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Kappa-opioid receptors (KOR) are widely expressed throughout the central nervous
system, where they modulate a range of physiological processes depending on their
location, including stress, mood, reward, pain, inflammation, and remyelination. However,
clinical use of KOR agonists is limited by adverse effects such as dysphoria, aversion, and
sedation. Within the drug-development field KOR agonists have been extensively
investigated for the treatment of many centrally mediated nociceptive disorders
including pruritis and pain. KOR agonists are potential alternatives to mu-opioid
receptor (MOR) agonists for the treatment of pain due to their anti-nociceptive effects,
lack of abuse potential, and reduced respiratory depressive effects, however, dysphoric
side-effects have limited their widespread clinical use. Other diseases for which KOR
agonists hold promising therapeutic potential include pruritis, multiple sclerosis,
Alzheimer’s disease, inflammatory diseases, gastrointestinal diseases, cancer, and
ischemia. This review highlights recent drug-development efforts targeting KOR,
including the development of G-protein–biased ligands, mixed opioid agonists, and
peripherally restricted ligands to reduce side-effects. We also highlight the current KOR
agonists that are in preclinical development or undergoing clinical trials.

Keywords: kappa opioid agonist, clinical trials, pharmacotherapies, drug-development, multiple sclerosis, pain,
biased agonist, pruritis

1 INTRODUCTION

The endogenous opioid system consists of a family of peptides that include β-endorphin, the
enkephalins, and dynorphins. These endogenous ligands bind to mu opioid receptors (MOR), delta
opioid receptors (DOR), kappa opioid receptors (KOR) and opioid receptor–like 1 receptors (NOP)
(Kieffer, 1995), which belong to the rhodopsin family of G-protein coupled receptors (GPCRs)
(Rogers, 2020). They are widely expressed throughout the central nervous system (CNS) (Mansour
et al., 1995) and within the gastrointestinal tract, respiratory system, heart (Holzer, 2009; Peng et al.,
2012; Sobanski et al., 2014; Jamshidi et al., 2015), the peripheral terminals of sensory nerves, immune
cells, and endocrine glands, where they contribute to various physiological functions such as
nociception (Stein et al., 1989; Iwaszkiewicz et al., 2013), gastrointestinal transit (Holzer, 2009),
respiration (Zebraski et al., 2000; Pattinson, 2008), endocrine (Vuong et al., 2010; Fountas et al.,
2018), and immune functions (Eisenstein, 2019).

Endogenous opioid peptides and their receptors are expressed in limbic and paralimbic regions in
human and rodent brains (Kuhar et al., 1973; Delay-Goyet et al., 1987; Bagnol et al., 1995; Peckys and
Landwehrmeyer, 1999) and are involved in the modulation of affective states, neuroendocrine and
autonomic stress responses, mood and motivational states. The clinically relevant analgesic effects
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and side effects produced by each member of the endogenous
opioid system have been summarized by Günther et al. (2018).
MOR is the target of classic opioid analgesics such as morphine.
Analgesics acting onMOR are commonly used to treat moderate-
to-severe acute pain and cancer pain. However, MOR agonism
also causes respiratory depression, tolerance, and dependence
and comes with a high risk of addiction (Pasternak and Pan,
2013). Indeed, overreliance onMOR agonists for the treatment of
pain has led to a global epidemic of opioid abuse, with MOR
agonist prescriptions serving as a gateway to illicit drug use.

Although MOR agonists are effective at treating acute pain,
they are largely ineffective when used long-term because they
induce hyperalgesia and tolerance (Matthes et al., 1996; Chu et al.,
2006; Rowbotham and Wallace, 2020), and, with the exception of
treating cancer pain, they are not intended as first-line chronic
pain pharmacotherapies. However, they are often used due to lack
of effective treatment options available. Chronic pain is persistent
pain caused by neuroplastic changes within the CNS and it is
estimated that 20% of adults worldwide suffer from chronic pain
(Goldberg and McGee, 2011), while the socioeconomic impact is
estimated to be US$635 billion annually (Institute of Medicine,
2011). The result has been escalating numbers of opioid overdose
deaths over the last 20 years (Zelaya et al., 2020).

The pain medications market exceeds $80 billion per annum
(Allied Market Research, 2020), and there are high levels of
interest in the development of novel drugs that provide
analgesic effects but do not come with the abuse risks of MOR
agonists. The DOR has received some attention as a potential
therapeutic target, but DOR agonists can induce epileptic seizures
(Chung et al., 2015) and also maladaptively stimulate
dopaminergic reward pathways (Suzuki et al., 1996). For a
recent review on the role of DOR in modulating nociception
see Quirion et al. (2020). Agonists targeting the KOR have also
received growing interest (Kivell and Prisinzano, 2010; Bohn and
Aubé, 2017; Beck and Dix, 2019; Mores et al., 2019; Paton et al.,
2020a; Mercadante and Romualdi, 2020).

KOR agonists play a key role in analgesia and are particularly
relevant to peripherally mediated nociceptive disorders such as
pruritus (Kumagai et al., 2010; Viscusi et al., 2021). KOR agonists
have received attention in the past due to being non-addictive
anti-nociceptive drugs that do not induce respiratory depression
(Viscusi et al., 2021; Wang et al., 2021), properties that compare
favourably with those of MOR agonists such as morphine.
However, they have their own distinctive side effect profiles
that include stress and aversion (Dykstra et al., 1987; Land
et al., 2008; Wee and Koob, 2010), depression (Knoll and
Carlezon, 2010), sedation (Dykstra et al., 1987), diuresis
(Meariman et al., 2021), and neuroendocrine effects (increase
in serum prolactin, cortisol, and adrenocorticotropic hormone
levels) (Ko and Husbands, 2020). These side effects have hindered
clinical development. In recent years, pharmacologists have
turned to strategies that may allow the development of KOR
agonists that provide anti-nociception without these side effects.
Three strategies that are commonly utilised to reduce side effects
are to develop G-protein biased agonists (Mores et al., 2019),
mixed opioid agonists (Atigari et al., 2021), or peripherally
restricted KOR agonists, because most KOR-mediated side

effects are centrally mediated (Machelska and Celik, 2018),
with the exception of diuresis which has both peripheral (Salas
et al., 1989; Butelman et al., 1999; Albert-Vartanian et al., 2016)
and CNS-mediated components (Leander, 1983; Brooks et al.,
1993; Kapusta and Obih, 1993).

In this review, we highlight research into the therapeutic
potential of KOR agonists within key diseases including
nociception (Paton et al., 2017), pruritis (Wang et al., 2021),
multiple sclerosis (MS) (Denny et al., 2021), Alzheimer’s disease
(AD) (Song et al., 2021), immune mediated diseases such as
osteoarthritis (Wilson et al., 1996), atopic dermatitis (Nakasone
et al., 2015), food allergy (Duncker et al., 2012), gastrointestinal
diseases (Mangel et al., 2008), cancer (Yamamizu et al., 2013), and
hypoxia and ischemia (Wu et al., 2021). We also review the
pharmacological strategies being used to develop safer, more
effective KOR agonists with limited associated side effects.

2 STRATEGIES FOR DEVELOPING BETTER,
SAFER KAPPA-OPIOID RECEPTORS
AGONISTS FOR THERAPEUTIC USE
The canonical KOR signalling pathways includes both G-protein
and β-arrestin-2 dependent signalling pathways (Bruchas and
Chavkin, 2010). There is growing evidence suggesting that KOR
signalling through G-protein pathways mediates the anti-
nociceptive and anti-pruritic effects of KOR agonists, whereas
β-arrestin-2-dependent signalling mediates the dysphoric effects
of KOR agonists (Valentino and Volkow, 2018). Experiments
performed in β-arrestin-2 knockout mice have yielded evidence
that this pathway is unnecessary for KOR agonists to exert anti-
pruritic effects (Morgenweck et al., 2015), and multiple lines of
evidence show that β-arrestin-2 signalling and p38 activation
induces conditioned place aversion (CPA) (Bruchas and
Chavkin, 2010). A recent study of 21 structurally diverse KOR
ligands also revealed a correlation between β-arrestin-2 recruitment
and sedative effects in mice evaluated with the rotarod test (Dunn
et al., 2019). The observed associations between signalling pathways
specific behavioural effects have prompted efforts to develop
G-protein biased KOR agonists. Utilising this strategy, it may be
possible to develop KOR agonists with an improved therapeutic
index (Mores et al., 2019). For recent reviews see Bohn and Aubé
(2017) and Paton et al. (2020a). It is also possible that low-efficacy
partial agonists may be responsible for improved side-effects, as has
been found with MOR agonists (Gillis et al., 2020).

Alternative strategies for developing better KOR agonists also
include the development of mixed opioid agonists. For example,
Uprety et al. (2021) and Atigari et al. (2021) provide evidence that
the morphinan analogue MP1104, activates KOR preferentially
over DOR, with little effect atMOR in vivo.MP1104 produces anti-
nociceptive effects in mice and rats without causing respiratory
depression, conditioned place preference, or conditioned place
aversion, sedation, or cross-tolerance with morphine. This
appears to be due to DOR agonism opposing the side-effects of
KOR agonism while potentiating anti-nociceptive effects.

Recently, there has been considerable success in the development
of peripherally restricted KOR agonists. By reducing the CNS
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TABLE 1 | Therapeutic effects and side effects of KOR agonists in preclinical studies.

KOR agonist Pre-clinical
therapeutic effects

Side effects References

Family: Arylacetamides

ADL 10-0101 ↓ Nociception (8.8 mg/kg, s.c.)
inflammatory model (rat, mouse) [1]

ND Gottshall et al. (1999) [1];
Sandner-Kiesling et al. (2002) [2]

↓Nociception: Formalin model (8.8 mg/kg,
s.c., rat) [2]
↓ Writhing (0.018 mg/kg, s.c.) acetic acid-
induced writhing (mice) [1]
↓ Hyperalgesia (8.8 mg/kg, s.c.) Freund’s
complete adjuvant model (mice) [1]

Asimadoline ↓ Nociception: formalin test (phase I ID50

1.9 mg/kg, s.c., and 10.4 mg/kg, p.o.;
phase II ID50 0.26 mg/kg, s.c., and
3.5 mg/kg, p.o. mouse, M) and abdominal
constriction test (ID50 mouse 1.75 mg/kg,
s.c., and 8.4 mg/kg, p.o.; ID50 rat
3.2 mg/kg, s.c., and 250 mg/kg, p.o.)[3]

↑ Diuresis (1 mg/kg, s.c. and 10 mg/kg,
p.o., rat) [3]

Barber et al. (1994) [3]; Caram-Salas
et al. (2007) [4]; Marsella et al. (2021) [5]

↓ Allodynia: spinal nerve ligation
(1–30 mg/kg, s.c., rat, M & F) [4]
↓ Severity of dermatitis [1% asimadoline
gel) canine atopic dermatitis model (topical
application] [5]

BRL-52537 ↑ Neuroprotection: focal cerebral
ischemia (1 mg/kg/hour, i.v., rat, M) [6]

↓ Motor activity (0.1 mg/kg, i.p., M) [7] Goyagi et al. (2003) [6]; Kuzmin et al.
(2000) [7]; Peart et al. (2004) [8]; Jung
et al. (2017) [9]; Fang et al. (2013) [10];
Shahbazian et al. (2002) [11]

