can also be used for other sample types with lower initial viral loads.

The sum of the genomes present in the human microbiota living in and on us, including bacteria, archaea, 
viruses, parasites and fungi, is referred to as the human microbiome1. In the last decade, great efforts 
have been made to study the human microbiome, the microbiome in oceans, soil or animals2–4. However, 
the great majority of these studies focused on bacteria, targeting their entire genomes using a shotgun 
approach or targeting specific regions such as conserved bacterial 16S ribosomal RNAs5,6. Although 
shotgun sequencing provides opportunities to analyse all microbial DNA, the larger average genome size 
of bacteria compared to viral genomes complicates a detailed analysis of the virome. In addition, these 
approaches usually overlook viral RNA genomes present in the microbiome7. As such, the human virome 
represents the viral component of the human microbiome, which is its most ubiquitous and genetically 
diverse fraction. The virome includes viruses infecting the host, viruses infecting eukaryotes present in 
the microbiota, viruses infecting prokaryotes present the microbiota (bacteriophages) and viruses infect-
ing neither of them (e.g. plant viruses in the gut)8.
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Next generation sequencing (NGS) has revolutionised the discovery of novel viruses in humans and 
animals in various ecosystems9–11. In contrast, the role of the virome in complex human disease has 
been less well characterised, even though efforts have been made recently to study the role of viruses 
in Inflammatory Bowel Disease, diabetes, Acquired Immune Deficiency Syndrome and transplant 
patients12–15. A major limitation in better understanding the role of the human gut virome in health and 
disease is the lack of validated methods allowing for high throughput and reproducible virome analyses.

Usually, the majority of genetic material in a sample is of non-viral origin, which makes accurately 
studying the virome more challenging than studying other components of the microbiome16. Viruses also 
lack universally conserved genomic regions and are both genetically and morphologically highly diverse8. 
Key-steps for studying viromes are the enrichment for virus-like-particles (VLPs) from a sample and the 
performance of random amplification, if the starting material needs to be increased before NGS library 
preparation16. These steps should preferentially avoid losses of any types of viruses and minimise bias 
introduced during sample preparation steps. However, this is challenging as viruses are highly diverse 
and might be removed during particular steps of VLP enrichment.

Several studies have attempted to quantify the efficiency of their virome preparation protocols. 
Firstly, Sachsenröder and colleagues spiked animal faecal samples with three bacteriophages (T4, M13 
and MS2). They were able to detect all three viruses using pyrosequencing after sample purification, 
although viral recovery rates were highly variable17. However, no bacterial or rRNA removal efficiency 
was tested and only one VLP purification condition was evaluated. Hall and colleagues tested a limited 
number of combinations of centrifugation, filtration and nuclease treatment, using low concentrations 
of three medium-small sized viruses (adenovirus, influenza A and human enterovirus), bacterial and 
human cells18, showing that different methods had a significant impact on virus recovery. Li and col-
leagues pooled samples (allantoic fluid, cell culture and faecal material) containing twenty five human 
viruses to compare different purification and amplification methods19. Their protocol was not able to 
recover all viruses and showed that recovery of viral reads was highly diverse when different sample 
preparation methods were used. Kohl and colleagues used four viruses (vaccinia virus, orthoreovirus, 
influenza virus and Sendai virus) to optimise a protocol to recover viruses from tissue. They used quan-
titative PCR (qPCR) assays to detect relative losses of viruses after different purification and amplification 
procedures, again showing that the use of different methods has a strong effect on the final sequence 
outcome20. Recently, Kleiner and colleagues developed an artificial microbiome consisting of six bacteri-
ophages (P22, T3, T7, φ 6, M13 and φ VPE25) and two bacteria (Listeria monocytogenes and Bacteroides 
thetaiotaomicron). However, recovery of the dsRNA phage was not successful and recovery of viruses 
highly depended on the combination of methods used21. Finally, Rosseel and colleagues spiked Newcastle 
disease virus in serum and tissue and tested for filtration, DNase treatment and rRNA removal. This 
protocol was only tested for a single virus and can only be used for RNA viruses22.

Although these studies provide valuable information, most of them only compare final outcomes of 
their procedures, do not take bacteria into account, or use limited sets of viruses in their studies. Our 
study individually evaluated the performance of each step of the procedure and systematically studied 
their effect on a unique mock-virome an artificial bacterial community, as well as on 16S rRNA to 
investigate bias introduced during each step and to obtain the most favourable virus-to-bacteria ratio. In 
conclusion, a detailed and reproducible protocol is proposed for viral metagenomics (Fig. 1 and Protocol 
S1), although initial concentration steps might be required for samples with low initial viral load such 
as soil or ocean water samples. In addition, the modular approach of our study allows researchers to 
customise sample preparation depending on their needs or particular virus(es) of interest.

Results
A mock-virome (containing nine highly diverse viruses/phages), as well as a bacterial mock-community 
(containing four bacterial species common in the gut) were assembled to determine the effect of various 
sample treatment procedures and allowed to select for procedures that: 1) recover all viruses present in 
a sample, 2) alter the ratio of viral/(bacterial +  rRNA) genetic material in favour of the viruses, and 3) 
introduce the least amount of bias in the relative distribution of viruses in a sample. Homogenisation, 
centrifugation, chloroform treatment, filtration and random amplification of nucleic acids were tested on 
the individual viral and bacterial communities to obtain a clear and clean understanding of the effect of 
the different tested procedures, avoiding unexpected interactions of viruses and bacteria.

