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A B S T R A C T   

This paper focuses on the study of Coronavirus Disease 2019 (COVID-19) X-ray image segmentation technology. 
We present a new multilevel image segmentation method based on the swarm intelligence algorithm (SIA) to 
enhance the image segmentation of COVID-19 X-rays. This paper first introduces an improved ant colony 
optimization algorithm, and later details the directional crossover (DX) and directional mutation (DM) strategy, 
XMACO. The DX strategy improves the quality of the population search, which enhances the convergence speed 
of the algorithm. The DM strategy increases the diversity of the population to jump out of the local optima (LO). 
Furthermore, we design the image segmentation model (MIS-XMACO) by incorporating two-dimensional (2D) 
histograms, 2D Kapur’s entropy, and a nonlocal mean strategy, and we apply this model to COVID-19 X-ray 
image segmentation. Benchmark function experiments based on the IEEE CEC2014 and IEEE CEC2017 function 
sets demonstrate that XMACO has a faster convergence speed and higher convergence accuracy than competing 
models, and it can avoid falling into LO. Other SIAs and image segmentation models were used to ensure the 
validity of the experiments. The proposed MIS-XMACO model shows more stable and superior segmentation 
results than other models at different threshold levels by analyzing the experimental results.   

1. Introduction 

In recent years, a novel coronavirus disease known as the COVID-19 
has emerged. Pneumonia caused by the COVID-19 disease has wreaked 
havoc on humanity. In March 2020, the World Health Organization 
declared COVID-19 to be a global pandemic. The continual evolution 
and spread of the coronavirus disease have put tremendous pressure on 
social and medical systems of various countries. Currently, many 
countries have developed COVID-19 nucleic acid detection reagents, but 
the detection reagents are not perfect. The false-negative rate for nucleic 

acid testing is approximately 20%. Many researchers have studied lung 
X-ray images of a large number of COVID-19 patients in recent years 
[1–3]. Numerous studies have shown that diagnostic lung X-ray images 
of suspected patients are the most feasible method to detect COVID-19 
pneumonia, a serious potential complication of the coronavirus dis-
ease. Therefore, the accurate and efficient segmentation of COVID-19 
X-ray images is an essential component of successfully diagnosing and 
treating dangerous conditions. Multilevel image segmentation (MLIS) 
[4], a widely used image segmentation technique in recent years, en-
ables the efficient processing of complex data. Some current medical 
diagnostic systems use MLIS as one of the important basic technical tasks 
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in the medical system. 
Optimization methods include a comprehensive class of determin-

istic and stochastic solvers that can be adapted according to the nature of 
problems and characteristics of the target surfaces [5,6]. Swarm intel-
ligence algorithms (SIAs), also known as metaheuristic algorithms, are 
inspired by the behavior of plants and animals in nature that hunt 
cooperatively in groups. SIA has evolved over the years. Researchers 
have continued to develop many algorithms, such as the sine cosine 
algorithm (SCA) [7], different evolution (DE) [8], the whale optimizer 
(WOA) [9], particle swarm optimization (PSO) [10], moth-flame opti-
mization (MFO) [11], the bat-inspired algorithm (BA) [12], Harris 
hawks optimization (HHO)1 [13], the hunger games search (HGS)2 [14], 
the colony predation algorithm (CPA) [15], weighted mean of vectors 
(INFO)3 [16], the slime mold algorithm (SMA)4 [17], and the Runge 
Kutta optimizer (RUN)5 [18]. Marco Dorigo first proposed ant colony 
optimization (ACO) to solve discrete optimization [19]. Then, re-
searchers in works [20,21] proposed ACO for continuous domains to 
solve continuous-type problems, and they named this approach “ACOR”. 
ACOR is a classical and efficient algorithm based on ant colony foraging 
behavior, and researchers have conducted many studies using this 
algorithm. 

In MLIS, the threshold set can improve the intensity of pneumonia 
shadows after the segmentation of COVID-19 X-ray images. Therefore, 
researchers have combined various optimization algorithms, such as 
swarm intelligence, into image segmentation models to improve the 
efficiency of obtaining threshold sets. For example, Zou et al. [22] 
presented an enhanced thresholding model with Shannon entropy dif-
ference and dynamic synergic entropy, and they applied this to MLIS. 
Zhao et al. [23] proposed an adaptive thresholding segmentation model 
based on a multiobjective artificial bee colony optimizer that combines 
the between-class variance function and the interval-valued fuzzy en-
tropy function. Zhang et al. [24] presented a novel image segmentation 
model that combines the method of gray image enhancement and an 
improved edge detection strategy for the image processing technology of 
cesarean section of placenta previa. Wang et al. [25] presented a novel 
multiverse optimizer with minimum cross entropy thresholding to solve 

multilevel segmentation problems. In conclusion, multilevel image 
segmentation methods combined with SIAs have become a popular 
research area in the field of image segmentation. This is because the SIAs 
are perfectly suited to MLIS models and because the SIAs have strong 
power and potential for improvement. 