↓ Arrhythmia: Ischemia Model (0.5 mg/kg,
p.o., rat, M) [8]
↓ Allodynia: Neuropathic spinal nerve
ligation (SNL) (ED50 0.71 μg/kg, i.t., in rat,
M) [9]
↓Neuronal apoptosis and in cerebral
ischemia/reperfusion injury (1 mg/kg/h,
i.v., rat, M) [10]
↓ Intestinal peristalsis ex vivo guinea-pig
small intestine model (0.3–44.3 nM, Organ
bath) [11]

Enadoline ↓ Thermal hyperalgesia: plantar test
(1–100 μg/kg, i.v., rat, M) [12]

Mild sedation (25–100 g/kg, i.v.) [13] Field et al. (1999) [12]; Tortella et al.
(1997) [13]; Hughes et al. (1998) [14]

↓ Allodynia (mechanical) (1–100 μg/kg,
i.v., rat, M) [12]
↓ Levodopa-induced dyskinesia
parkinsonism (100 mg/kg, i.p., rat, M) [14]

Fedotozine ↓ Peritoneal irritation: acetic acid model
(2.4 mg/kg s.c., rat, M) [15]

n/e diuresis (0.1–30 mg/kg, s.c) [16] Riviere et al. (1994) [15]; Soulard et al.
(1996) [16]; Bonaz et al. (2000) [17]

↓ Visceral nociception: acetic acid induced
(15 mg/kg, s.c., rat, M) [17]

GR-89696 ↑ Anti-nociception: spinal cord injury
(0.32 μM, i.t., rat, M) and tail-flick
(0.32 μM, i.t., rat, M) [18]

↓ Locomotor recovery in a contusion
model [0.32 μM, rodent, M) 0.32 μM, i.t.,
rat, M] [18]

Aceves et al. (2016) [18]; Ko and
Husbands (2009) [19]; Birch et al.
(1991) [20]

↑ Anti-nociception: tail-flick
(0.01–0.1 g/kg, i.m., rhesus monkeys, M &
F) [19]
↓ Itching: intrathecal morphine-induced
scratching (0.1 μg/kg, i.m., rhesus
monkeys, M & F) [19]
↑ Neuroprotection: global and cerebral
ischaemia (3–30 μg/kg, s.c., gerbil, M &
F) [20]

(Continued on following page)

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 8376713

Dalefield et al. Kappa Opioids Target Multiple Pathologies

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


TABLE 1 | (Continued) Therapeutic effects and side effects of KOR agonists in preclinical studies.

KOR agonist Pre-clinical
therapeutic effects

Side effects References

ICI-204,448

↓ Nociception: nerve-injured paw
(40 µg/kg, i.pl., rats, M) [21]

↑ Hypothermia (5, 10 mg/kg s.c) in cold
exposed rats (M) [22]

Barber et al. (1994) [3]; Peart et al. (2004)
[9]; Shahbazian et al. (2002) [11]; Keïta
et al. (1995) [21]; Rawls et al. (2005) [22]↓ Allodynia (40, 50 μg/kg, i.pl) in

mechanical allodynia rat model, (M) [21]
n/e on sedation: rotarod test (100 mg/kg,
i.v., mice) [3]

↓ Infarct size (0.3 mg/kg) in intact rat model
(M) of myocardial infarction [8]
↓ Intestinal peristalsis (0.3–44.3 nM,
guinea-pig small intestine) [11]

ICI-199,441 ↓ Nociception: formalin footpad test
(0.7–7 nM, i.pl., rat, M) [23]

ND Obara et al. (2009) [23]; Endoh et al.
(2000) [24]

↓ Nociception: paw pressure test
(0.54 mg/kg s.c., 0.074 mg/kg, i.m., rat,
M) [24]
↓ Edema formalin induced inflammation
(7 nM, i.pl., rat, M) [23]

MB-1C-OH n.e. Anti-nociception: hot-plate and tail-
flick (10 mg/kg, s.c., mice, M).

↓ Sedation (ED50 9.29 mg/kg s.c.,
mice, M)

Zhang et al. (2015) [25]

↓ Nociception: acetic acid-induced
writhing (EC50 0.39 mg/kg, s.c., mice,
M) [25]

↓ depression (ED50 9.49 mg/kg s.c., mice,
M) (≈3-fold) relative to U50,488 [25]

Niravoline ↓ Brain oedema: ischemia (1 mg/kg,
i.v., rat, M) [26]

↑ Diuresis (1 and 3 mg/kg, i.v., rat, M) [27] Ikeda et al. (1997) [26]; Moreau et al.
(1996) [27]

Spiradoline (U62,066) ↑ Neuroprotection: (0.01–1 μM, rat, M) in
hippocampal slices with hypoxia/
hypoglycemia-induced glucose uptake
deficit [28]

↑Diuresis (0.32 mg/kg, i.p., rats, M) [29] Shibata et al. (1995) [28]; Yamada et al.
(1989) [29]; Pugsley et al. (1998) [30];
Giardina et al. (1994) [31]

↓ Heart rate and contractility isolated heart
(100 μmol/kg, i.v., rat, M) [30]

↑Sedation (≥1.55 mg/kg, s.c., rat, M)
rotarod test [31]

↓ Arrhythmia: Isolated rat heart
(2–2.5 μmol/kg, i.v., M) [30]

U50,488 ↓ Nociception: tail-flick, tail pinch, writhing
tests (2.5 mg/kg, s.c., mice, M) [32]

↑ Aversion (10.0 mg/kg, i.p. rat, M) in
cocaine induced place preference test [33]

Von Voigtlander et al. (1983) [32]; Suzuki
et al. (1992) [33]; Kuzumaki et al. (2012)
[34]; Ehrich et al. (2015) [35]; Kamei and
Nagase (2001) [36]; Silvia et al. (1987)
[37]; Privette and Terrian, (1995) [38];
Mei et al. (2016) [39]; Du et al. (2016)
[40]; Paris et al. (2011) [41]; Song et al.
(2021) [42]

↓ Nociception in warm plate (4.4 mg/kg,
s.c., M), hot plate (7.0 mg/kg, s.c., M), tail
flick (32 mg/kg, s.c., M) and air writhing
(1.4 mg/kg, s.c. rat, M)) [32]

↑ Sedation (10 mg/kg, i.p. mice, M) in CPP
test [35]

↓ Tumor cell growth (15.6–250 μM,
NSCLC cell lines) [34]

↑ Anxiolytic actions (10 and 1,000 μg/kg,
i.p.) in elevated plus-maze test in rats
(M) [38]

↓ Scratching (1–10 mg/kg, p.o., mice) [36] ↓ Novel object recognition in mice (1.0,
10.0 mg/kg, i.p. M) [41]↓ Brain edema and neuronal injury

(30 mg/kg, i.p.) in global cerebral ischemia
in rat models (M) [37]
↑ Oligodendrocyte differentiation (0.5 µM)
in vitro OPC cultures [39]
↑ Remyelination in the lysolecithin-induced
demyelination mouse model (10 mg/kg/
day, p.o., M & F) [39]
↑ Remyelination (1.6 mg/kg, i.p.) in EAE
mice models (F) [40]
↑ Remyelination (1.6 mg/kg, i.p.) in
cuprizone-induced demyelination mice
model (F) [40]
↑ Learning and memory (1.25 mg/kg, s.c.)
in Morris water maze test in mouse model
(M) of Alzheimer’s disease [42]

(Continued on following page)
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TABLE 1 | (Continued) Therapeutic effects and side effects of KOR agonists in preclinical studies.

KOR agonist Pre-clinical
therapeutic effects

Side effects References

U69,593 ↓ Nociception: hot plate test (3.75 mg/kg,
i.p., rat) [43]

↓ Respiration Hughes et al. (1998) [14]; La Regina et al.
(1988) [43]; Morani et al. (2009) [44];
France et al. (1994) [45]; Binder et al.
(2001) [46]; Soulard et al. (1996) [47];
Valenza et al. (2017) [48]

↓ Levodopa-induced dyskinesia in
parkinsonism model (375 mg/kg, i.p., rat,
M) [14]

↑ Motor activity, salivation
(0.032–0.1 mg/kg, s.c., rhesus
monkey) [45]

↓ Drug seeking: cocaine reinstatement test
(0.3 mg/kg, s.c., rat, M) [44]

↑ Diuresis (0.3–3 mg/kg, s.c., rat, M) [47]

↓ Inflammation: Freund complete adjuvant
(100 μg/paw, i.pl., rat, M) [46]

↑ CPA (0.32 mg/kg, s.c., rat, M) [48]

Family: Benzomorphans

Bremazocine ↓ Nociception: tail-flick (13.7 nM/mouse,
i.c.v., mice, M) [49]

↓ Respiration rat (>8 mg/kg, s.c., mice) Kuzmin et al. (2000) [7]; Horan et al.
(1991) [49]; Nestby et al. (1999) [50];
Hayes and Tyers (1983) [51]↓ ethanol self- administration: ethanol self-

administration test (0.1 mg/kg, s.c., rat,
M) [50]

↑ Sedation (0.1–8 mg/kg, s.c., mice, M or
F) [51]

↓ Motor activity: (0.312 mg/kg and higher,
s.c., mice, M) [7]

Family: Diphenethylamines

HS665 (A), HS666 (B) ↓ Nociception: tail-flick (HS665 3.74 nM,
HSS6 6.02 nM, i.c.v, mice, M) [52]

n/e motor performance in rotarod test
[HS665 (10 nM) and HS666 (30 nM)].

Spetea et al. (2017) [52]

n.e. CPA/CPP [HS665 (30 nM) and HS666
(150 nM., mice, M, i.c.v)] [52]

Family Diazabicyclononanone

HZ-2 ↓ Nociception: tail-flick (1.80–2.71 mg/kg,
i.v., mice) [53]

↑ Sedation (4.27 mg/kg, i.p., mice) Kögel et al. (1998) [53]

↓ Nociception: formalin footpad
(21.5 mg/kg, i.p., mice) [53]

↓ Motor coordination (≥14.7 mg/kg, i.p.)
n/e on respiratory rate (0.4–10 mg/kg,
i.v., rat)
↓ Exploratory activity (4.27 mg/kg,
i.p., mice) [53]

Family: Ibogaine

Noribogaine (O-desmethylibogaine/
12-hydroxyibogamine)

↓ Ethanol self-administration: two bottle
choice (5–40 mg/kg, i.p., rat, M) [54]

ND Rezvani et al. (1995) [54]; Chang et al.
(2015) [55]

↓ Nicotine self-administration: intravenous
drug self-administration (25–50 mg/kg,
p.o., rat, M) [55]

(Continued on following page)
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TABLE 1 | (Continued) Therapeutic effects and side effects of KOR agonists in preclinical studies.