Homogenisation with ceramic beads reduces number of viral particles. To obtain reproduc-
ible results a proper homogenisation of biological samples (such as tissue or faecal samples) is cru-
cial and minimises subsequent filter clogging23. As benchtop vortexers do not provide a standardised 
approach for sample homogenisation, a tissue homogeniser was used. The mock-virome and bacterial 
mock-community were subjected to homogenisation at different speeds (3000 and 5000 rpm) and with 
or without beads of different sizes (Ø0.1 and Ø2.8 mm) and compared to a non-homogenised con-
trol (Fig. 2). Homogenisation with Ø2.8 mm beads led to a destruction of viral particles irrespective of 
homogenisation speed. The reduction was largest for coronavirus (99.5% and 99.6% and Ct differences 
of 8.5 and 8.9 for 5000 and 3000 rpm, respectively) and mimivirus (96.0% and 97.7% and Ct differences 
of 6.0 and 6.3 for 5000 and 3000 rpm, respectively). In addition, Ø2.8 mm beads led to a 316% and 350% 
increase in the detection of 16S rRNA at 5000 and 3000 rpm, respectively (Ct difference 2.3 and 2.4, 
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respectively). For the bacteria, Ø2.8 mm beads also showed increases ranging from 612% (3.2Ct decrease)  
for the Bacteroides to 6184% for the E.coli (6.1Ct decrease). Homogenisation at 5000 rpm (without beads 
or with Ø0.1 mm beads) showed a larger reduction in viral particles than homogenisation at 3000 rpm. 
Reduction of viral particles was lowest using 3000 rpm homogenisation without beads (the maximum 
percentage of reduction was 59.6% for the pepino mosaic virus, 1.07Ct), and did not increase the amount 
of bacterial DNA/rRNA. All conditions resulted in well-homogenised suspensions suitable for subse-
quent filtration experiments (data not shown).

Figure 1. Schematic concise description of the proposed NetoVIR protocol. Estimations of incubation 
time and total time for each step are shown. On average, the protocol takes 8 h to complete. A detailed 
protocol is described in Protocol S1 (Supplementary information).
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Centrifugation conditions strongly influence the reduction in bacterial and viral parti-
cles. Centrifugation is commonly used to precipitate larger particles, such as cells and cellular debris, 
while viruses remain in solution. Since this step differs greatly among studies24–26, we decided to test a 
mild and medium centrifugal force (100 g and 17000 g, respectively) as well as short (3 min) and medium 
(30 min) centrifugation times on our mock-communities (Fig.  3). Higher g-forces or longer centrifu-
gation times were not tested as this would result in even higher viral losses. Centrifugation at 100 g 
for 3 min showed limited differences compared to the control for viruses, bacteria and rRNA. Only 
for Lactobacillus a reduction of more than 1 Ct was observed (68.6%; 1.8Ct increase). Centrifugation 
for 30 min at 100 g, resulted in an increased reduction of mimivirus (94.6%; 4.5Ct). For the bacteria, 
the highest reductions were observed for the Lactobacillus (99.0%; 7Ct) and Bifidobacterium (96.0%; 
5Ct), whereas E.coli and Bacteroides showed less pronounced reductions (80.6% or 2.4 Ct and 48% or 
0.95 Ct, respectively). Centrifugation at 17000 g for both 3 and 30 min resulted in more than 99.99% 
reductions for Bifidobacterium, E.coli and Bacteroides. The reduction in Lactobacillus was slightly lower 

Figure 2. Ct differences vs control for different homogenisation experiments performed on the mock-
virome (A) and on the bacterial mock-community and Bacteroides 16S rRNA (B). Standard deviations are 
based on three qPCR replicates.

Figure 3. Ct differences vs control for centrifugation conditions tested on the mock-virome (A), on the 
bacterial mock-community and Bacteroides 16S rRNA (B). Standard deviations of the qPCR replicates are 
displayed.
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(99.7%–99.8%), whereas the reduction in the rRNA was 98.5–99.4%. For 3 minutes at 17000 g the losses 
for viruses were negligible, except for polyomavirus (43.3% loss, 1.2Ct), herpesvirus (65.3% loss, 1.3Ct), 
and especially mimivirus (96.9% loss, 5.4Ct). These findings were much more pronounced when centrif-
ugation was performed at 17000 g for 30 minutes. Surprisingly, more than 90% reduction was observed 
for polyomavirus, coronavirus and herpesvirus, and 99.9% for mimivirus. Although the samples where 
thoroughly homogenised, it cannot be excluded that this observation is due to viral aggregates still pres-
ent in the sample.