This paper presents a novel XMACO algorithm that introduces the 
directional crossover strategy and the directional mutation strategy into 
ACOR. The DX improves the searchability of XMACO and thus, the 
convergence speed of the algorithm. The DM improves the population 
diversity of XMACO through population mutation and thus, the ability 
of the algorithm to jump out of the local optima (LO). The XMACO can 
quickly converge to an effective local search region in the early stage of 
optimization. At the same time, the guarantee of population diversity 
allows the algorithm to reel in and out of the local search. Furthermore, 
benchmark functions are designed to experimentally demonstrate the 
performance of XMACO. The function set is composed of IEEE CEC2014 
and IEEE CEC2017. The benchmark function experiments of XMACO 
include a variety of performance experiments, including an assessment 
of the effect of the two strategies, a comparison with other original al-
gorithms, and a comparison with other improved algorithms. The 
benchmark function experimental results were analyzed using the 
variance, the mean, the Wilcoxon signed-rank test (WSRT) [26], the 
Friedman test (FT) [27], and other data analysis methods. 

ACOR excels in many areas of application. We propose a novel MIS- 
XMACO model applied to multilevel COVID-19 X-ray image segmenta-
tion. The proposed model uses the 2D histogram strategy to represent 
the image information; 2D Kapur’s entropy represents the threshold set 
level from the model. Moreover, 2D Kapur’s entropy is the objective 
function (fitness) of the XMACO. We consider that MIS-XMACO needs to 
maintain stability for image segmentation at different threshold levels. 
Three levels of the low threshold set (2, 4, 6), and three levels of the high 
threshold set (12, 16, 20) are designed for the segmentation model. 
Moreover, the image segmentation results are effectively and fairly 
analyzed by the structural similarity index (SSIM) [28], peak 
signal-to-noise ratio (PSNR) [29], feature similarity index (FSIM) [30], 
etc. Finally, the experimental results are evaluated using the WSRT, 
mean, and variance methods. 

This paper’s contributions and innovations present an improved 
version of ACOR, named XMACO, that combines directional crossover 
strategy with directional mutation strategy. We designed a series of 
comparative algorithm experiments on XMACO to verify that XMACO 
has better convergence speed, accuracy, and ability to jump out of LO on 
the benchmark function set. Second, this paper presents the first 
XMACO-based multilevel COVID-19 X-ray image segmentation method, 
named MIS-XMACO. The proposed method combines the nonlocal 
means strategy, 2D histogram, and 2D Kapur’s entropy. The experi-
mental data analysis proves that XMACO improves the convergence 
speed, accuracy, and ability to jump out of the LO compared to other 
approaches, and the evaluation results demonstrate that MIS-XMACO 
has better segmentation results and more stability than other models 
for multilevel COVID-19 X-ray image segmentation. 

The remaining sections of the paper are described as follows: Section 
2 focuses on and explores more details of the current study. Section 3 
describes the structure of the XMACO algorithm and proposes the MIS- 
XMACO image segmentation model. Section 4 designs benchmark 
function experiments to verify the XMACO algorithm and designs image 
segmentation experiments based on COVID-19 X-ray images to verify 
the MIS-XMACO model. The conclusions of the paper and potential 
future works are presented in Section 5. 

2. Related works 

With the development of image processing technology [31–34], 
image segmentation, as a fundamental technical tool for image pro-
cessing, is receiving increasing attention from researchers. For example, 
Zhao et al. [35] proposed an enhanced 2D Otsu image segmentation 

Nomenclature 

ACOR Ant colony optimization 
XMACO Ant colony optimization with directional crossover 

strategy and the directional mutation strategy 
MIS-XMACO A new multilevel image segmentation model 
DX Directional crossover 
DM Directional mutation 
FT Friedman test 
WSRT The Wilcoxon signed-rank test 
SSIM The structural similarity index 
SIA Swarm intelligence algorithm 
LO Local optima 
COVID-19 Corona virus disease 2019 
FEs The current number of evaluations 
MLIS multilevel image segmentation 
rand A random number between [0, 1]
PSNR The peak signal-to-noise ratio 
FSIM The feature similarity index  

1 https://aliasgharheidari.com/HHO.html  
2 https://aliasgharheidari.com/HGS.html  
3 https://aliasgharheidari.com/INFO.html  
4 https://aliasgharheidari.com/SMA.html  
5 https://aliasgharheidari.com/RUN.html 
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model combined with PSO. However, the original PSO-based model 
designed by the researcher has drawbacks. Because the optimization 
capability of PSO is not sufficiently high, the convergence speed is slow, 
and it easily falls into LO in the face of multimodal functions. Anter et al. 
[36] presented a novel computed tomography (CT) image segmentation 
model based on a bioinspired ant lion optimizer, which combined the 
improved fuzzy c-means with chaos theories. Abdel-Basset et al. [37] 
introduced an image segmentation model based on 2D Kapur’s entropy 
combined with SMA and WOA for COVID-19 X-rays. Verma et al. [38] 
proposed an image segmentation model based on hybrid fuzzy c-means 
and PSO. Additionally, Shih et al. [39] proposed a new adaptive math-
ematical morphology model that combined one-dimensional (1D) 
histogram-based modeling for image segmentation. Among them, the 
multilevel image segmentation method is robust and efficient. Recently, 
researchers have proposed many MLIS methods. These include the MLIS 
model based on contour detection and hierarchical image segmentation 
and principal component analysis based on image segmentation, pixel 
clustering and color image segmentation. Among them, 2D 
histogram-based MLIS has strong image denoising abilities. 