KOR agonist Pre-clinical
therapeutic effects

Side effects References

Family: Morphinans

Nalfurafine ↓ Pruritis: substance P and histamine
induced itch (100 μg/kg, p.o., mice, M) [56]
and compound 48/80-induced itch
(2.5–30 μg/kg, s.c., mice, M) [57]

n.e. CPA or CPP (5–20 μg/kg, s.c., M)
[58, 24]

Endoh et al. (1999) [24]; Togashi et al.
(2002) [56]; DiMattio (2016) [57]; Liu
et al. (2019) [58]; Zhou and Kreek (2019)
[59]; Denny et al. (2021) [60]; Ikeda et al.
(2009) [61]; Inan et al. (2009) [62]↓ Nociception: tail-flick (ED50

0.062 mg/kg, s.c., mice, M & F) [59]
n.e. anhedonia (sucrose preference test)
(10 μg/kg, s.c.) and anxiety (elevated plus
maze test) (10 μg/kg, s.c.) [24]

↓ Neuroinflammation: EAE model of MS
(0.03–0.01 mg/kg, i.p., mice, F) [60]

n.e dysphoria.

↑ Remyelination: cuprizone model
(0.01 mg/kg, i.p., mice, F) [60]

↑ Diuresis (5–10 μg/kg, s.c., rat, M) [62]

↓ Levodopa-induced dyskinesia,
parkinsonism rat (10–30 μg/kg, s.c., rat,
M) [61]

SLL-039 and SLL-1206 ↓ Visceral nociception: acetic acid-induced
writhing (1 mg/kg, i.p., mice, M)

n.e. sedation (0.5 mg/kg, i.p., mice);
dysphoria (0.4–0.5 mg/kg, i.p., mice,
M) [63]

Wei et al. (2021) [63]

↓ Nociception: hot plate test SLL-039
(0.05, 0.1, 0.3 mg/kg; i.p., mice.) and SLL-
1206 (0.06–1 mg/kg; i.p., mice, M).
↓ Scratching: acute pruritis induced by
chloroquine SLL-039 (0.05–0.3 mg/kg;
i.p, mice, M) and SLL-1206
(0.06–1 mg/kg; i.p, mice, M).
↓ Reward: morphine-induced CPP SLL-
1206 (0.4–0.8 mg/kg, i.p., mice, M) [63]

Family: Peptides

CR665 ↓ Nociception: Freund adjuvant model
(0.2–20 mg, s.c., rat, M) [47, 64]

ND Binder et al. (2001) [46]; Soulard et al.
(1996) [47]; Vanderah et al. (2008) [64]

↓ Inflammation: Freund’s adjuvant model
(30 and 100 μg/paw, i.pl., and 2 mg, s.c.,
rat, M) [46]

Difelikefalin (CR845) ↓ Nociception: writhing test (0.09 mg/kg,
i.v., mice, M & F) [65]

↓ Respiratory rate (at 25 min 2 mg/kg,
i.v., mice, M & F) [65]

Wang et al. (2021) [65]

↓ Allodynia: hind paw incision model and
chronic constriction injury (3 mg/kg,
i.v., rat, M) [65]
↓ Pruritis: 48/80-induced scratching
(0.10 mg/kg, i.v., mice, M) [65]

LOR17 ↓ Nociception: tail-flick (10.07 ±
0.36 mg/kg, i.p., mice, M)

n.e. motor coordination, locomotor, pro-
depressant-like behaviours (10 mg/kg,
s.c., mice, M) [66]

Bedini et al. (2020) [66]

↓ Nociception: writhing test (5.74 ±
0.46 mg/kg, i.p., mice, M)
↓ Thermal hypersensitivity: oxaliplatin-
induced neuropathic nociception
(10–20 mg/kg, s.c., mice, M) [66]

(Continued on following page)
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TABLE 1 | (Continued) Therapeutic effects and side effects of KOR agonists in preclinical studies.

KOR agonist Pre-clinical
therapeutic effects

Side effects References

Family: Phenothiazines

Apadoline ↓ Nociception: writhing models
(0.08 mg/kg, s.c., mice and rat) [67]

n/e aggression (1–4.5 mg/kg, i.v.) [68] Fardin et al. (1990) [67]; Stutzmann et al.
(1995) [68]

↓ ECG and ECoG (1–4.5 mg/kg,
i.v., Baboons) [68]

Family: Terpenoids

β-THP SalB ↑ Duration: tail-flick (2 mg/kg dose, s.c.,
mice (M), compare to SalA) [69, 70]

n/e Sedation, depression, FST, anxiety,
locomotor activity (1 and 2 mg/kg, i.p., rat,
M) [71]

Simonson et al. (2015) [69]; Paton et al.
(2017) [70]; Ewald et al. (2017) [71]

↓ Allodynia: paclitaxel-induced neuropathy
(EC50 1.4 mg/kg, s.c., mice, M) [70]
↓ Nociception: Intradermal formalin
(1–2 mg/kg, i.p., mice, M) [70]
↓ Inflammation (2 mg/kg, i.p., mice, M) [69]
↓ Cocaine induced hyperactivity (1 mg/kg,
i.p., rat, M) [71]

Collybolide ↓ Nociception: tail-flick assay (2 mg/kg,
i.p., mice, M).

↑ Aversion in the CPA test (2 mg/kg,
i.p., mice, M) [72]

Gupta et al. (2016) [72]

↓ Depression: FST (2 mg/kg, i.p., mice, M)
↑ Anxiogenic activity: open field test
(2 mg/kg, i.p., mice, M)
↓ Pruritus: chloroquine-mediated itch
(2 mg/kg, i.p., mice, M) [72]

EOM SalB ↑ Metabolic stability: rat (M) liver
microsome (10 μM) [71]

n.e. anxiety, depressive-like effects
(0.1–0.3 mg/kg, i.p, rat). n/e on locomotor
activity, open arm times or swimming
behaviours (0.1 and 0.3 mg/kg, i.p., rat,
M) [71]

Ewald et al. (2017) [71]; Kaski et al.
(2019) [73]; Paton et al. (2021) [74]

↓ Cocaine-seeking behaviour and
hyperactivity, self-administration
(0.1–0.3 mg/kg, i.p., rat, M) [71]
↑ Spinal anti-nociception (1 mg/kg,
i.p., mice, M &F) [73]
↓ EAE disease severity, EAE
(0.1–0.3 mg/kg, i.p., mice, F) [74]
↓ Immune cell infiltration
↑ Myelin levels in the spinal cord in EAE
(0.1–0.3 mg/kg, i.p., mice, F)
↑Number of mature oligodendrocytes
↑ Number of myelinated axons
↑ Myelin thickness: cuprizone-induced
demyelination (0.1–0.3 mg/kg, Mice,
i.p., F) [74]

Mesyl SalB ↓ Nociception: tail-flick (1 mg/kg,
i.p., mice, M) [69]

n.e. aversion, anxiety, or learning and
memory (1–2 mg/kg, i.p., rat, M) [75]

Simonson et al. (2015) [69]; Kivell et al.
(2018) [75]

↑ duration of action (Vs. SalA,1 mg/kg,
i.p., mice, M) [69]

n.e. Sedation (1–2 mg/kg, i.p., rat, M) [75]

↓ Cocaine induced hypersensitivity
(0.3 mg/kg, i.p., rat, M) [75]
n.e. Sucrose intake (0.3–1 mg/kg, i.p., rat,
M) [75]
n.e Memory impairment: novel object
recognition (0.3–1 mg/kg, i.p., rat, M) [75]
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penetrance of KOR agonists, it is possible to reduce centrally
mediated side effects. This is typically done by performing
structural modifications to increase hydrophilicity or use of
nanocarrier-based approaches or synthesis of peptide-based
compounds (Machelska and Celik, 2018). The potential drawback
to this strategy is that it limits the therapeutic actions of KOR to the
periphery and is unlikely to be successful in targeting diseases of the
CNS. Successful approaches using peripherally restricted KOR
agonists have been shown to attenuate nociceptive transmission
by acting on KORs located in the viscera, and such drugs have been
proven clinically effective in reducing pruritis without causing
centrally mediated side effects. This approach has recently yielded
a new US Food and Drug Administration (FDA)-approved drug
(Korsuva, also known as CR845 and difelikefalin) to treat pruritis
(Deeks, 2021). See Section 3.2 for further information.

Examples utilising these strategies are presented within Tables
1, 2 and within each section on specific diseases where KOR
agonism may hold therapeutic potential.

3 DISEASES FOR WHICH THE
KAPPA-OPIOID RECEPTORS HAS
THERAPEUTIC POTENTIAL
3.1 Pain
KORs are currently being investigated as a therapeutic target for
the treatment of pain because KOR activation has potent anti-

nociceptive effects in various models of acute (mechanical,
thermal and chemical) (Briggs et al., 1998; Beck et al., 2019;
Escudero Lara et al., 2021), inflammatory (Paton et al., 2017),
neuropathic (Sounvoravong et al., 2004), and cancer pain
(Edwards et al., 2018). The use of KOR agonists for the
treatment of pain are therapeutically desirable due to the
presence of anti-nociceptive effects without abuse potential
(Beck and Dix, 2019) or respiratory depressive effects (Viscusi
et al., 2021; Wang et al., 2021).

However, the clinical use of traditional KOR agonists has
previously been limited due to their adverse effects identified in
preclinical studies, such as sedation (Zhang et al., 2015),
conditioned place aversion (Ehrich et al., 2015), and pro-
depressive effects (Carlezon et al., 2006). The traditional KOR
agonists 2-(3,4-dichlorophenyl)-N-methyl-N-[(1R,2R)-2-
pyrrolidin-1-ylcyclohexyl]acetamide (U50,488) and N-methyl-
2-phenyl-N-[5R,7S,8S]-7-pyrrolidin-1-yl-1-oxaspiro [4,5]decan-
8-yl]acetamide (U69, 593) are potent and selective full agonists at
KOR (Von Voigtlander and Lewis, 1982; Von Voigtlander et al.,
1983; Emmerson et al., 1994). These traditional KOR agonists
have since served as structural scaffolds for the development and
synthesis of novel KOR agonists with the aim of developing KOR
agonists devoid of side effects. Many novel KOR agonists have
also been either isolated or synthesised and used as novel
structural scaffolds.

Salvinorin A (SalA), isolated from the plant Salvia divinorum
is a potent, centrally acting KOR agonist that produces anti-

TABLE 1 | (Continued) Therapeutic effects and side effects of KOR agonists in preclinical studies.

KOR agonist Pre-clinical
therapeutic effects

Side effects References

Salvinorin A ↓ Nociception: tail-flick (1–4 mg/kg, s.c.,
mice, M) [70, 76]

↑ CPA, Paton et al. (2017) [70]; McCurdy et al.
(2006) [76]; Zhang et al. (2005) [77];
Dong et al. (2018) [78]; Butelman et al.
(2009) [79]; Braida et al. (2011) [80]

↑ Function; forebrain ischemia (10 μg/kg,
i.v., rat) [78]

↓ Locomotion (1–3.2 mg/kg, i.p., mice,
M) [77]

↓ Inflammation: intradermal formalin
(2 mg/kg, i.p., mice) [70]

↓ Sedation (0.01–0.032 mg/kg,
i.v., monkeys (M & F) [79]
↓ Learning and memory (80–640 μg/kg
s.c., rat, M) [80]
↑ Anxiogenic effects (0.3 mg/kg, i.p., rat,
M) [80]

MOM SalB ↓ Nociception: hot plate (0.5–5 mg/kg,
i.p., rat, M)

↑ Hypothermia (0.5–5 mg/kg, i.p. rat, M) Wang et al. (2008) [81]

↑ Hypothermia: (0.5–5 mg/kg, i.p., rat, M) ↑ Sedation (0.01–1 mg/kg, i.p., mice,
M) [81]↓ Motor activity: home cage activity

(0.05–1 mg/kg s.c., mice, M) [81]

Family: Triazole
Triazole 1.1 ↓ Nociception (30 mg/kg, i.p., mouse, M)

Tail flick assay [82]
n/e sedation, open field test Zhou et al. (2013) [82]; Brust et al.