Filtration: keep the viruses or get rid of bacteria? Filtration is an efficient and widely used 
method to enrich viral particles by removing bacterial and host cells (human/animal/plant). Therefore, 
the mock-virome and bacterial mock-community were filtered with a 0.8-μ m centrifugal filter (PES), 
a 0.8-μ m polycarbonate filter (PC), a 0.45-μ m centrifugal filter (PVDF) or a 0.22-μ m centrifugal filter 
(PVDF) and compared with an unfiltered control (Fig. 4). Filtration with the two 0.8-μ m and 0.45-μ m 
filters showed limited effects on most of the viruses in the mock-virome, except for mimivirus, the larg-
est virus in the mock-virome, for which a 81.7% (3.8Ct increase), a 95.9% (6.8Ct) and a 99.0% (9.9Ct) 
reduction was observed for the 0.8-μ m PES, the 0.8-μ m PC and 0.45-μ m filters, respectively. The least 
mimivirus was recovered using the 0.22-μ m filter (99.90% reduction, 13.95Ct), and also 82.0% (4.1Ct) 
reduction was observed for herpesvirus using the 0.22-μ m filter. The use of the 0.8-μ m PC filter resulted 
in a reduction of 99.1% (7.5Ct) and 99.2% (7.9Ct) for Lactobacillus and Bifidobacterium, respectively, 
whereas E.coli (80.7%, 2.5Ct) and Bacteroides (50.1%, 1.04Ct) showed modest reductions. A much more 
efficient removal of bacteria was obtained with the 0.8-μ m PES, 0.45-μ m and 0.22-μ m filters, removing 
99.5% to 99.90% of all bacteria present in the bacterial mock-community. Independent of the filter used, 
rRNA was less efficiently removed than bacteria (30–75% reduction; 0.7–2.4Ct).

Chloroform treatment efficiently removes bacteria but alters viral abundances. Chloroform 
disrupts lipid membranes and is often used to remove bacteria. However, some viruses are enveloped, 
and their capsid can become unstable after envelope removal. To determine the effects of chloroform, the 
mock-virome as well as the bacterial mock-community were incubated in the presence of 1%, 5%, 10% 
and 20% chloroform and compared with a non-chloroform exposed control sample. Incubation in 1% 
chloroform resulted in a reduction less than 1 Ct for all the enveloped and non-enveloped viruses, except 
for mimivirus showing a moderate loss of 53.2% (1.3Ct increase) (Fig. 5A). When incubating with higher 
percentages of chloroform (5–20%), no or very limited losses for circovirus, parvovirus, pepino mosaic 
virus and LIMEstone virus were observed. The highest reductions were observed for the enveloped coro-
navirus (range of reduction: 81.4–89.9%; 2.6–2.8Ct) and mimivirus (61.4–77%; 1.6–2.5Ct), and as well 
as for the non-enveloped rotavirus (range of reduction: 74–77%; 2.3–2.5Ct). In contrast, for the envel-
oped herpesvirus only 18.8–31.2% (0.38–0.69Ct) reduction was observed. Gram-positive bacteria were 
sensitive to 1% chloroform, resulting in a decrease of 97.6–99.4% (6.1–7.9Ct) for Bifidobacterium and 
Lactobacillus, respectively, whereas Gram-negative bacteria were less affected with reductions below 90% 
(Fig. 5B). However, high concentrations of chloroform (10–20%) resulted in a substantial reduction of all 
bacterial species (99.6–99.999%; 8.8–17.6Ct). Finally, rRNA was reduced by 83.5–94.9% (2.9–4.8Ct), and 
only a limited effect was observed when the percentage of chloroform was changed (Fig. 5B).

Figure 4. Ct differences vs control for filtration experiments performed on the mock-virome (A), bacterial 
mock-community and Bacteroides 16S rRNA (B). Standard deviations of the qPCR replicates are displayed.
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Random amplification: the necessary bias that amplifies all viruses. To sequence viral RNA 
genomes, a reverse transcription step is required to convert RNA to DNA and all single-stranded genomes 
to double-stranded. Furthermore, the low amount of genetic material from a sample often requires an 
amplification step. Amplification was performed using an adapted version of the Whole Transcriptome 
Amplification Kit 2 (WTA2) to amplify both DNA and RNA. To determine bias introduced by ampli-
fication, the number of cycles was varied with 5-step intervals between 7 and 22 and compared with a 
non-amplified control. At 7 amplification cycles an increase of at least 374% (3.7-fold) was observed for 
all viruses in the mock-virome. A strong increase in the concentration of all viruses was observed at 12 
(range 26–808 fold increase) and 17 cycles (range 170–6466 fold increase), whereas at 22 cycles, 3 out of 
9 viruses in the mock-virome showed lower yields than at 17 cycles. The same procedure was followed 
for the bacterial mock-community and bacterial amplification after 7 cycles for Lactobacillus, E.coli and 
Bacteroides ranged between 1061–2033%, and increased 5611% for rRNA (Fig. 6). An increase between 
7844% and 19088% was observed for 12 amplification cycles, whereas rRNA increased to 14920%. For 17 
and 22 cycles, the median amplification decreased, and for 22 cycles amplification pattern was similar to 
7 cycles. No amplification was observed for the Bifidobacterium for 7, 17 and 22 cycles and very limited 
amplification (7.5%) for 12 cycles.