Image segmentation has been applied to solve many practical prob-
lems, such as leaf spot disease image segmentation [40], breast cancer 
image segmentation [41,42], and lupus nephritis image segmentation. 
Today, many COVID-19 X-ray image segmentation methods have been 
proposed by researchers. Gopatoti et al. [43] presented a convolutional 
neural network chest X-ray radiography image segmentation model that 
combined SegNet, U-Net, and the gray wolf optimization algorithm. 
Tahir et al. [44] proposed a novel method with segmentation networks, 
U-Net++, and feature pyramid networks for COVID-19 lung image 
segmentation. Degerli et al. [45] proposed a new approach for the joint 
localization, severity grading, and detection of COVID-19 from X-ray 
images by generating so-called infection maps. Zhang et al. [46] pre-
sented a novel multiscale feature capture block model with multilevel 
feature aggregation to effectively capture multiscale features for 
COVID-19 X-ray image segmentation. Joshi et al. [47] proposed a new 
saliency-based region detection and image segmentation model for 
COVID-19 X-ray image segmentation. Su et al. [48] proposed a multi-
level thresholding image segmentation model that combines an 
improved artificial bee colony algorithm for COVID-19 X-ray images. 
Zhao et al. [49] presented a novel ant colony algorithm (ACO), which 
combined horizontal crossover search and vertical crossover search to 
optimize multithreshold image segmentation. Yan et al. [50] proposed 
adaptive local threshold segmentation, which combines Fourier spatial 
filtering for digital speckle pattern interferometry. Xing et al. [51] 
proposed an improved emperor penguin optimization for multilevel 
threshold values for color image segmentation. Xiao et al. [52] pre-
sented an enhanced Otsu’s model with a three-dimensional histogram 
for image segmentation. Wunnava et al. [53] proposed an improved 
Harris hawk optimization combined with an enhanced two-dimensional 
gray gradient strategy for multilevel thresholding. Yang et al. [54] 
proposed a thresholding segmentation method that combines a novel 2D 
histogram that consists of gray level and the local relative entropy. 

By summarizing the above methods, we see that many of them are 
based on optimization algorithms to better select the optimal threshold 
set. This improves the time, accuracy, and efficiency of image segmen-
tation. However, many image segmentation models still have short-
comings through the analysis of the above models, including image 
denoising, intensity inhomogeneity, and optimization algorithm per-
formance. The MLIS model based on the 2D histogram strategy is pro-
posed in this paper. Compared to 1D histograms, 2D histograms can 
describe the information of an image more completely using grayscale 
values and nonlocal means. Additionally, the 2D histogram is not as 
sensitive to pattern noise as the 1D histogram. Moreover, the proposed 
model incorporates an improved SIA with 2D Kapur’s entropy as the 
objective function of the proposed algorithm to provide the optimal 
threshold set for the image segmentation model. 

3. The proposed method 

3.1. Proposed XMACO algorithm 

This section presents the structure of the proposed algorithm, 
XMACO. The performance of XMACO is improved by introducing the DX 
and DM mechanisms into ACOR. It should be noted that the variable 
settings in each strategy in this section are independent. 

3.1.1. Directional crossover 
The study [55] found that the DX strategy can obtain a strong search 

ability according to the information of the best individual. Inspired by 
this paper, introducing the DX strategy into the original ACOR can 
improve its convergence speed and accuracy. The principle of the DX 
strategy is as follows: 

The key parameters in the DX strategy are crossover probability (pcv), 
directional probability (pd), and multiplying factor (α). p1 and p2 

represent two random individuals. pj
mean and pj

best are the mean and the 
best of two random individuals in the jth dimension. The formula for the 
DX is Eqs. (1) and (2). Pseudocode Algorithm 1 shows the formula and 
the flow of DX. 

val=

⎧
⎪⎨

⎪⎩

1 − 0.5e

[

|pj
1 − pj

2|
(yj

u − yj
l)

]

, if pj
1 ∕= pj

2

1 − 0.5e

[

|pj
best

− pj
mean|

(yj
u − yj

l)

]

, if pj
1 = pj

2 and pj
best ∕= pj

mean

(1)  

β=
r

α2 (2) 

When pj
1 ∕= pj

2, Eq. (3) and Eq. (4) are determined from the direc-
tional probability (pd). 

cj
1 = val×

(
pj

1 ± pj
2
)
± αr1 e(1− β)(1 − val) ×

⃒
⃒pj

1 − pj
2

⃒
⃒ (3)  

cj
2 =(1 − val)×

(
pj

1 ± pj
2
)
±α(1− r1)e(− β)val ×

⃒
⃒pj

1 − pj
2

⃒
⃒ (4) 

When pj
1 = pj

2 and pj
best ∕= pj

mean, Eq. (5) and Eq. (6) are determined 
from the directional probability (pd). 

cj
1 = val×

(
pj

best + pj
mean

)
±αr1 e(1− β)(1 − val) ×

(
pj

best − pj
mean

)
(5)  

cj
2 =(1 − val)×

(
pj

best + pj
mean

)
± α(1− r1)e(− β)val ×

(
pj

best − pj
mean

)
(6)  

where val and β represent the two variables that change with iterations. r 
is a random variable, and r ∈ (0, 1). yj

u and yj
l represent the upper and 

lower bounds of the objective function in the jth dimension, respectively. 
Eqs. (3)–(6) will determine the ± in formulas based on pd. c1 and c2 are 
new individuals generated by the DX strategy, α = 0.95, r1 ∈ (0, 1). We 
suppose the individual dimension is d. 