(2016) [83]
↓ Pruritis (1–15 mg/kg, s.c., mice, M) in
chloroquine phosphate–induced
scratching responses [83]

n.e. dysphoria (3–30 mg/kg, i.p., rat) [83]

↑ Anti-nociceptive effects: ICSS abdominal
nociception model (24 mg/kg, i.p., rat) [83]

Abbreviations: CPP, conditioned place preference; CPA, conditioned place aversion; EAE, experimental autoimmune encephalomyelitis; ECG, electrocardiogram; ECoG,
electrocorticogram; ED50, median effective dose; F, female; FST, force swim test; ICSS, intracranial self-stimulation; i.c.v., intracerebroventricular; ICSS, intercranial self-stimulation; ID50,
inhibitory dose; i.m., intramuscular; i.p., intraperitoneal; i.pl., intraplantar; i.t., intrathecal; i.v., intravenous; M, male; ND, not determined; n.e., no effect; p.o., per oral; s.c., subcutaneous.
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TABLE 2 | Therapeutic effects and side effects of KOR agonists in clinical studies.

KOR agonist Clinical therapeutic effects Side effects References

ADL 10-0101 Phase I: completed: safety assessment in healthy
volunteers (Adolor Corporation) (10 μg/kg/min, i.v.
s.e all) [1]

↑Headache, restlessness n/e BP, HR,
respiratory rate, nausea (10 μg/kg/min,
i.v.) [1]

Eisenach et al. (2003) [1]

Phase II: Effectiveness in reducing pain in patients
suffering from chronic pancreatitis (10 μg/kg/min,
i.v.) n = 6; s.e., all; age 18–60 years [1]

Asimadoline Phase II: completed (12/2007). Safety and efficacy
of asimadoline (0.15, 0.5, 1.0 mg, p.o.) in the
treatment of patients with IBS n = 596; s.e., all; age
18–79 years [NCT00454688].

ND

Phase II: completed (3/2007). Effect of Asimadoline
(0.5–1 mg, p.o) on acute pain attacks (IBS) n = 100;
s.e., all; age 18–65 years [NCT00955994].
Phase II: completed (6/2017). Safety, tolerability,
and efficacy of asimadoline (5 mg, p.o.) in patients
with pruritus associated with atopic dermatitis n =
249; s.e., all; age 18 years and above
[NCT02475447].
Phase III: completed (6/2013). Safety and efficacy
of asimadoline (0.5 mg, p.o.) in treating Diarrhea-
Predominant IBD n = 611; s.e., all; age 18–79 years
[NCT01100684].
Phase II: terminated for post-operative ileus n = 35;
s.e., all; age 18–80 years (poor enrolment)
[NCT00443040].

Enadoline Pilot Study: Characterisation; pharmacodynamic
effects (10–80 80 µg/70 kg, i.m.) n = 9; s.e., all; age
22–47 years

Psychotomimetic effects, skin prickling,
unsteady gait (160-µg/70 kg, i.m.) [2]

Walsh et al. (2001) [2]

Fedotozine Phase II: completed (1994): No pattern of drug related adverse
effects [3]

Fraitag et al. (1994) [3]; Read et al.
(1997) [4]; Barber and Gottschlich
(1997) [5]; Delvaux (2001) [6]

↓ Post-prandial fullness, bloating, nausea
↓Abdominal pain (30 and 70 mg, p.o.) n = 146; s.e.,
all; age 43–55 years [3]
Phase III: completed (1997): effective for the relief of
functional dyspepsia (30 mg thrice daily, p.o.) n =
333; s.e., all [4]
Phase III: terminated: IBS and dyspepsia;
terminated (lack of efficacy) [5, 6]

Niravoline Phase II: completed: Effective treatment of patients
with cirrhosis and water retention (0.1–2 mg, i.v.)
n = 18; s.e., all; age 52± years [7]

↑ Diuresis (0.1–2 mg, i.v.) Gadano et al. (2000) [7]
↑ Aquaretic effect (0.5 and 1 mg, i.v.) [7]

Spiradoline (U62,066) Phase I: completed (12/2009): Bipolar Depression:
n = 24; s.e., male; age 21–55 years
[NCT00988949].

↑ Diuresis (1.6 and 4.0 μg/kg, i.m.) Peters et al. (1987) [8]; Chappell et al.
(1993) [9]; Ur et al. (1997) [10]

Phase I: Diuretic actions (2–6 μg/kg, i.m.)[8] ↑ Prolactin, growth hormone and cortisol
levels (1.6 and 4.0 μg/kg, i.m.) [10]Clinical study: Effect of Spiradoline on Tourette’s

syndrome.
↓ Frequency of tics, Low doses (0.8 μg/kg, i.m)
higher doses either worsened tics, or had n.e. n =
10; s.e., male; age 20–47 years [9]

Noribogaine
(O-desmethylibogaine/12-
hydroxyibogamine)

Phase I: completed (2014): Safety, tolerability,
pharmacokinetic, and pharmacodynamic profiles of
noribogaine (3–60 mg/kg, p.o.) n = 36; s.e., male;
age 18–55 years [ACTRN12612000821897] [11]

Headache (3 mg), Epistaxis (placebo) [11] Glue et al. (2015) [11]

Phase I and II: recruiting patients (Exp. completion
date: 9/2023) Efficacy, safety and tolerability of
Ibogaine for opioid withdrawal patients

(Continued on following page)
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nociceptive effects in a dose-dependent manner in animal models
of visceral, thermal (McCurdy et al., 2006), inflammatory (Aviello
et al., 2011), and neuropathic pain (Coffeen et al., 2018).

However, its clinical progression has been limited due to its
short duration of action (McCurdy et al., 2006), potent
hallucinogenic effects (Prisinzano, 2005), in addition to

TABLE 2 | (Continued) Therapeutic effects and side effects of KOR agonists in clinical studies.

KOR agonist Clinical therapeutic effects Side effects References

(3–12 mg/kg, p.o.) n = 110; s.e., all; age
18–55 years [NCT05029401]

Nalfurafine Clinically approved (Japan) (2009) Remitch for
medication-resistant pruritus in patients with
hemodialysis [12]

Insomnia (≥3% (5 μg/kg, p.o.) [13] Inan et al. (2009) [12]; Kumagai et al.
(2010) [13]

Phase III: completed (9/2009): For the treatment of
pruritus in patients receiving hemodialysis (5 μg,
p.o.) n = 104; s.e., all; age 20 years and older
[NCT01513161].
Phase II: completed (3/2018): Nalfurafine as a
treatment for pruritus in patients with primary biliary
cholangitis n = 44; s.e., all; age 18 years and older
[NCT02659696].
Phase II: completed (12/2009): Pruritus in patients
with chronic liver disease (2.5–10 μg, p.o.) n = 120;
s.e., all; age 20 years and older [NCT00638495].
Phase III: recruiting patients (Exp. completion date
10/2021): Efficacy, safety and plasma
concentration of nalfurafine for treatment of
refractory pruritus (5 μg, p.o.) n = 133; s.e., all; age
18 years and older [NCT04728984].

CR665 Phase II: completed (2009): No serious side effects Paresthaesia,
dizziness, somnolence and increased
prolactin levels [14]

Arendt-Nielsen et al. (2009) [14]
↓ Visceral pain in a human model of oesophageal
distension (0.36 mg/kg; i.v.) n = 18; s.e., male; age
19–43 years [14]

Difelikefalin (CR845) FDA approved (8/2021): (Dose: 0.5 μg/kg, 3x
weekly, i.v.) n = 222; s.e., all; age 18–25 years
[NCT03998163] [15]

Common adverse reactions: diarrhoea,
dizziness, nausea, gait, hyperkalaemia.
headache 0.5 μg/kg 3x weekly, i.v.)
occurring in ≥ 2% of recipients (n = 424) [16]

Wang et al. (2021) [15]; Deeks
(2021) [16]

Phase II: completed (1/2016): osteoarthritis of the
hip or the knee (0.25–5 mg, p.o.) n = 81; s.e., all;
age 25 and above [NCT02524197]
Phase II: completed (4/2021): Pruritus (atopic
dermatitis) (0.25–1 mg, p.o.) n = 401; s.e., all; age
18–80 years [NCT04018027]
Phase II: recruiting patients (Est. completion date,
3/2022): Pruritus (notalgia paraesthetica) (2 mg,
p.o.) n = 120; s.e., all; age 18–80 years
[NCT04706975]
Phase II: recruiting patients (Est. completion date,
6/2022): Pruritus (primary biliary cholangitis) (1 mg,
p.o.) n = 60; s.e., all; age 18–80 years
[NCT03995212]

Apadoline Phase I: Reduced pain (0.1, 0.5, and 1.0 mg, p.o.)
n = 20; s.e., male [17]

Mild drowsiness and headache (1 mg,
p.o.) [17]

Lötsch et al. (1997) [17]

Salvinorin A Drug Effect: Phase I and II: completed (3/2020).
Effects on human brain activity and connectivity, n =
13; age 21–50 years; s.e., all [NCT03418714]

↑ Psychoactive effects inh. (0.25 mg, inh.) Maqueda et al. (2015) [18]; Addy
(2012) [19]; MacLean et al.
(2013) [20]

Phase I: completed (11/2013): Hallucinogenic
effects n = 14; age 21–65 years; s.e., all
[NCT00996411].

↑ Synesthesia (inh.0.25 mg) [18]

Phase I: ongoing (Est. completion date: 12/2021):
Psychotomimetic Effects in healthy people n = 66;
age 18–45 years; s.e., all [NCT00700596].

↑ Hallucinations (inh.100 µg) [19]

Phase I: completed (2019): For effects on mood
and performance completed n = 20; age
21–50 years; s.e., all [NCT02033707].

↑ Dissociative effects (inh.
0.375–21 μg/kg) [20]

Abbreviations: BP, blood pressure; HR, heart rate; i.m., intramuscular; i.v., intravenous; inh, inhalation; ND, not determined; n.e., no effect; n, number of participants; p.o., per oral; s.c.,
subcutaneous; s.e., sexes eligible for study.
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inducing aversion (CPA) (Zhang et al., 2015), anxiety (elevated
plus maze) (Ewald et al., 2017), sedation (facial relaxation and
ptosis) (Butelman et al., 2019) and motor incoordination
(inverted screen test) (Fantegrossi et al., 2005) reviewed in
(Paton et al., 2020a). However, modifications to the structure
of SalA have yielded compounds with increased anti-nociceptive
potency. For example, β-tetrahydropyran salvinorin B (β-THP
SalB) has been shown to display potent anti-nociceptive effects in
rodent models of thermal, inflammatory, and neuropathic pain.
The dose–response effects of β-THP SalB, SalA and U50,488
revealed differences in both potency (ED50) with β-THP SalB >
SalA > U50,488 and efficacy (Emax) in the hot water tail-
withdrawal assay. In a chemotherapy-induced neuropathic
pain model, both SalA and β-THP SalB dose-dependently
reduced mechanical and cold allodynia to pre-paclitaxel levels,
with the novel SalA analogue, β-THP SalB demonstrating
increased potency over the parent compound (Paton et al.,
2017). Furthermore, additional analogues of SalA, 16-Bromo
SalA and 16-Ethynyl SalA proved to be more potent in
attenuating nociception in comparison to U50,488 and had a
longer duration of action in the warm water tail-flick assay in
mice. These novel compounds were also effective in reducing
nociceptive behaviours in the intraplantar formaldehyde model
of inflammatory nociception with neither compound displaying
anxiolytic effects (Paton et al., 2020b).