The percentage of sequencing reads correlates with number of viral genome copies after 
amplification. Based on all results above, seven different work-flows were selected including homog-
enisation at 3000 rpm without beads and 17 amplification cycles, in combination with different condi-
tions of filtration (0.8 PC/PES, 0.45 and 0.22-μ m) and/or centrifugation (3 min at 17000 g). A combined 
artificial community of viruses and bacteria was subjected to the selected conditions and sequenced 
using an Illumina HiSeq2500™ . In the control sample sequencing data, 47.6%, 43.2% and 1.6% of the 
reads were attributed to bacteria, viruses and rRNA, respectively (Fig. 7A and Table S4). The unmapped 
reads obtained were attributed to residual host and bacterial DNA derived from the preparation of viral 
stocks, such as Dickeya solani and Chlamydiales. The use of the 0.8-μ m PC filter resulted only in minor 
reduction in the percentage of reads mapping to bacteria (47.3%). The remaining filtering and/or cen-
trifugation conditions resulted in a dramatic reduction in the percentage reads that mapped to bacteria 
(ranging from 0.39% to 0.71%), while the number of viral reads increased to 88.8–96.7%. The 0.8-μ m 
PES filter plus centrifugation condition yielded the highest percentage of viral reads, of which most were 
attributed to pepino mosaic virus (33.9%), LIMEstone virus (32.9%) and rotavirus (20.6%) (Fig.  7B). 
When comparing the distribution of the viral reads of the control, the four protocols without centrifuga-
tion showed an expansion of the LIMEstone virus reads, mainly at the expense of rotavirus and pepino 
mosaic virus reads. Also, the combination of centrifugation with filtration showed a minimal increase 
of LIMEstone virus and pepino mosaic virus reads, but at the expense of parvovirus, polyomavirus 
and circovirus reads. The percentage of herpesvirus reads in the control was low (0.11%) and slightly 
increased with centrifugation plus 0.8-μ m PES filter (0.18%). For the remaining conditions, herpesvi-
rus reads ranged from 0.04% to 0.24%. The mimivirus viral reads in the control (0.91%) could only be 
increased when filtering with 0.8-μ m PC filter (2.2%), but were strongly reduced when using the other 
protocols (0.011%–0.034%). Although nearly all bacteria were removed, the distribution of remaining 

Figure 5. Ct differences vs control for chloroform treatment experiments performed on the mock-
virome (A), bacterial mock-community and Bacteroides 16S rRNA (B). Enveloped viruses are depicted 
with a pattern. Standard deviations of the qPCR replicates are displayed.
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bacterial sequence reads was dominated by Bacteroides in the control and 0.8-μ m PC filter (41.3% and 
43.5% of total reads, respectively), whereas in the remaining conditions E.coli was the most abundant 
(0.14–0.40%) (Fig.  7C and Table S4). The rRNA obtained reads were low for the control (1.59%) and 
reduced to 0.2%–0.004% for the treated conditions. Overall, a good correlation was observed between the 
number of viral copies as determined by qPCR and the percentage of mapped reads (R2 =  0.91). For most 
viruses a high correlation between 0.88 and 0.97 was observed, only for circovirus and herpesvirus the 
correlation was slightly lower (R2 =  0.75 and 0.63, respectively) (Fig. 7D). For parvovirus no correlation 
was observed (R2 =  0.16). No correlation for bacteria was calculated as the qPCR measurements for the 
bacteria after treatment were often below the detection limits of the used assays.

Taking into account the sequencing results, a favoured protocol named NetoVIR (Novel enrich-
ment technique of VIRomes) was selected. NetoVIR consisted of homogenisation at 3000 rpm for 1 min 
without beads, centrifugation for 3 min at 17000 g plus 0.8-μ m PES filter filtration and 17 amplification 
cycles (Fig. 1), and was further tested for reproducibility. Two replicates were processed in parallel and 
evaluated before and after the procedure (Fig. S1 and Table S5). Before the procedure, standard devia-
tions ranged from 3% for the LIMEstone virus to 19% for the polyomavirus. After treatment, standard 
deviations ranged from 3% for the coronavirus to 24% of the circovirus. As a result of a low viral copy 
number after centrifugation and filtration, a slightly higher standard deviation was observed for mim-
ivirus (38%). Overall, the standard deviation was comparably low before and after the procedure 
(Fig. S1 and Table S5).

Discussion
Aberrations of the human virome have been implicated in acute and chronic diseases. In order to sys-
tematically investigate virome-disease relationships, reproducible, inexpensive and high-throughput 
virome methods are urgently needed. In this study we investigated bias that can be introduced dur-
ing various sample treatment procedures commonly used in viral metagenomics studies on artificial, 
well-characterised communities of viruses and bacteria. With the results obtained we established a pro-
tocol for viral metagenomics that maximises removal of non-viral nucleic acids, while minimising dis-
turbances in viral relative abundances.

A homogeneous solution is crucial for optimal and reproducible viral particle purification from most 
biological or environmental sample. No or limited homogenisation might be needed for cell culture super-
natants, water or blood/serum samples. Faeces, respiratory or soil samples may benefit from a proper 
homogenisation, whereas tissue samples cannot proceed without a thorough homogenisation for virus 
release, often using beads of varying sizes. In this study we evaluated the effect of several homogenisation 

Figure 6. Fold increase vs control for random amplification experiments performed on the mock-
virome, mock bacterial community and Bacteroides 16S rRNA. Bifidobacterium animalis is not shown 
since no amplification was observed.
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conditions on our artificial communities. Homogenisation with 2.8 mm beads resulted in severe loss of 
coronavirus and mimivirus, and particularly in a strong increase of bacteria and bacterial rRNA. Since 
the nucleic acids extraction kit used in this study was not optimised to extract bacterial DNA, extraction 
efficiency might be enhanced when homogenising with 2.8 mm beads by severely impairing bacterial 
cell walls. For any virome study this seems to be highly undesirable and should therefore be avoided. If 
unavoidable, viral losses have to be considered when interpreting the obtained results. The same effect 
was not observed when 0.1 mm beads were used, suggesting that a bigger mechanical force is necessary 
to increase extraction efficiency. Overall, the smallest effects on viral losses were observed using the 
lowest homogenisation speed without beads. In our experience, a proper homogenisation without beads 
is sufficient to destroy faecal aggregates and obtain a workable suspension.