Algorithm 1. The Pseudocode of DX strategy  

3.1.2. Directional mutation 
The tendency of the original ACOR to fall into an LO is another 

reason why the algorithm cannot obtain an optimal solution. The DM 
strategy in Ref. [55] exhibits an extremely strong balance of population 
diversity. An increased population diversity can help the original ACOR 
gain the ability to escape the LO. The principle of the DM strategy is as 
follows. 

The DM strategy randomly mutates the individual position by a 
distance in any direction in the search space. We suppose that the in-
dividual dimension is d. y represents an individual. ybest represents the 
best individual. ybest guides the position update direction of y. The for-
mula for the DM strategy is shown in Eqs. 7–10. 
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β1 = e

(

2r− 2
r

)

(7)  

β2 = e

(

r− 2
r

)

(8) 

If yj
best ≥ yj, then the formula is as follows: 

cj =

{
yj + β1

(
yj

u − yj), if r2 ≤ pd

yj − β2
(
yj − yj

l

)
, otherwise

(9) 

If yj
best < yj

i, then the formula is as follows: 

cj =

{
yj − β1

(
yj − yj

l

)
, if r2 ≤ pd

yj + β2
(
yj

u − yj), otherwise
(10)  

where β1 and β2 are the variables. yj represents the value of the indi-
vidual in the jth dimension. r = 0.8, and r2 ∈ (0,1). pd represents the 
directional probability, and pd = 0.4. pm represents the mutation 
probability, and pm = 0.1. yj

u and yj
l represent the upper and lower 

bounds of the objective function in the jth dimension, respectively. c is a 
new individual generated by the DM strategy. 

3.1.3. The proposed XMACO’s structure 
Initialization of the population strategy and archive mechanism: 

ACOR initializes two populations in the initial phase, Archive, the 
archive population, and POP, the initial population of the algorithm. 
Both Archive and POP are initialized with an initial randomized strategy 
based on the Gaussian function. Eq. (11) and Eq. (12) are the initiali-
zation formulas. 

POP= ub×N(0, 1)+ lb × N(0, 1) (11)  

Archive= ub×N(0, 1)+ lb × N(0, 1) (12)  

where ub is the upper bound of the objective function, and the size of ub 
is 1× dim. lb is the lower bound of the objective function, and the size of 
lb is 1× dim. N(0, 1) is a Gaussian function. 

The original ACOR was designed to mimic the pheromone mecha-
nism of ant colony foraging. The algorithm selects the guided individual 
based on the individual weights in the archive. The size of the archive is 
k. The archive holds the best k individuals of the initial population, POP. 
si represents the ith individual in the archive. f(si) is the objective 
function. The formula for ith individual weight, wi, and normalized 
probability, pi, is Eq. 13 and 14. 

wi =
1

qk
̅̅̅̅̅
2π

√ e−
(i− 1)2

2q2 k2 (13)  

pi =
ωi

∑k
r=1ωr

(14)  

where wi is a Gaussian function conforming to N(l, qk). q is a constant 
that controls the probability of individual selection in the archive. q is 
the algorithm that controls the local search and global search parame-
ters. pl is the probability of selecting the guided individual. Fig. 1a shows 
the foraging process of ants along with pheromones. Ant1 leaves pher-
omones in the paths where food is available, and other fellow ants will 
find food faster using the pheromones. Fig. 1b shows the structure of the 
archive. 

First, for the location update strategy, ACOR updates the search step 
based on the continuous probability density (Gaussian) strategy. The 
algorithm establishes the concept of the Gaussian kernel [20] to describe 
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the multidimensional objective function problem, G(x) = N(μ, σ). The 
algorithm selects the guide individual sl from the archive by sampling 
based on Eq. (13). Then, the Gaussian kernel update step is calculated 
based on the guide individual, sl. The formulas of probability density 
strategy are Eq. 15–17. 

μj =
{

μj
1, μ

j
2,…μj

i
}
=
{

sj
1, sj

2,…sj
i
}

(15)  

σj
i = ξ ×

∑k

e=1

⃒
⃒sj

e − sj
l

⃒
⃒

k − 1
(16)  

POPj
i =N

(
μj

i, σj
i
)
= sj

l + σj
i × rand(0, 1) (17) 

The Gaussian kernel G(x) is a Gaussian distribution function that 
conforms to a mean of μj

i with a variance of σj
i. s

j
l is the value of the guide 

individual in the jth dimension. ξ is the pheromone evaporation rate, and 
ξ = 1. After the population executes the continuous probability density 
function strategy, the XMACO then performs the DX strategy to enhance 
the exploration capability of the algorithm and enhance the diversity of 
the population through the DM strategy. The position update formula is 
in Eq. (18-22). 

n1 = rand, n2 = rand (18)  

[newPOP1, newPOP2] =DX(Archive(1), POP(n1),POP(n1), lb, ub) (19)  

newPOP1 =DM(Archive(1), newPOP1, lb, ub) (20)  

newPOP2 =DM(Archive(1), newPOP2, lb, ub) (21)  