Another KOR agonist, collybolide, isolated from the fungus
Collybia maculate, was found to be highly selective and G-protein
biased. Collybolide, displayed anti-nociceptive effects in the tail-flick
assay, similar to SalA, and reduced scratching behaviours in a mouse
model of pruritis (Gupta et al., 2016). Collybolide also displayed fewer
side effects with no pro-depressive behaviours observed in the force
swim test (mice spent less time immobile) or anxiolytic effects in the
elevated zero maze (mice spent more time in the open arms), or
reduced locomotor activity in open-field tests (no effect on distance
travelled). However, collybolide did exhibit aversive behaviour in the
condition placed aversion test in mice (Gupta et al., 2016).

Triazole 1.1 is a selective KOR agonist that displays significant
G-protein signalling bias (Zhou et al., 2013; Lovell et al., 2015). This
compound was identified through a high-throughput screening assay
which identified selective chemotypes that had agonistic properties at
KOR (Frankowski et al., 2012). Triazole 1.1 produces anti-nociceptive
effects in the tail-flick assay comparable to that of U50,488. In
addition, it was also found to be efficacious in suppressing
scratching in a mouse model of non-histamine induced pruritis.
Triazole 1.1 showed an improved safety profile with no change in
locomotor activity in the open field assay in mice, or dysphoria
observed in intracranial self-stimulation assays in rats in comparison
to U50,488. In addition, triazole 1.1 did not induce decreases in
dopamine levels in comparison to U50,488 which decreased
dopamine levels within the nucleus accumbens in a dose-
dependent manner (Brust et al., 2016). In rhesus monkeys,
triazole 1.1 (0.01–0.32mg/kg) did not induce sedative or motor
impairment effects (Huskinson et al., 2020). Furthermore, in rats,
triazole 1.1 reduced oxycodone self-administration, and co-
administration of oxycodone and triazole 1.1 enhanced anti-
nociceptive effects (Zamarripa et al., 2021). Thus, trizole 1.1
demonstrates an improved therapeutic index in comparison to

balanced KOR agonists such as U50,488. Together, these data
support that G-protein biased KOR agonists have reduced side
effects.

More recently, peripherally restricted KOR agonists such as
those advanced by Cara therapeutics have been developed in
attempts to reduce side-effects. CR845 (also known as
difelikefalin) and CR665 (also known as FE-200665) both
exhibit potent anti-nociceptive effects in preclinical models of
inflammatory, visceral (Binder et al., 2001; Arendt-Nielsen et al.,
2009) and neuropathic pain without gastrointestinal side effects
(Gardell et al., 2008). CR845 completed phase III clinical trials
(Beck and Dix, 2019) and recently received FDA approval in the
United States under the name Korsuva for the treatment of
pruritis in adults with chronic kidney disease who are
undergoing haemodialysis (Deeks, 2021). In a single-dose
crossover study involving healthy volunteers, intravenous (i.v.)
CR845 at a dose of 1.0 or 5.0 μg/kg was not associated with
respiratory depression (Viscusi et al., 2021). A detailed review of
CR845’s performance in pre-clinical and clinical evaluations can
be found in Lipman and Yosipovitch (2021).

Structural derivatives of CR665 have also been developed in
attempts to increase bioavailability. JT Pharmaceuticals
developed JT09, which was shown to reduce acetic
acid–induced writhing behaviours in rats following oral
administration (30 mg/kg) (Hughes et al., 2013). JT09 showed
limited centrally mediated side effects and did not induce
rewarding (cocaine self-administration test), pro-depressive
(no increase in inactivity in the forced swim test), or sedative
effects (no change in open field activity) in preclinical rat models
(Beck et al., 2019).

Nalfurafine (also known as TRK-820; marketed clinically as
Remitch) is the only full, KOR-selective, centrally-acting KOR
agonist approved for clinical use for the treatment of pruritis in
Japan and South Korea (Nakao and Mochizuki, 2009). In this
patient group, nalfurafine has proven to be safe and well tolerated
(Kozono et al., 2018). Preclinical studies with nalfurafine have
shown anti-nociceptive effects that have greater potency than
U50,488 and a longer duration of action than the MOR agonist,
morphine. There is also evidence that KOR agonists potentiate
the effects of MOR agonists. TRK-820 10 and 30 μg/kg/
subcutaneously (s.c.) co-administered with morphine enhanced
the antinociceptive effects in the mouse hot plate test (Endoh
et al., 1999). However, nalfurafine is not suitable as a clinical
analgesic as it has side effects at doses that induce analgesia (Inan
et al., 2009; Kaski et al., 2019).

Together, these pre-clinical and clinical studies demonstrate
that KOR agonists have the potential to be developed into safe
pharmacotherapies without abuse liability and may be useful in
addressing the opioid epidemic.

3.2 Pruritis
Pruritis is a sensation that induces itching or scratching, leading
to irritated skin and is one of the most common reasons people
seek dermatologist advice. It is well established that activation of
KOR induces anti-pruritic effects due to being involved in the
modulation of the sensation of itch. In contrast, the use of KOR
antagonists, nor-BNI and 5′GNTI, promote a scratching response
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in wild-type mice when injected subcutaneously (s.c.) and the
effect of these antagonists was less severe in KOR knock-out mice
(Morgenweck et al., 2015). In contrast, MOR agonists are shown
to promote itch, while MOR antagonists have the ability to
supress itch in wildtype mice (Ko, 2015).

In 1984, Gmerek and Cowan identified that the systemic
administration of the early benzomorphan family of KOR
agonists significantly decreased scratching in rats in a dose-
dependent manner in a bombesin-induced model of itch
(Gmerek and Cowan, 1984). Later, they also showed that
U50,488 and tifluadom were also effective in attenuating
scratching in the same rat model (Cowan and Gmerek, 1986).
Furthermore, the peripherally restricted KOR agonist ICI 204,448
was able to inhibit scratching behaviours in the chloroquine-
induced model of itch in mice (Inan and Cowan, 2004).
Nalfurafine is more potent than U50,488 in preclinical tail-
flick and acetic acid induced mouse models of nociception
(Nagase et al., 1998). Nalfurafine has also been found to
inhibit pruritus induced by compound 48/80 which stimulates
histamine release and induces mast cell degeneration (Wang
et al., 2005; Inan et al., 2009; Schemann et al., 2012),
substance P (a peptide that induces itching) (Hägermark et al.,
1978; Togashi et al., 2002; Umeuchi et al., 2003), histamine
(Togashi et al., 2002), and chloroquine phosphate (Inan and
Cowan, 2004). These studies have identified that nalfurafine has
high potency in these models of itch without developing
tolerance. In pre-clinical studies, CR845 (difelikefalin, brand
name Korsuva) has proved to be highly effective in
attenuating scratching behaviours induced by two models of
itch, compound 48/80 and the KOR antagonist 5′GNTI, in a
dose-dependant manner (Cowan et al., 2015). Another
peripherally restricted KOR agonist, HSK21542, can also
attenuate compound 48/80-induced itch in mice with an
inhibitory rate of 99.8% in comparison to nalfurafine which
reduced the scratching responses at an inhibitory rate of 94%.
HSK21542 was also shown to have a higher potency than the
recent FDA approved drug, Korsuva (Wang et al., 2021).

Although nalfurafine is widely use in Japan, the European
Medicines Agency (EMA, 2013) denied its clinical approval for
use in Europe for the same indications due to non-significant
results regarding effectiveness in comparison to placebo controls.
In contrast to its oral delivery approved for use in Japan, this
EMA trial utilised intravenous administration, and this different
route of administration may explain differences in efficacy and
side-effects. In a phase III clinical trial involving 378 patients,
administration of CR845 (Korsuva) significantly reduced itching
and improved patients’ quality of life. The peripheral actions of
this drug reduced the occurrence of dysphoria and hallucinations
at therapeutic doses (Fishbane et al., 2020). These pre-clinical and
clinical studies signal that KOR agonists play an important role in
pruritis and inflammation and may be developed into effective
pharmacotherapies.

3.3 Multiple Sclerosis
MS is an autoimmune disease of the central nervous system
(CNS) (Karussis, 2014), affecting 2.8 million individuals
worldwide (Walton et al., 2020). The disease pathology

consists of demyelination in the grey and white matter of the
CNS, and the symptoms vary depending on the severity and
location of lesions. Common symptoms are limb and facial
weakness, optic neuritis, cognitive dysfunction, fatigue, pain,
and bladder dysfunction (Muto et al., 2015; Rommer et al., 2019).

The existing treatment options for relapsing-remitting MS
include immunosuppressant and immunomodulatory agents and
immune reconstitution therapies that can attenuate immune-
mediated damage in the context of MS (Dobson and Giovannoni,
2019; Hauser and Cree, 2020). However, given the current
inability of clinicians to predict and prevent the onset of MS
and the lack of highly effective treatments for progressive MS
(Hauser and Cree, 2020; Krajnc et al., 2021), there is an ongoing
unmet need for remyelination therapies that repair the damaged
myelin (Bove and Green, 2017).

Recent studies have shown that activation of KOR may be an
effective strategy for promoting remyelination and functional
recovery in preclinical models of MS. Several key papers
supporting the therapeutic potential of KOR agonists as
remyelinating agents have recently been published (Du et al.,
2016; Mei et al., 2016; Thell et al., 2016; Tangherlini et al., 2019;
Tangherlini et al., 2020; Denny et al., 2021; Paton et al., 2021).

Du et al. (2016) showed that genetic deletion of KOR
exacerbated the symptoms resulting from experimental
autoimmune encephalomyelitis (EAE) in mice, and that KOR
agonists U50, 488 and asimadoline alleviated the symptoms of
EAE in wild-type mice. The disease-modifying effects of U50, 488
were absent in KOR-knockout mice, providing strong evidence
that the effects were KOR mediated. Immunolabeling for myelin
and oligodendrocyte progenitor cells (OPCs) revealed that U50,
488 promoted OPC differentiation into mature myelinating
oligodendrocytes (OLs) and enhanced remyelination in EAE.
In a cuprizone-toxin-induced model of demyelination, mice
administered with U50, 488 also showed enhanced levels of
remyelination compared to vehicle treated mice (Du et al., 2016).