Centrifugation, filtration and chloroform treatment are commonly used methods to enrich samples 
for viral particles. The increasing number of reports on giant viruses, which have similar physical dimen-
sions as small bacteria makes this challenging27–29. Centrifugation is widely used in virome studies prior 
to filtration13,14,26, but effects on the virome have been quantitated poorly. Centrifugation for 3 min at 
17000 g resulted in the removal of almost all bacteria, but unfortunately a significant reduction of mimi-
virus was also observed (Fig. 3). Interestingly, centrifugation at 17000 g also resulted in a decrease around 
99% in rRNA despite the fact that ribosomes have a size (20–30 nm) similar to those of many other 
viruses in our mock-virome (Table 1). However, the higher density of ribosomes (more than 1.6 g/cm2 30) 
in comparison to viral particles may have led to their more efficient precipitation (Table 1). Alternatively 
this observation may be partially explained by the fact that some of the ribosomes may still have been 
attached to larger bacterial cellular components.

Figure 7. Percentage of NGS sequencing reads for bacterial, 16S rRNA, viral and unmapped reads for the 
conditions tested (A). Distribution of NGS sequencing reads for the mock-virome (B) and bacterial mock-
community (C). Correlation between the percentage of mapped reads obtained per virus and the number of 
virus genome copies after amplification/μ L*genome length as measured with qPCR (D). Normalization of 
the number of reads to the genome length allows for a proper comparison with qPCR results.
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Filtration is probably the most used procedure to separate viral from bacterial/host cells during 
virome studies. The most popular filters for viral metagenomics studies contain 0.45-μ m or 0.22-μ m 
pore sizes17. Our results showed that the majority (> 99.5%) of bacteria in our mock-community were 
efficiently removed using filtration. Only the 0.8-μ m PC filter had a relatively low filter efficiency (from 
50% to 99.2%). Unfortunately, filters efficiently removing bacteria also removed more than 99% of mim-
ivirus (Fig. 4A). Not unexpectedly, more than 90% of the herpesviruses were lost with the 0.22-μ m filter, 
alongside unexpected losses of several smaller viruses. Free floating ribosomes (20–30 nm) were not 
efficiently removed by filtration regardless of the pore size. Our findings suggest that besides the pore 
size, also the filter material highly influences filter efficiency. This was prominently observed between 
0.8-μ m PC and PES filters. Polycarbonate filters have pores precisely cylindrical and narrowly distributed 
across a thin polycarbonate sheet, whereas the centrifugal PES filter is a 3D polymer network, resulting 
in much higher filtering efficiency for bacteria and mimivirus (Fig. 4). A limitation of our study is that 
no representatives of very small bacteria were included, however a great majority of small bacteria are 
obligate intracellular (e.g. Chlamydiales, Mycoplasmatales) and therefore removed together with their 
host during centrifugation and filtration.

Chloroform destabilises lipid membranes, disrupting the bacterial structural integrity after which 
bacterial nucleic acids become available for nucleases. According to our findings, chloroform concen-
tration highly correlated with bacterial removal. However, enveloped viruses, especially coronavirus and 
mimivirus, also lost stability after the removal of the envelope. Interestingly, some non-enveloped viruses 
were also susceptible to chloroform, especially rotavirus and polyomavirus. It is also known that other 
non-enveloped phages belonging to the Corticoviridae, Plasmaviridae or Inoviridae are susceptible to 
chloroform31. The effect of chloroform seems highly virus-specific and therefore chloroform might not 
be a preferred approach for virome studies.

Random amplification of viral genetic material is crucial in viral metagenomics to obtain sufficient 
input material for sequencing. Many different amplification methods are available, some of which intro-
duce substantial bias19,32. Of note, when using the WTA2 kit (ligating an oligonucleotide to either sides 
of the PCR products before amplification), we strongly recommend using the Nextera XT library prepa-
ration kit to avoid cluster-calling problems during Illumina sequencing. A limited disadvantage of using 
the Nextera XT library preparation kit is that the ends of viral genomes are underrepresented in the 
obtained reads due to the transposon technology use by this kit.

Virus/
phage 
strain Virus family Host

Baltimore 
classification Shape

Genome 
composition

Genome 
size (kb)

Virion size 
(nm)

Envel-
oped?