POPi =

{
newPOP1 if fobj(newPOP1) < fobj(newPOP2) < fitnessi
newPOP2 if fobj(newPOP2) < fobj(newPOP1) < fitnessi

,

(22)  

where n1 and n2 are two random numbers, and n1 ∈ [1,N] and n2 ∈ [1,
N]. Archive(1) is the best individual. lb is the lower bound of the objective 
function. ub is the upper bound of the objective function. fitnessi is the 
fitness value of the ith individual. When a new population, POP, is 
formed, XMACO ranks the populations (POP +Archive) of size (N+ k) 
and finally takes the top k ranked individuals into the archive. Algorithm 
2 is the pseudocode of the proposed algorithm. 

Algorithm 2. Pseudocode of XMACO 
This section analyzes the time complexity composition of the pro-

posed XMACO algorithm in detail, including the initialization strategy, 
probability density strategy, directional crossover strategy, and direc-
tional mutation strategy. The pheromone archive size is k. E represents 
the total number of MaxFEs evaluated by the algorithm. N represents the 
size of the algorithm population. And, d represents the dimensionality of 
the algorithm objective function. The time complexity of the original 
ACOR is O(ACOR) = O(k)+ O(E × (k + N × (k + d × k))). The time 
complexity of XMACO’s population initialization strategy is O(k + N). 
The time complexity of the probability density function strategy is O(E ×

(N × (d × k))). The time complexity of the DX strategy is O(E × (N ×

d)). The time complexity of the DM strategy is O(E × (N × d)). The time 
complexity of the XMACO algorithm is O(XMACO) = O(k + N)+ O(E ×

(k + N × (k + d × k + d + d))). In this paper, the population size of the 
archive for the algorithm is set to k = 10. The algorithm population size 
is N = 30. According to the maximum time complexity criterion, 
O(XMACO) ≈ O(E × N × d × k). In addition, O(ACOR) ≈ O(E × N ×

d × k). The time complexities of the algorithms XMACO and original 
ACOR are analyzed by calculating them separately. The time complexity 
of XMACO is within a manageable performance improvement. 

3.2. Proposed MLIS method 

This section proposes the MIS-XMACO model and introduces the 

Fig. 1. (a) Ant colony foraging (b) ACOR’s archive structure.  
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image segmentation process. It should be noted that the variable settings 
in each strategy in this section are independent. 

3.2.1. Nonlocal means and 2D histogram strategy 
The information in the 2D histogram is generated by the nonlocal 

means and the grayscale values of the pixels. In 2005, Buades et al. [56] 
proposed the nonlocal means method for removing redundant infor-
mation from images. In this paper, we refer to nonlocal means as a 
method to remove “noise” from an image and preserve as much valid 
information as possible. The nonlocal means represent the similarity of 
all pixel points in the image. The similarity is calculated using the 
Euclidean metric. We assume that v(y) represents the grayscale value of 
pixel y in the image, and that u(x) represents the corresponding filter 
value of pixel x in the image. u(x) will be calculated by Eq. 23–26. 

u(x)=
∑

y∈I
w(x, y) × v(y) (23)  

w(x, y)=
1

Z(x)
exp

(

−
||V(x) − V(y)||2

h2

)

(24)  

V(x)=
1

m × m

∑

v∈Q(x)

v(x) (25)  

V(y)=
1

m × m
∑

v∈Q(y)

v(y) (26)  

where I is the total number of pixels in the image. w(x, y) represents the 
similarity between pixel x and pixel y. Z(x) is the normalization factor. 
||V(x) − V(y)||2 is the Euclidean distance between x and y. h is called the 
smoothing parameter, and h controls the noise level of the image. The 
larger that h is, the more noise thqt is removed from the image and the 
higher the image level. V(x) and V(y) represent a rectangular neigh-
borhood window of size m × m centered at x and y, respectively. We 
suppose that the image is of size M× U, p ∈ [0,M], and q ∈ [0,U]. The 
grayscale value of the pixel is v(q,p). The nonlocal means of the pixel are 
u(q, p). v(q, p) ∈ [0,254] and u(q, p) ∈ [0, 254]. The 2D histogram is 
calculated by Eq. (27). 

Pij =
hij

M × U
(27)  

where i represents the value of pixel grayscale value v(q,p). j represents 
the value of the nonlocal mean u(q, p). hij represents the level of pixel 
number at pixel point with grayscale value i and nonlocal mean j. Pij 

represents the normalized representation of the pixel density in the 2D 
histogram. We can produce the final 2D histogram shown in Fig. 2 and 
the corresponding plane view. 

3.2.2. 2D Kapur’s entropy 
2D Kapur’s entropy measures the degree of homogeneity and 

redundancy among substances. In recent years, researchers have applied 
the concept of 2D Kapur’s entropy [57] to measure the threshold level 
set in image segmentation. In Fig. 2, the horizontal axis S = {s1, s2,…sr,

..s255} represents the grayscale value of the pixel; the vertical axis T =

{t1, t2,…tr, ..t255} represents the nonlocal mean value of the pixel. We 
suppose that L represents the number of thresholds to be segmented by 
the image segmentation model. thr is a threshold of the image. The 
threshold set for image segmentation is {th1, th2, …thr, …thM}, and 
1 ≤ M ≤ 255. The 2D Kapur’s entropy φ(S,T) is used as the objective 
function value of XMACO. φ(S,T) is calculated by threshold set {th1,th2,

…thr,…thM}. φ(S,T) is calculated by Eq. 28–30. 