In a study by Mei et al. (2016), a library of ~250 compounds
targeting G-protein coupled receptors (GPCRs) was screened for
their ability to promote differentiation of mouse and rat OPCs
into mature OL, and they found that a cluster of 10 KOR agonists
(U50,488, ICI-199441, U54,494, matrine, N-MPPP, BRL52537,
GR89696, dynorphin B, 6′-GNTI, and SalA) successfully
promoted OPC differentiation in vitro. U50,488 was the most
effective. They also found that KOR antagonism inhibited OPC
differentiation. The KORs were found to be expressed on the
processes and somata of OPCs. Mei et al. (2016) also observed
that administration of U50,488 accelerated OPC differentiation
into mature OLs and promoted axon remyelination in
lysolecithin-induced focal lesions in wild-type mice.
Experiments from KOR-knockout mice provided evidence that
effects were KOR dependent. In addition, when KOR was
selectively deleted on OPCs, U50,488 failed to differentiate
OPCs into mature OL (Mei et al., 2016).

Additional studies have provided further evidence that
KOR agonists promote remyelination and recovery in
mouse models of MS. Tangherlini et al. (2019) synthesised
a series of quinoxaline-based KOR agonists and showed that
two of these KOR agonists ameliorated EAE paralysis in mice.
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Tangherlini et al. (2020) also observed that treatment with
KOR agonists reduced immune cell infiltration into the CNS.
They also confirmed that immunomodulatory effects of these
compounds depended on the presence of KOR (Tangherlini
et al., 2020). Oral administration of a plant-derived peptide
called [T20K]kalata B1 also reduced demyelination and
improved functional EAE behavioural scores (level of
paralysis) in mice. [T20K]kB1 also exerted long-lasting and
protective T-cell antiproliferative properties and reduced the
levels of inflammatory cytokines including IL-2, IFN-γ, and
IL-17A(Thell et al., 2016). A recent publication confirmed
that [T20K]kalata B1 is a KOR agonist (Muratspahić et al.,
2021).

Recently, Denny et al. (2021) reported that the selective KOR
agonist, nalfurafine, promoted functional recovery and
remyelination and reduced CNS immune-cell-infiltration in EAE
in a KOR dependent manner in mice. Nalfurafine also promoted
remyelination in the cuprizone model of demyelination, providing
evidence that KOR agonism promotes remyelination in the absence
of peripheral immune cell infiltration (Denny et al., 2021).
Furthermore, they showed that nalfurafine reduced immune cell
infiltration into the CNS and reduced the expression of the
proinflammatory cytokine interferon gamma in both CD4+ and
CD8+ T cells. Nalfurafine also promoted a more immunoregulatory
environment by decreasing responses from pro-inflammatory Th17
cells. These findings are important as nalfurafine is a drug with
existing clinical usage and is safe and well-tolerated clinically,
although insomnia was identified as common side effect
(Kumagai et al., 2010). Preclinical research has shown that
nalfurafine (5–30 μg/kg) does not cause CPA, anhedonia,
sedation, or motor incoordination associated with traditional
KOR agonists (Liu et al., 2019) at doses that promote
remyelination in MS models (10 μg/kg) (Denny et al., 2021).

Paton et al. (2021) recently showed that a SalA analogue called
ethoxymethyl ether salvinorin B (EOM SalB) promoted
remyelination in EAE and cuprizone-induced demyelination
models in mice. In EAE, EOM SalB decreased disease severity
(paralysis), decreased CNS immune-cell-infiltration, and increased
myelin levels. In the cuprizone-induced demyelination model, EOM
SalB increased the number of mature oligodendrocytes, the number
of myelinated axons, and the thickness of myelin within the corpus
callosum. Furthermore, EOM SalB is a G-protein biased KOR
agonist and has been shown to have reduced side-effects in
preclinical studies (Ewald et al., 2017).

These findings are ground-breaking, as remyelination therapies for
MS are highly sought-after. TheMSmedicationsmarket exceedsUS$25
billion per year, driving the development of novel pharmacotherapies
targeting repair and recovery in MS, particularly for progressive forms
of the disease where there are no successful treatment options. While
MS is the most common demyelinating disease, there are many other
diseases inwhichmyelin is damaged or dysregulated. Therefore, there is
potential that KOR agonists may promote remyelination in other such
conditions, including neuromyelitis optica (Argyriou and Makris,
2008), acute disseminated encephalomyelitis (Young et al., 2010),
Skogholt disease (Aspli et al., 2015), adrenoleukodystrophy
(Aubourg, 2015), and other leukodystrophies (van der Knaap and
Bugiani, 2017). Interestingly, optic neuritis is among themost common

initial manifestations in relapsing remitting MS patients (Hojjati et al.,
2015; Kale, 2016). However, it remains to be determined whether KOR
agonism promotes remyelination in other demyelinating diseases.

3.4 Alzheimer’s Disease and Cognitive
Dysfunction
AD is a neurodegenerative disease pathologically characterised by
extracellular β-amyloid deposits and the accumulation of
hyperphosphorylated tau (Long and Holtzman, 2019). AD is a
leading cause of dementia (Arvanitakis et al., 2019), but only
symptomatic treatments are currently available (Yiannopoulou
and Papageorgiou, 2020). Given that AD is a major and growing
burden on healthcare systems globally (Wong, 2020), developing
effective treatments is a key focus area for drug development.

Although demyelination is not the major pathology of AD,
demyelination occurs in AD (Bouhrara et al., 2018) and there is
growing evidence to suggest that KOR agonism may have a
protective role in AD. Hypermethylation within the promoter
region of OPRK1 (study based on human peripheral blood
samples), the gene which encodes KOR, is associated with an
increased risk of AD (Ji et al., 2015). Increased KOR binding was
found in the dorsal and ventral putamen and in the cerebellar
cortex in coronal sections of postmortem brains from AD
patients (Mathieu-kia et al., 2001). Also, elevated dynorphin
levels were reported in postmortem samples of AD patients
(Ménard et al., 2014). A recent study by Song et al. (2021)
reported that U50,488, when administered in a mouse model
of AD, promoted enhanced learning and memory in the Morris
water maze test. In this study, (APP)/presenilin-1 (PS1) mice
treated with U50,488 (1.25 mg/kg) showed a significant
improvement in their cognitive abilities. In U50,488 treated
APP/PS1 mice, amyloid-beta (Aβ) plaque deposition was
decreased in the prefrontal cortex and hippocampus. Within
this AD model there was reduced damage to hippocampal
neurons, reduced microglia-induced pyroptosis, and improved
synaptic plasticity which was partially mediated by inhibition of
the Ca2+/CaMKII/CREB signalling pathway (Song et al., 2021).

Previous studies have reported that KOR agonists have beneficial
effects in models of cognitive dysfunction in general. Takahashi et al.
(2018) found that intracerebroventricular (i.c.v.) administration of
U50,488 or the KOR peptide dynorphin A, reduced cognitive
dysfunction in mice that had undergone excision of the olfactory
bulb. Furthermore, Fan et al. (2021), Ding et al. (2021), and Li et al.
(2019) all found that U50,488 mitigated postoperative cognitive
dysfunction in rats that underwent cardiopulmonary bypass. Fan
et al. (2021) also reported that U50,488 reduced hippocampal
damage, inhibited the rate of neuronal apoptosis, and promoted
recovery from oxidative stress–induced injury.

In contrast, other studies have shown that KOR agonists disrupt
cognition. Abraham et al. (2021) found that dynorphin-induced
KOR activation in the medial prefrontal cortex disrupted cognition
in mice undergoing acute morphine withdrawal. Furthermore,
U50,488 has been shown to inhibit novel object recognition in
mice (Paris et al., 2011), and SalA reduced motivation and increased
processing deficits in rats that were made to complete a multi-choice
serial reaction time task (Nemeth et al., 2010).
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Collectively, these findings indicate that KOR agonists can be
both beneficial and detrimental to cognition. It remains to be
determined whether KOR agonists can promote remyelination
and repair in AD and preclinical models of cognitive decline, and
further studies are needed to fully evaluate the role of KOR in AD.

3.5 Parkinson’s Disease
Parkinson’s disease is a neurological disorder that causes loss of
dopaminergic neurons, predominantly in the substantia nigra
resulting in movement problems such as rigidity, slowness, and
tremor in more than 6 million Parkinson’s disease patients
worldwide (Armstrong and Okun, 2020). Levodopa is a
standard treatment for patients with Parkinson’s disease, but
its side effects include dyskinesia (Pandey and Srivanitchapoom,
2017). Fortunately, there is evidence that KOR agonists may act to
attenuate levodopa-induced dyskinesia. Marin et al. (2003) found
that acute U50,488 administration attenuated levodopa-induced
rotational behaviour in the parkinsonian rats. Cox et al. (2007)
showed that U50,488 reduced levodopa-induced dyskinesia in rat
and monkey models of Parkinson’s disease, but the KOR agonist
also lessened levodopa’s antiparkinsonian effects. Ikeda et al.
(2009) reported that nalfurafine also attenuated levodopa-
induced dyskinesia in a rat model of parkinsonism.
Furthermore, Hughes et al. (1998) reported that enadoline and
U69,593 both increased healthy locomotor behaviours in a rat
model of parkinsonism and that co-administering enadoline with
levodopa reduced the doses of levodopa necessary to achieve
therapeutic effects. Although studies have shown that KOR
agonists can reduce dyskinesias, further studies are required to
elucidate the mechanisms through which opioid compounds
modulate the occurrence of L-dopa-induced dyskinesias
(LIDs). A final point worth noting is that patients with
Parkinson’s disease also have altered brain myelin content
(Dean et al., 2016), which suggests that remyelination-
promoting drugs may be helpful. Taken together, these
findings indicate that KOR agonists may have a useful role as
adjunct treatments for patients with Parkinson’s disease.
However, neural mechanisms underlying LID in PD are still
unclear and the fundamental neural connections are not well
understood so exact mechanisms are still unknown.

3.6 Tourette’s Syndrome
Tourette’s syndrome is a neuropsychiatric disorder characterised by
the presence of multiple motor and vocal tics (Du et al., 2010). It is
estimated to affect between 0.3% and 0.9% of children (Scharf et al.,
2015). The endogenous KOR peptide dynorphin A (1–17), is present
at reduced levels in striatal fibres projecting to the globus pallidus in
the postmortem brains of patients with Tourette’s syndrome (Haber
et al., 1986). This finding, among others, prompted Chappell et al.
(1993) to conduct a pilot study using the KOR agonist spiradoline to
investigate KOR agonism as a treatment for controlling phonic and
motor tics. Their results indicated that spiradoline reduced tic
frequencies, but spiradoline’s unfavourable adverse event profile
prevented clinical use (Wadenberg, 2003). More recently, it has
been shown that in zebrafish, downregulation of the gene encoding
KOR, OPRK1, induced a hyperkinetic phenotype in zebrafish
(Depienne et al., 2019). This provided preliminary supporting

data suggesting that upregulation of KOR may have a protective
phenotype. While the zebrafish model provides a valuable tool for
investigating genetic phenotypes, it does not fully encapsulate the
complexities of this disorder. However, this study highlights that
decreases in KOR expression in vivo could lead to an early transient
hyperactivity phenotype mimicking Tourette’s syndrome. This may
provide a model of Tourette’s syndrome that will enable a detailed
evaluation the role of KOR and other genes in Tourette’s syndrome
pathogenesis.