Bouyant Density 
in CsCl (g cm−2)

Number of 
viral genome 

copies/mL

Porcine 
circovirus 2 
(10-10)

Circoviridae Pigs Group II: 
ssDNA Spherical Circular 1.8 ≈ 17 NO 1.37 1.62 ×  109

Feline pan-
leukopenia 
virus

Parvoviridae Cats Group II: 
ssDNA Spherical Linear 5 ≈ 20 NO 1.40 2.09 ×  1010

Polyomavi-
rus (BKV) Polyomaviridae Humans Group I: 

dsDNA Spherical Circular 5 ≈ 50 NO 1.34 1.34 ×  109

Pepino Mo-
saic virus 
(CH2)

Alphaflexiviridae Tomato 
plant

Group IV: 
ssRNA (+ ) Rod Linear 6

≈ 470-
800  ×   
12–13

NO 1.31 1.34 ×  109

Rotavirus A 
(WC3) Reoviridae Cows Group III: 

dsRNA Spherical Segmented 19 ≈ 100 NO 1.36–1.39 8.57 ×  108

Feline 
infectious 
peritonitis 
virus (sero-
type 1683)

Coronaviridae Cats Group IV: 
ssRNA (+ ) Spherical Linear 30 ≈ 100 YES 1.23–1.24 8.76 ×  108

Bovine 
herpesvirus 
1 (Cooper 
strain)

Herpesvirus Cattle Group I: 
dsDNA Spherical Linear 135 ≈ 200 YES 1.23 4.16 ×  107

LIMEstone 
(vB_DsoM_
LIME-
stone1)

Myoviridae

Bacterium 
Dickeya 
solani 

(potato 
pathogen)

Group I: 
dsDNA

Head-tail 
structure Linear 152

≈ 91 
(head), 

114 ×  17 
(tail)

NO 1.50 1.69 ×  108

Acan-
thamoeba 
polyphaga 
mimivirus

Mimiviridae
Acan-

thamoeba 
polyphaga 
(Amoeba)

Group I: 
dsDNA Spherical Linear 1181 ≈ 500-700

YES 
(Inter-

nal)
1.36 1.47 ×  108

Table 1.  List of nine selected viruses present in the mock-virome together with their classification, host 
species and physical characteristics.
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Kohl and colleagues showed that random amplification using a random primer with a universal 5′  
end and a degenerate 3′  end was preferred to amplify viruses20. WTA2 utilises a similar approach and 
was modified to amplify both RNA and DNA. Although 17 amplification cycles are recommended by the 
manufacturer for transcriptome amplification, our findings indicate that all viruses could be amplified, 
independently of the number of cycles. However, the amplification efficiency differed between viruses, 
which could not be unambiguously explained by genome type (ssDNA, dsDNA, ssRNA, dsRNA), length 
or composition (linear, circular, segmented). In previous reports it was shown that multiple displacement 
amplification preferentially amplified (single-stranded) circular genomes, which was not observed in this 
study using WTA232,33. Depending on the viral load in a sample, less than 17 amplification cycles can be 
sufficient, however, in our experience 17 amplification cycles produce reliable and reproducible results 
in various sample types with a wide range of virus concentrations. Nevertheless, in our protocol viral 
genome amplification introduced the most substantial bias, which was independent of the number of 
amplification cycles.

Independent of viral enrichment procedures, all viruses could be detected using the Illumina 
HiSeq2500™ . The combination of centrifugation followed by filtration (0.8-μ m PES) led to the highest 
number of viral reads (96.7%) and lowest percentage of bacterial and rRNA reads (0.19% and 0.003%; 
Fig. 7A). In other viral metagenomics studies a combination of more stringent centrifugation conditions 
and filtration, typically carried out using 0.45-μ m or 0.22-μ m pore sizes, have been applied15,24–26,34,35, 
which according to our results will lead to a dramatic reduction of larger viruses in a sample. Nevertheless, 
as with every viral enrichment protocol, including the one described in this study, the recovery of large 
viruses has to be balanced with the removal of bacterial/host genetic material, suggesting that bigger 
viruses (giant viruses, poxviruses, herpesviruses, etc.) might have been largely overlooked in past virome 
studies28.

Rosseel and colleagues22 showed that significant differences in sequence depth can be obtained when 
viral genomes are subjected to sequence independent amplification and Illumina sequencing, which 
could influence the relationship between qPCR results and read numbers. However, except for parvo-
virus, all viruses showed a high correlation between the number of viral genome copies measured by 
qPCR after amplification and the number of mapped NGS reads (R2= 0.91). The aberrant behaviour of 
the parvovirus remains unexplained, but is unlikely to be an experimental error as good correlations 
between qPCR assays and NGS reads were obtained for the remaining viruses. Overall, this suggests that 
no additional strong bias are introduced after amplification. To extend this further, high reproducibility 
was shown for our preferred viral enrichment procedure (Fig. S1), which is crucial for comparison of 
viral abundancies from samples in large-scale studies.

The main aim of our study was to obtain a reproducible protocol which could be easily upscaled for 
high-throughput virome studies. CsCl ultracentrifugation poses difficulties with respect to reproduci-
bility and automation, as discussed by Kleiner and colleagues21, and therefore was not investigated in 
this study. In addition, some viral families and genera are known to be unstable in CsCl, such as the 
Guttaviridae, Orthomyxoviridae and Nanovirus31. Furthermore a more recent study reported a strong 
loss of specific phages (φ VPE25 and T7) tested when using a CsCl method21. For samples with high 
volume and low viral load (e.g. ocean waters, urine), an additional concentration step may be required. 
Approaches using FeCl3 or PEG precipitation have been shown very useful36–38. The quantitative effect of 
these procedures on each member of the viral community has not been studied. However, the use of a 
pre-filtration step with 0.2-μ m, as often used for these methods, will lead to the removal of larger viruses 
(Fig. 4), which could be overcome by using a 0.8-μ m filter instead.