φ(S, T)=F(th1, th2,…thr,…thM)=E0 +E1 +…Er + …EM (28)  

Er = −
∑sr − 1

i=sr− 1

∑tr − 1

j=tr− 1

Pi,j

wr
ln

Pi,j

wr
(29)  

wr =
∑thr − 1

i=thr− 1

Pi,j =
∑sr − 1

i=sr− 1

∑tr − 1

j=tr− 1

Pi,j (30)  

3.2.3. The proposed MIS-XMACO model 
We introduce the XMACO algorithm in the multilevel image seg-

mentation model to optimize 2D Kapur’s entropy value of the threshold 
set. The MIS-XMACO model provides a precise threshold set for image 
segmentation. The COVID-19 X-rays are segmented to separate the 
medical diagnostic target from the background, completing the funda-
mental work for the entire image diagnosis. In 1981, Pun et al. [58] 
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proposed an automatic threshold selection method based on the histo-
gram of pixel probability distribution to solve the one-threshold seg-
mentation problem. In 1985, Kapur et al. [59] introduced the concept of 
2D Kapur’s maximum entropy, which is more efficient to compute, to 
the single threshold partitioning problem based on previous work. When 
researchers face multilevel segmentation problems, it is inefficient and 
unreasonable to use one-threshold segmentation methods to solve 
multilevel problems. Additionally, the 1D histogram-based one-thres-
hold segmentation technique is incomplete for representing image in-
formation, while the 1D histogram is also too sensitive to pattern noise. 
We propose a multilevel segmentation model based on the nonlocal 
mean method, the 2D histogram strategy, and 2D Kapur’s entropy. The 
model also avoids the limitation of using the local mean for image in-
formation conveyance. 

The segmentation process of the proposed MIS-XMACO model is: (1) 
conversion of COVID-19 X-ray images into grayscale images; (2) gen-
eration of nonlocal mean images using grayscale values of COVID-19 X- 
ray image pixels; (3) generating 2D histograms based on two types of 
image information: grayscale values and nonlocal mean values; and (4) 
the threshold set as the population of the XMACO, while 2D Kapur’s 
entropy is the objective function of the XMACO. XMACO uses the pixel 
information in the 2D histogram to obtain the maximum 2D Kapur’s 
entropy. Finally, the proposed MIS-XMACO model generates segmented 
grayscale and color images. Fig. 3 dynamically demonstrates the image 
segmentation process of the proposed model. 

4. Experiments and results 

In this section, a series of benchmark function comparison experi-
ments based on the XMACO algorithm is designed. The benchmark 
function sets for the experiments are selected from the function sets of 
IEEE CEC2014 and IEEE CEC2017. Meanwhile, the proposed multilevel 
image segmentation model (MIS-XMACO) is applied to COVID-19 X-ray 

image segmentation. This experiment was conducted at low threshold 
levels 2, 4, and 6 and high threshold levels 12, 16, and 20 to ensure 
stability and fairness. In addition, to ensure the same environment, all 
experiments were conducted on a windows server windows 10 pro with 
an AMD ryzen 9 3900 × 12-core processor (3.79 GHz) and 20 GB of 
RAM. The coding was performed using MATLAB 2020. 

4.1. Comprehensive experiments 

4.1.1. Benchmark function validation 
To effectively demonstrate the improvement of XMACO in terms of 

convergence speed and the ability to jump out of LO, we demonstrate the 
performance of XMACO in two directions. To verify the effect of the two 
strategies (DX and DM) on the proposed algorithm, we designed a 
comparison experiment among different XMACOs. To verify the 
outstanding performance of XMACO, we also designed comparison ex-
periments between XMACO and other algorithms. The results of the 
experiments were analyzed by the standard deviation, mean, Wilcoxon 
signed-rank test (WSRT) [26] and Friedman test (FT) [27]. 

In function comparison experiments, to guarantee the fairness of the 
experiments, all algorithms were put into the test under the same con-
ditions. In all experiments, the participating algorithms used the eval-
uation principles (FEs) to limit the number of cycles of the algorithm. 
The number of evaluations is increased each time the algorithm objec-
tive function value (fitness value) was calculated. The evaluation prin-
ciple ensures the validity and certainty of experiments. The total number 
of evaluations (MaxFEs) was set to 300,000. All algorithms had a pop-
ulation size of 30. To reduce the randomness generated by experiments, 
all algorithms were tested 30 times. 

4.1.2. Experimental setup of the benchmark function set 
The benchmark function set is selected from two function sets, IEEE 

CEC2014 and IEEE CEC2017. The function set includes several types of 

Fig. 2. The 2D histogram and the 2D plan view.  

Fig. 3. Segmentation process of the MIS-XMACO model.  
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functions, including unimodal, simple multimodal, hybrid, and 
composition functions. The details of the benchmark function set are 
shown in Table A1 in the supplementary material. 