3.7 Immune-Mediated Diseases
Belkowski et al. (1995) first reported that KOR mRNA was
present in immune cells (immature thymoma cell line R1.1).
KOR is expressed on thymocytes (Ignatowski and Bidlack, 1998),
microglia (Chao et al., 1996), macrophages (Alicea et al., 1998),
and lymphocytes (Suzuki et al., 2001). The presence of KORs on
so many classes of immune cells suggests that KORs play an
important role in regulating immune responses.

However, the roles KOR may play in modulating the immune
system are well known and is highly variable. In patients with
rheumatoid arthritis, KORmRNA was expressed in T and B cells,
macrophages, and natural killer cells, but natural killer cells taken
from healthy volunteers also express KOR. This led researchers to
propose that, in addition to modulating nociception, KOR may
play an important role in modulating anti-inflammatory effects in
chronic inflammatory disorders (Gunji et al., 2000).

In studies using KOR-knockout mice, higher Ig (Ig, IgM, IgG1,
and IgG2) responses have been observed, which suggests that
endogenous KOR activation may induce inhibition of antibody
responses (Gavériaux-Ruff et al., 2003). Other studies have shown
that dynorphin increases the production of macrophage
superoxide (Sharp et al., 1985), increases cytokine IL-1
production by bone marrow macrophages (Apte et al., 1990),
modulates macrophage oxidative bursts (Tosk et al., 1993), and
enhances macrophage tumoricidal activity (Foster and Moore,
1987).

Inflammatory diseases are often characterised by an increase
in monocyte-derived cells and overproduction of IL-6 (Melnicoff
et al., 1989; Ishihara and Hirano, 2002) and inhibition of IL-6
activity is a potential treatment option for many inflammatory
diseases (Goldblatt and Isenberg, 2005). Parkhill and Bidlack
(2006) reported that U50,488 not only inhibited the synthesis of
IL-1 and TNF-α but also reduced liposaccharide-stimulated IL-6
secretion in a macrophage cell line (P388D1), and KOR
antagonism blocked this effect. Paton et al. (2017) previously
reported that SalA and β-THP SalB both reduce inflammatory
pain, inflammation and formalin-induced oedema. SalA, ICI
204,448 and β-THP SalB also reduce neutrophil numbers in
inflamed footpad tissue (Paton et al., 2017). Thus, KOR
agonists may serve as a viable candidate for the treatment of
immune-mediated diseases, and may provide a distinctive
opportunity for the development of novel anti-inflammatory
agents targeting KOR.

3.8 Osteoarthritis
Osteoarthritis is a progressive, disabling joint disorder that is
estimated to affect almost 27 million people in the USA (Ashford
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and Williard, 2014). Walker et al. (1995) reported that U50,488
possessed anti-arthritic effects. In this study, subcutaneously injected
U50,488 was shown to reduce the progression of arthritis in a rat
model whereby the right hind paw is damaged by the administration
of Freund’s adjuvant. Measures of disease severity were determined
by evaluating changes in contralateral limb size, arthritis severity
score, physical disability, alongside radiological and histological
changes in the joint. U50,488 successfully reduced soft tissue
swelling, radiographically assessed joint damage, and microscopic
pathology scores.

Furthermore, other studies have reported that peripheral
administration of U50,488 and asimadoline prevented joint
destruction and inflammation during the onset of the disease
utilising the same Freund’s adjuvant model in rats (Wilson et al.,
1996; Binder and Walker, 1998). U50,488 (0.3 mg) also reduced
ankle joint inflammation, hind paw oedema, and cartilage
damage in arthritis models in albino Lewis rats (Bileviciute-
Ljungar et al., 2006). Studies on the Freud’s adjuvant model of
arthritic pain in Wistar rats have shown that U69,593
significantly reduced paw oedema and histological scores
(Binder et al., 2001). Another study utilising the adjuvant
arthritis model in Lewis rats showed that U50,488 significantly
attenuated experimental arthritis and this attenuation was
mediated through peripheral KORs in the arthritic joint
(Wilson et al., 1996).

In mice lacking the KOR there were higher levels of cartilage
degeneration and an increased expression of catabolic enzymes
and proinflammatory cytokines following injury, while KOR
activation inhibited the expression of catabolic enzymes and
cartilage degradation (Wu et al., 2017). Recently, it was
reported that the KOR agonist JT09 modulates the Hedgehog
signalling pathway in chondrocytes from both healthy and
osteoarthritic human articular chondrocytes. In this study,
JT09 decreased matrix degeneration in articular chondrocytes
and cartilage explants in vivo in rat models supporting the novel
molecular mechanism for the role of the KOR in osteoarthritis
(Weber et al., 2020). In a phase II clinical study, oral
administration of CR845 (5 mg) exhibited significant (69%)
reduction in joint pain score in patients with OA (Bagal et al.,
2017). Taken together, all these studies suggest that KOR agonists
may represent a striking therapeutic modality and provide an
improved quality of life for patients with arthritis. KOR agonists
may present a combined benefit of maintaining the functional
ability of joints as well as providing antinociceptive effects in
osteoarthritis. However, further studies are needed to explore the
therapeutic potential of KOR agonists in preclinical and clinical
models of OA.

3.9 Atopic Dermatitis
Atopic dermatitis is a relapsing inflammatory skin disorder with a
complex pathophysiology. In atopic dermatitis there is
dysregulation of both immune and nonimmune structural
elements in the skin that are crucial for maintaining hydration
and providing a protective barrier against pathogens, allergens,
toxins, and irritants. Once this epidermal barrier is disrupted, it
results in increased transepidermal water loss and increased
sensitivity to external insults. Furthermore, both innate and

adaptive immune systems become dysregulated and contribute
to a chronic inflammatory response in keratinocytes (Egawa and
Kabashima, 2018; Weidinger et al., 2018).

KORs are widely expressed on human epidermal keratinocytes
(Tominaga et al., 2007; Cheng et al., 2008), dermal fibroblasts
(Salemi et al., 2005; Cheng et al., 2008), mononuclear cells (Salemi
et al., 2005), and subepidermal nerve fibres (Cheng et al., 2008).
KORs expressed on keratinocytes play a role in keratinocyte
proliferation and differentiation. In atopic dermatitis sufferers
there is a downregulation of KOR expression within the
epidermis (Tominaga et al., 2007), and KOR knockout mice
show epidermal hypotrophy and increased cutaneous nerve
fibre density in dry skin dermatitis models (Bigliardi-Qi et al.,
2007). This evidence has identified KOR as a therapeutic target
for inducing anti-pruritic effects and therefore a potential
treatment option for patients with atopic dermatitis.

Utilizing in vitro cellular models, KOR activation has been
shown to induce anti-inflammatory responses by down-
regulating inflammatory cytokines and chemokines (Finley
et al., 2008). These studies highlight that KOR plays an
important role in modulating inflammatory processes in atopic
dermatitis.

In the atopic dermatitis from Japanese mice (ADJM) model,
orally administered nalfurafine reduced scratching behaviours
(Nakasone et al., 2015). Furthermore, in a murine model of
oxazolone-induced atopic dermatitis, topical application of
nalfurafine also showed a significant reduction in scratching
behaviours (Elliott et al., 2016). This is promising evidence as
nalfurafine is already used clinically to treat forms of pruritis
(Nakao andMochizuki, 2009). This provides strong evidence that
KOR agonists have potential therapeutic effects in atopic
dermatitis via dual modulation of pruritis and inflammation.

Recently, CARA therapeutics completed a phase II clinical
trial for an oral formulation of the peripherally restricted KOR
agonist CR845 (difelikefalin) for the treatment of pruritus
associated with patients that have atopic dermatitis (trial
number NCT04018027). The most recent update on the trial
involved 401 patients in a 12-week placebo controlled,
randomised trial using three different concentrations of
CR845. Further results are yet to be published.

Nalbuphine (Nubain) is a mixed opioid agonist-antagonist
analgesic (Errick and Heel, 1983) with KOR partial-agonist and
weak MOR antagonist properties (Hoskin and Hanks, 1991).
Nalbuphine is also being evaluated by Trevi Therapeutics for
anti-pruritic effects in the Phase 2b/3 PRISM clinical trial,
scheduled to be completed in 2022. This clinical trial of 360
patients will assess nalbuphine for efficacy in providing anti-
pruritic effects as well as assessment of the compound’s safety
profile. Nalbuphine pre-treatment in the 1-fluro-2,4-
dinitrobenzene induced model of contact dermatitis, alleviated
scratching behaviours in both a time- and dose-dependent
manner. Nalbuphine also increase the presence of IL-10 which
is an anti-inflammatory mediator as well as increasing chemokine
and cytokine levels involved in the inflammatory healing process,
suggesting anti-pruritic effects (Inan et al., 2019). Furthermore, a
previous clinical study involving 373 haemodialysis patients
showed that nalbuphine decreased the numerical rating score
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of itch intensity and that patients experienced a reduction in sleep
disruption (Mathur et al., 2017).

Overall, these studies indicate that KOR agonists have the
potential to alter the immune environment and may provide an
exciting opportunity for the therapeutic application of opioid
immunopharmacology. However, more experimental work
involving signal transduction pathways is needed to unravel
the effects of KOR agonists on the physiological and
pathological functions of the immune system.

3.10 Gastrointestinal Diseases
Inflammatory bowel disease (IBD) is the most commonly
diagnosed gastrointestinal condition, and it causes patients to
experience substantial pain and discomfort in the abdomen (Chey
et al., 2015). Two widely used and well-established models of
colitis are the trinitrobenzene sulfonic acid (TNBS) and dextran
sodium sulfate (DSS) models which are colitic inducers.

Both asimadoline and ICI 204,488 have been shown to exert
anti-nociceptive effects in the TNBS rat model of colon
inflammation by producing potent inhibitory effects on the
pelvic afferent nerve fibres that innervate the colon. These
compounds have also proved to be effective in inhibiting
visceromotor responses to induced colonic distension which is
a well-established model of visceral pain (Sengupta et al., 1999).
Administration of the selective KOR agonist SalA attenuated the
effects of TNBS and DSS induced preclinical models of colitis
producing potent anti-inflammatory and anti-nociceptive effects.
These effects were shown to be mediated through both KOR and
cannabinoid receptors (CB1). This effect may occur through the
formation of KOR/CB1heterodimers. SalA showed anti-
inflammatory effects which the authors suggest may work
through both neural and immune mediated mechanisms
simultaneously. Previous research has highlighted ultrapotent
actions on macrophages by reducing the release of
inflammatory mediators. Thus, showing anti-inflammatory
effects in vitro (Aviello et al., 2011; Fichna et al., 2012).
However, SalA is not a desirable clinical candidate due to
hallucinogenic effects and a short duration of action
(Ranganathan et al., 2012).