In our method, only a single nucleic acids extraction method was tested. The QIAamp Viral RNA 
mini kit is a rapid method to extract viral nucleic acids, and has shown consistently good performance 
in previous virome studies19,20. Nevertheless, non-column based extraction methods might be considered 
to avoid silica contaminants39, but can be too time-consuming for large scale studies.

Although our optimisation was performed with mock communities containing high concentrations of 
viruses, NetoVIR has been successfully applied on a number of biological samples such as faeces (both of 
human and animal origin), clinical respiratory samples, serum samples and even homogenised insects. 
For all these samples a variety of known and unknown viruses could be identified.

To our knowledge this is the first modular VLP purification approach which provides virologists the 
information to adapt their procedures according to their particular needs. For virome studies in faecal 
samples we provide an overview and detailed explanation of NetoVIR (Fig. 1 and Protocol S1), which is 
suitable for large-scale studies and provided the best obtainable viral/bacterial ratio.

Material and Methods
Design of the mock-virome. The mock-virome consists of known concentrations (ranging from 
107 to 1010 genome copies per mL) of nine viruses (Table 1). These viruses were selected as representa-
tives of a very wide range of physical virus characteristics, such as a distinct virus architecture (spheri-
cal, rod-shaped, head-tail structure), different virion sizes (ranging from 17 nm to 700 nm), presence or 
absence of an envelope, different genome lengths (ranging from 1.8 kb to 1180 kb) different genome types 
(dsDNA, dsRNA, ssDNA, ssRNA) and different genome compositions (linear, circular, segmented). The 
largest amount of the above diversity has been observed for eukaryotic viruses, explaining why only a 
single bacteriophage was included in our mock virome. Moreover, no (-)ssRNA virus was included as 
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there is no reason to expect a different behaviour than any other ssRNA virus in any step of our proce-
dure. We believe that the morphological and physicochemical properties of all know bacteriophages are 
covered by the nine viruses selected. Porcine circovirus 2, feline panleukopenia virus, feline infectious 
peritonitis virus and bovine herpesvirus were kindly provided by Sebastiaan Theuns and Hans Nauwynck 
(University of Ghent). The mimivirus was provided by Didier Raoult (Université de la Méditerranée). 
Inge Hanssen from Scientia Terrae VZW provided the pepino mosaic virus. The BK polyomavirus was 
provided by Robert Snoeck and Dimitrios Topalis (KU Leuven). The LIMEstone virus was obtained 
from Rob Lavigne (KU Leuven). Timo Vesikari (University of Tampere) provided the WC3 rotavirus. 
Except for the LIMEstone virus (arrived at 4 °C) all virus stocks were frozen upon arrival and were then 
thawn for q(RT)PCR quantification. Preparation of the mock communities was done with their original 
cell culture media, followed by aliquotation and freezing again at − 80 °C before final use. For all the 
viruses, specific q(RT)-PCR assays and standards were either developed or retrieved from literature40–42 
(Table S1).

Design of the bacterial mock-community. The bacterial mock-community consists of known con-
centrations of four different bacteria representative for the majority of bacterial phyla in the gut (Table S2). 
Lactobacillus acidophilus (Firmicutes) and Bifidobacterium animalis are Gram-positive (Actinobacteria), 
whereas Escherichia coli (Proteobacteria) and Bacteroides thetaiotaomicron (Bacteroidetes) are 
Gram-negative. For each member in our mock-community, a qPCR assay targeting a unique and specific 
region was developed or retrieved from literature43. In addition, to quantify the number of 16S rRNA 
copies of the Bacteroides genus an additional qPCR assay was used (Table S3). The number of 16S copies 
for the other bacterial species was not determined because the structure of ribosomes is highly conserved 
among bacterial species, and were therefore not expected to behave differently in our experiments. All 
bacterial strains were acquired from the Belgian Co-ordinated Collection of Micro-organisms (BCCM) 
in their growing medium with the following LGM accession numbers: 13550 (Lactobacillus acidophilus), 
2092 (Escherichia coli), 18906 (Bifidobacterium animalis) and 11262 (Bacteroides thetaiotaomicron). The 
bacterial mock-community was assembled from its original growing stocks and no buffers/medium were 
added and aliquots were made and preserved at − 80 °C to ensure one freeze-thaw cycle.

Real time (RT)-PCR assays. All qPCR assays for DNA viruses and bacteria were carried out using 
the TaqMan®  Universal PCR Master Mix (Applied Biosystems) with the following conditions: 2 min 
at 50 °C, 10 min at 95 °C and 45 cycles of 15 sec at 95 °C and 1 min at 60 °C. RNA viruses and rRNA 
qRT-PCR were carried out with the One step qRT-PCR MasterMix Low Rox (Eurogentec) using the 
following conditions: 30 min at 48 °C followed by 10 min at 95 °C and 45 cycles of 15 sec at 95 °C and 
1 min at 60 °C. qPCRs were performed on an ABI 7500 Real-Time PCR System (Applied Biosystems).