4.1.3. The impact of directional crossover and directional mutation 
First, this paper shows the comparison experiment among different 

XMACO variants, including ACOR, DACO, MACO, and XMACO. Table 1 
shows the details of XMACOs. “0” means that the strategy is not intro-
duced into the algorithm. “1” means the strategy is introduced into the 
algorithm. Table A2 in the supplementary material represents the mean 
(AVG) and the standard deviation (STD) obtained by this experiment 
(the smaller value of “AVG” represents the better result for solving the 
function; the smaller value of “STD” proves the more stable result for 
solving the function). The table shows that XMACO has the best “AVG” 
and “STD” values on almost all functions (marked in bold). Combining 
the results of both analyses, XMACO demonstrates a more stable, ac-
curate optimization capability than other comparative algorithms. 

In Table 2, “+/− / = ” is the WSRT analysis result of this experiment. 
“Mean” is the FT analysis result. XMACO’s mean is 1.673, which is the 
best performance compared to DACO, MACO, and ACOR. Meanwhile, 
the WSRT rank shows that XMACO is best. In addition, XMACO out-
performed (”+“) DACO on at least seventeen functions, was inferior (”-“) 
to DACO on one, and had the same (” = “) performance as DACO on 
twelve. Table A3 in the supplementary material shows the experimental 
WSRT’s p value. In the table, XMACO shows smaller p values (<0.05) 
than DACO, MACO, and ACOR in almost all functions. It is proven that 
XMACO has significant reliability for the comparison results. 

Fig. 4 shows the convergence curves of the experiment. By observing 
the convergence curves, we see that XMACO has a better convergence 
speed and accuracy than the other comparison algorithms and can jump 
out of the LO. In addition, the remaining convergence curves of the 
benchmark function set are shown in the supplementary material, 
including Figure B1, Figure B2 and Figure B3. 

In addition, to better theoretically analyze XMACO, the experiment 
is designed to test the algorithm’s exploration and exploitation capa-
bilities. In F9 of Fig. 5, the average exploration value of MACO increases 
from 3.94% to 5.58%; the average exploration value of DACO increases 
from 3.94% to 12.10%. Therefore, the MACO and DACO are improved 
explorations to balance the exploitation of algorithms. However, the 
average exploration value of XMACO reached 24.69%. This suggests 
that XMACO can better balance the algorithm’s exploration and 
exploitation capability, thus improving the convergence speed and ac-
curacy of the algorithm. 

We also design a deeper analysis experiment to analyze the ability of 
the XMACO algorithm to jump out of LO. Fig. 6 shows the experimental 
results from two aspects: (a) changes in the population diversity of 
variants (the average distance between individuals in the population 
reflects the population diversity); and (b) changes in the population 
search trajectories of XMACO and ACOR (the rich diversity of pop-
ulations can help the algorithm to change the search trajectory). In 
Fig. 6a, on F6, F22, and F24, MACO possessed a higher population di-
versity than ACOR in the late search phase. Moreover, XMACO exhibited 
better population diversity. It is demonstrated that the DX and DM 
strategies can increase the population diversity of the algorithm. 
Therefore, the change in population diversity of XMACO in Fig. 6a 
corresponds to the change in population trajectory in Fig. 6b, allowing 
the algorithm to jump out of LO. 

4.1.4. Comparison with other algorithms 
Second, we designed a comparison experiment between XMACO and 

the eight original algorithms (ACOR, DE, HHO, MFO, PSO, SCA, WOA, 
and BA), as well as a comparison between XMACO and seven improved 
algorithms (RCACO, ASCA_PSO, CDLOBA, HGWO, DSMFO, CGSCA, and 
AMFOA). In addition, we followed fair evaluation instructions. A fair 
comparison is an accepted logical process in the artificial intelligence, 
optimization, and neural network communities to ensure that there is no 
bias in the results due to the various testing conditions. Table A4 and 
Table A6 in the supplementary material show the AVG and STD results 
obtained by this experiment. The tables show that the proposed method 
has the best AVG and STD values on almost all functions. It is evident 
that XMACO achieves optimal solution quality and is more stable on 
most of the functions than the other comparison algorithms. 

Table 3 shows the results of the analysis for the comparison of the 
original algorithms. XMACO is first in both the WSRT and FT rankings in 
the table. In addition, in terms of the results of “+/− / = ”, the algorithm 
has better performance than DE on 17 functions. Table 4 shows the re-
sults of the analysis for improved algorithm comparison. XMACO is also 
first in both the WSRT and FT rankings, indicating that XMACO can 
perform better or equal to other algorithms in most functions. Table A5 
and Table A7 in the supplementary material show the experimental p 
values. XMACO’s WSRT p value is less than 0.05 for most of the func-
tions compared with the original algorithm and the improved algorithm, 
which proves that the algorithm has significant reliability of the com-
parison results. 

The convergence curves of XMACO and the other algorithms are 
shown in Fig. 7. The five convergence curves of F7, F20, F21, F23, and 
F25 show that XMACO has better convergence speed and accuracy. We 
find that XMACO can jump out of the LO from the convergence curves of 
F19 and F29. The remaining convergence curves of the benchmark 
function set are shown in the supplementary material, including 
Figure B4, Figure B5 and Figure B6. 