Furthermore, PR-38 is a structurally novel analogue of SalA
developed to have an improved pharmacological profile which
has increased safety and efficacy. PR-38 acts as an agonist at KOR,
MOR and CB1 receptors and has improved oral bioavailability.
This compound was found to have potent anti-nociceptive effects
mediated via MOR and anti-inflammatory effects via KOR in a
preclinical model of colitis. In this study, behavioural nociceptive
responses to intracolonic mustard oil (1%) were assessed in
control and trinitrobenzene sulfonic acid (TNBS)-treated mice.
The instillation of mustard oil in control mice significantly
increased the number of postures defined as spontaneous
nociceptive-related behaviours and administration of PR-38
(10 mg/kg/i.p.) decreased the number of nociceptive responses
(Sałaga et al., 2014). Administration of PR-38 in vitro significantly
inhibited colonic motility, increased gastrointestinal transit time,
and reversed hypermotility in models of gastrointestinal
disorders. PR-38 (10 mg/kg/i.p.) showed improved side effects
with no changes in spontaneous locomotor activity believed to be

due to reduced blood brain barrier penetration (Sałaga et al.,
2014).

P-317 is a novel analogue of the opioid peptide
morphiceptin and has mixed MOR and KOR agonist
activity (Sobczak et al., 2014). P-317 (0.1 mg/kg, i.p;
1 mg/kg, p.o) was shown to attenuate mustard oil-induced
nociceptive behaviours in TNBS-treated mice. P-317 also
decreased mRNA expression of pro-inflammatory cytokines
and improved the ulcer score and colon length in mouse
models of IBD and Crohn’s disease when administered both
peripherally and orally at low doses (Sobczak et al., 2014).
More recently P-317 was also shown to repair damage in
models of colitis in mice (Zielińska et al., 2020).

Similarly, Sialorphin is a peptide that has previously shown
anti-nociceptive effects in preclinical models of acute pain. More
recently, it has shown to be effective in attenuating colitis in the
TNBS and DSS preclinical models with potent anti-inflammatory
effects (Salaga et al., 2017). This data provides promising evidence
of the therapeutic potential of KOR agonists for the treatment of
IBD and associated gastrointestinal disorders through their ability
to produce both anti-nociceptive and immunomodulatory effects.

In clinical trials KOR agonist administration has also been
shown to be effective in modulating symptoms of irritable bowel
syndrome (IBS), which is characterised by changes in bowel
habits and abdominal pain and discomfort (Chey et al., 2015).
Administration of asimadoline in a phase II clinical trial
provided analgesia and relieved discomfort for 596 patients
with IBS, significantly improving their symptoms. Adverse
effects such as diarrhoea, abdominal pain, vomiting and
nausea were associated with administration, but the rate of
discontinuation due to these effects were low (Mangel et al.,
2008). Phase III clinical trials for asimadoline administration
were completed in 2013, however, these results have not yet been
published. Following this, the peripheral KOR agonist,
fedotozine was found to be effective in reducing both disease
severity and pain in patients with IBS by reducing symptoms of
abdominal pain and bloating. Throughout this phase II
clinical investigation, fedotozine was administered three
times daily, was well tolerated by patients, and had a good
clinical safety profile (Dapoigny et al., 1995) (See Tables 1, 2 for
details).

Furthermore, opioid receptors have now been identified as a
potential therapeutic target for the treatment of food allergy.
Opioid receptors, specifically KOR and MOR, are widely
expressed throughout the gastrointestinal tract and function to
regulate gut motility and gastrointestinal transit. In a well-
established mouse model of ovalbumin induced allergic
diarrhoea, pre-treatment with the KOR agonist U50,488
significantly improved disease severity measured through
clinical macroscopic scores and alleviated ovalbumin induced
symptoms including diarrhoea, increased plasmamouse mast cell
protease 1 (MMCP-1) and IgE levels, mastocytosis and Th2
intestinal responses. In this model, U50,488 induced a
decreased in mast cell numbers within the small intestinal
mucosa and plasma MMCP-1 concentrations quantified from
extracted blood samples. This suggests that KOR signalling is
involved in murine allergic diarrhoea and their role is beyond the
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anti-diarrheal effects and involves the modulation of mucosal
immune responses associated with food allergy. However, further
experiments are needed to determine the effects of KORs in
modulating the immune parameters in food allergy (Duncker
et al., 2012).

3.11 Cancer
There is evidence to show that KOR agonists modulate
angiogenesis and may have beneficial effects in modulating
tumour growth. Yamamizu et al. (2011) demonstrated that
KOR agonists U50,488 and nalfurafine inhibited the
expression of vascular EGFR-2 (VEGFR2) and induced
upregulation of anti-tumour angiogenic modulators. KOR
agonism inhibited tumour angiogenesis by suppressing
vascular endothelial growth factor signalling during vascular
differentiation and tumorigenesis via inhibition of the cyclic
adenosine monophosphate (cAMP)/protein kinase A signalling
pathway (Yamamizu et al., 2011; Yamamizu et al., 2013). KOR
agonists U50,488 and nalfurafine were also shown to inhibit
human umbilical vein endothelial cell migration and vascular
tube formation by suppressing VEGFR2 expression.
Intraperitoneal injections of a low dose of nalfurafine not only
reduced tumour sizes but also inhibited tumour angiogenesis
specifically through KOR activation (Yamamizu et al., 2013). In
another study, U50,488 dose-dependently decreased tumour cell
growth in lung cancer cell lines through the phosphorylated-
glycogen synthase kinase 3β signalling pathway (Kuzumaki et al.,
2012). A study by Chen et al. (2017) detected KOR mRNA in
human liver cancer cells and demonstrated that KOR mRNA
expression was lower in cancerous cells than in adjacent normal
tissue. This study reported that patients with downregulated KOR
within cancerous liver cells had a reduced survival rate and
increased recurrence. This suggests that KOR might have
some tumour suppressing effects in liver cancer. Because
cancer patients also require pain relief, and KORs modulate
pain, there is therapeutic potential for developing novel cancer
treatment strategies whereby KOR agonists may provide pain
relief and anti-tumour effects. However, the literature on how
KOR activation modulates cancer proliferation and tumour
growth is very limited. Further studies are needed to test the
utility of KOR agonists and to understand the mechanism of
action within various cancer types. For a recent review on the
therapeutic potential of KOR agonists in cancer see Zhou et al.
(2022).

3.12 Hypoxia, Ischemia, and Cardiac
Dysfunction
Ischemia is a state of restricted or insufficient blood flow to part of
the body, and the localised lack of oxygen leads to tissue hypoxia.
In a mouse model of stroke, Guéniau and Oberlander (1997)
found that the KOR agonist niravoline reduced brain oedema.
Similarly, Chen et al. (2005) found that the selective KOR agonist
BRL-52537 provided ischemic neuroprotection in male (but not
female) rats. Similar studies showed that KOR agonists BRL-
52537 (Fang et al., 2013), SalA (Xin et al., 2016), and U50,488
(Charron et al., 2008) had neuroprotective effects in various rat

models of ischemia. More recently, using a mouse model of
chronic hypoxia-induced brain injury, recapitulating hypoxic
brain injury seen in preterm infants, U50,488 was shown to
promote oligodendroglia differentiation and remyelination. KOR
agonism was shown to rescue synapse numbers and facilitate the
recovery of motor and cognitive functions (Wang et al., 2018).
The enhanced remyelination in this model was suggested to be of
therapeutic benefit to preterm infants with hypoxia-related white
matter injury, a condition that occurs in 5%–10% of preterm
infants (Wang et al., 2018).

KOR is highly expressed in the mouse heart (Giros et al.,
1995). In a rat model of myocardial ischemia and reperfusion
injury, administration of U50,488 decreased the incidence and
duration of various forms of arrhythmia, such as premature
ventricular contractions, ventricular tachycardia, and
ventricular fibrillation (Jin-Cheng et al., 2008). Activation of
KORs by U50,488 has also been shown to attenuate
cardiomyocyte apoptosis by inhibiting caspase activity and
Bcl/Bax protein levels (Rong et al., 2009). Studies have shown
that U50,488 inhibits TNF-α production and reduces neutrophil
infiltration into the ischemic/reperfused myocardial tissue,
thereby reducing damage to myocardial tissue via
cardioprotective and anti-inflammatory mechanisms. U50,488
modulated Toll-like receptor 4 (TLR4) and nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) (Wu
et al., 2011; Lin et al., 2013). Administration of U50,488 improved
cardiac function and neovascularisation following myocardial
ischemia and reperfusion injury in rats, which results in a
reduced myocardial infarct size and reductions in oxidative
stress, hypertrophy, and fibrosis (Tong et al., 2016). Xin et al.
(2016) found that SalA promoted cognitive recovery in a rat
model of forebrain ischemia, and Charron et al. (2008) showed
that U50,488 mitigated spatial memory deficits in rats following
global ischemia.

These studies, utilising multiple preclinical models of hypoxic
damage/ischemia/reperfusion injury, clearly show that KOR
activation has beneficial effects in protecting against hypoxic
brain injury and cardiac ischemia via multiple mechanisms.
Interestingly, KOR agonist-induced remyelination and repair in
hypoxic brain injury has a mechanism of action similar to that seen
in preclinical MS models, notably promoting remyelination and
repair via OPC differentiation. However, given KOR’s ability to
reduce inflammation, additional mechanisms cannot be ruled out
and require further investigation.

4 CONCLUSION

KOR is a promising target for drug discovery and development
efforts. KOR regulates numerous intracellular signalling
pathways and myriad physiological processes, including stress,
mood, reward, pain, the immune system, angiogenesis and
remyelination. Pharmacological investigations to date have
yielded evidence that KOR agonists may be useful as
treatments for chronic pain, pruritis, multiple sclerosis, AD,
immune modulated diseases, gastrointestional diseases, cancer,
hypoxia and ischemia and various other disorders. Notably, KOR
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agonists are free of the abuse potential and respiratory depression
associated with MOR agonists. However, despite considerable
drug-development efforts, traditional KOR agonists have failed to
provide clinical drugs, largely due to unfavourable side effects.
More recent drug-development efforts described in this review
have utilised a wide variety of structural scaffolds to develop novel
compounds targeting KOR with clinical potential and improved
side-effects. The clinical use and favourable safety of nalfurafine
(Remitch) in Japan, and recent FDA approval of difelikefalin
(Korsuva) in the US provide examples of the clinical potential of
KOR agonists. One of the biggest challenges in drug discovery is
to model human conditions in animals. Animal studies are
critical for understanding the biology and pathophysiology of
diseases, but they do not guarantee clinical success.

Development of KOR agonists as clinical therapeutics is not
without significant challenges. We have provided examples of
three strategies commonly utilised in attempts to overcome side
effects. We have presented studies using G-protein biased
agonists to reduce β-arrestin-2-dependent aversive and
sedative effects. However, effective implementation of this
strategy will depend on further research into the complex
signalling pathways associated with KOR activation and

identification of cell-signalling pathways responsible for each
therapeutic application and each side-effect. The development
of peripherally restricted KOR agonists has created KOR agonists
without CNS-mediated side-effects. However, the limitation of
this strategy is that CNS penetration is required for many diseases
for which KOR agonists are being explored as therapeutics. Mixed
opioid agonism is another strategy, particularly for developing
pain medications largely due to the ability of KOR agonists to
negate the rewarding properties of MOR agonists and potentiate
the analgesic effects. This review provides compelling evidence
that KOR agonists have the potential to be utilized in the clinic,
and that each KOR agonist is unique in its ability to differentially
regulate multiple therapeutic effects and side effects. Developing
KOR agonists with an improved therapeutic index will be key to
their clinical success.
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