Homogenisation. Mock-virome and bacterial mock-community were homogenised using a tis-
sue homogeniser (MINILYS, Bertin technologies). A 200 μ L stock of mock-virome or bacterial 
mock-community were subjected to different homogenisation speeds (3000 rpm or 5000 rpm) with 
or without the presence of ceramic beads (Ø0.1 mm (CK01–2 ml, Precellys) or Ø2.8 mm (CK28–2 ml, 
Precellys)). All samples were homogenised for 1 min. After homogenisation, samples were treated for 
2 hours at 37 °C with a cocktail of 1 μ l microccocal nuclease (NEB) and 2 μ l of benzonase (Millipore) 
and 7 μ l of homemade buffer (1M Tris, 100 mM CaCl2 and 30 mM MgCl2, pH 8) and extracted with the 
QIAamp Viral RNA Mini Kit (Qiagen) without carrier RNA.

Centrifugation. Samples were centrifuged using a bench top centrifuge (Heraeus pico 17, 
Thermoscientific). Two-hundred  μ l of mock-virome or bacterial mock-community was centrifuged at 
100 g or 17000 g for 3 min or 30 min. Subsequently, samples underwent nuclease treatment, nucleic acids 
extraction and qPCR assays as described above.

Filtration. Aliquots of 1000 μ l containing mock-virome or bacterial mock-community were filtered 
through a 0.8-μ m centrifugal (PES) filter (VK01P042, Sartorius), a 0.8-μ m polycarbonate (PC) filter 
(ATTP14250, Millipore), a 0.45-μ m centrifugal filter (UFC40HV00, Millipore) or a 0.22-μ m centrifugal 
filter (UFC40GV00, Millipore). The 0.8-μ m PC filter was pre-wetted with nuclease-free water prior to 
filtration to enhance performance. After filtration, samples underwent a nuclease treatment, nucleic acids 
extraction and qPCR assays as described above.

Chloroform treatment. Mock-virome or bacterial mock-community (150 μ l) were incubated with 
1%, 5%, 10% and 20% (%v/v) of chloroform and incubated for 60 min in a ferris wheel at 10 rpm (model 
L23, Labinco BV). After the chloroform treatment, samples underwent a nuclease treatment, nucleic 
acids extraction and qPCR assays as described above.

Random amplification. Random amplification of nucleic acids was performed using the Whole 
Transcriptome Amplification Kit 2 (WTA2, Sigma Aldrich) according to manufacturer’s instructions 
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with the exception of the initial denaturation step which was performed at 95 °C instead of 70 °C in order 
to also denature double-stranded DNA or RNA to make it available for the amplification. In addition, the 
number of amplification cycles was varied between 7, 12, 17 and 22. WTA2 products were purified with 
the QIAquick PCR Purification Kit (Qiagen) according to the manufacturer’s instructions and ampli-
fication efficiency was determined for every virus and bacteria using qPCR assays as described above.

Illumina sequencing. Mock-virome and bacterial mock-community were pooled in 1:1 ratio to a 
total of 1.5 mL and homogenised for 1 min at 3000 rpm with a MINILYS homogeniser. Aliquots of the 
pooled sample were then centrifuged for 3 min at 17000 g, and/or filtered through 0.8 (PES/PC) μ m or 
0.45-μm/0.22-μm filter. Samples underwent a nuclease treatment, nucleic acids, extraction and random 
amplification as previously described. qPCR assays were performed for the mock-virome and the bacte-
rial mock communities’ amplified WTA product. An NGS library preparation was performed using the 
Nextera XT DNA Library Preparation kit (Illumina) according to the manufacter’s instructions except 
that 1) the tagmentation time was decreased to 4 min, 2) input DNA was increased to 1.2 ng/μ l and 
3) reagents’ quantities were halved to increase the average size of the DNA fragments. Fragment sizes 
were determined using a High Sensitivity DNA Kit (Agilent) and run in a Bioanalyzer 2100 (Agilent). 
Libraries were quantified with the KAPA Library Quantification kit (Kapa Biosystems) and sequencing 
was performed on a HiSeq™  2500 platform (Illumina) for 2 ×  150 cycles. Each sample was attributed a 
total of 10 million paired end reads.

The obtained sequence reads were subjected to a bioinformatics pipeline comprising deduplica-
tion (FastUniq)44, quality and adapter trimming (Trimmomatic)45, and subsequently mapped with 
Burrows-Wheeler Aligner (BWA)46 against reference genomes of all viruses, bacteria and 16S rRNA 
present in the mock-virome and bacterial mix. The number of mapped reads for each genome was 
obtained with Samtools47 and the percentage of mapped reads was calculated as the number of mapped 
reads divided by the total number of reads after trimming. For every virus, the correlation between the 
qPCR results and the percentage of mapped reads was determined based on all viral enrichment condi-
tions. Normalisation of the number of reads to the genome length allows for a proper comparison with 
qPCR results.

Method validation: reproducibility. Mock-virome and bacterial mock-community were pooled in 
1:1 ratio, and split into two aliquots. From both aliquots a part was kept for qPCR before treatment and 
underwent a nuclease treatment and nucleic acids extraction. The rest of the mock-virome and bacterial 
mock-community were treated as follows: homogenisation was performed for 1 min (3000 rpm), fol-
lowed by centrifugation for 3 min at 17000 g, then filtration with the 0.8-μ m PES. Samples underwent a 
nuclease treatment, nucleic acids extraction and a random amplification was performed and qPCR assays 
were done as described above.
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