In addition, the convergence curves of XMACO and the other 
improved algorithms are shown in Fig. 8. XMACO in F7, F20, F21, and 
F23 exhibits faster convergence than the other improved algorithms. 
The F3 and F30 convergence curve algorithms show the ability to jump 
out of the LO. The remaining convergence curves of the benchmark 
function set are shown in the supplementary material, including 
Figure B7, Figure B8 and Figure B9. The convergence curves of XMACO 
with other popular algorithms demonstrate the ability to enhance 
jumping out of LO and fast convergence. 

4.2. Experiment on multilevel COVID-19 X-ray image segmentation 

This section effectively demonstrates that the MIS-XMACO model 
has favorable segmentation effects on COVID-19 X-ray image segmen-
tation. The proposed model has experimented with ten models for 
multilevel segmentation on eight COVID-19 X-ray images. The image 
segmentation experiments were conducted at six levels of low thresholds 
(2, 4, and 6) and high thresholds (12, 16, and 20) to demonstrate the 
superiority and stability of the proposed model. 

4.2.1. Setup of the experiment 
The source data for this image segmentation experiment were eight 

real COVID-19 X-ray images from a public database collected by Cohen 
et al. [60]. Fig. 9 shows images and their 2D histograms for A, B, C, D, E, 
F, G, and H. The 2D histogram of the COVID-19 X-ray image shows the 

Table 1 
Versions of various XMACOs.  

Algorithm DX DM 

ACOR 0 0 
DACO 1 0 
MACO 0 1 
XMACO 1 1  

Table 2 
The analysis results of WSRT and FT.  

Item XMACO ACOR DACO MACO 

+/− / = ~ 24/0/6 17/1/12 29/0/1 
Mean 1.673 2.631 2.549 3.147 
Rank 1 3 2 4  
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pixel information. The image segmentation experiments all involve the 
MIS-XMACO model and MIS-ACOR, MIS-HHO, MIS-m_SCA, MIS-IGWO, 
MIS-IWOA, MIS-SCADE, MIS-MVO, MIS-CLPSO, and MIS-BLPSO. 
Table A8 in the supplementary material shows the parameter settings 
of all segmentation models involved in this experiment. 

To ensure the fairness and reliability of the experimental results, the 
number of iterations for all models was 100, the size of the COVID-19 X- 
ray segmentation image was 512 × 400, and the population size of the 
segmentation model was set to 20. To eliminate the randomness of the 
experiments, all experiments were run 30 times independently. We 
evaluated the results of the COVID-19 X-ray segmentation experiments 

using PSNR, SSIM, and FSIM and performed comparative analyses using 
the mean, standard deviation, and WSRT. 

4.2.2. Details of the data analysis methods 
The results of the image segmentation experiments were analyzed by 

the feature similarity index, structural similarity index, and peak signal- 
to-noise ratio. The better the data processing results obtained by the 
PSNR, FSIM, and SSIM methods, the better the designed image seg-
mentation model. Eq. 31–34 show the specific formula details of PSNR, 
FSIM, and SSIM. 

Table 3 
The analysis results of WSRT and FT.   

XMACO ACOR DE HHO MFO PSO SCA WOA BA 

+/− / = ~ 21/1/8 17/6/7 24/5/1 30/0/0 25/1/4 29/1/0 29/1/0 22/2/6 
Mean 2.1822 3.2328 3.1050 4.9606 6.4700 5.2311 7.6478 6.5739 5.5967 
Rank 1 3 2 4 7 5 9 8 6  

Fig. 4. The convergence curve of this benchmark function experiment.  
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PSNR= 20 × log 10

(
255

RMSE

)

(31)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑M− 1

i=0
∑N− 1

j=0

(
Iij − Segij

)2

M × N

√

(32)  

SSIM =

(
2μIμSeg + c1

)(
2σI,Seg + c2

)

(
μI

2 + μSeg
2 + c1

)(
σI

2 + σSeg
2 + c2

) (33)  

FSIM =

∑
I∈ΩSL(X)PCm(X)
∑

I∈ΩPCm(X)
(34) 

Fig. 5. The experimental results of the exploration and exploitation capabilities test.  
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The PSNR result shows the difference between the split image and 
the original image. The larger the PSNR value of the segmentation result, 
the better the image segmentation model performs. The SSIM results 
show the similarity between the original image and the segmented 

image. The smaller the SSIM value of the segmentation result, the better 
the image segmentation model performs. FSIM shows the quality score 
of the significance of a local structure. The larger the FSIM value of the 
segmentation result, the better the image segmentation model performs. 

Fig. 6. (a) Changes in diversity during optimization of different variants, (b) Changes in population search trajectories during optimization by XMACO and ACOR.  

Table 4 
The analysis results of WSRT and FT.   

XMACO RCACO ASCA_PSO CDLOBA HGWO DSMFO CGSCA AMFOA 

+/− / = ~ 8/7/15 30/0/0 25/2/3 26/4/0 25/5/0 26/4/0 25/5/0 
Mean 2.2961 2.3489 4.3589 4.4556 4.4461 5.9367 4.8567 7.3011 
Rank 1 2 3 5 4 7 6 8  
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4.2.3. Experiment result analyses 
In the field of image segmentation, the validity and accuracy of the 

model need to be rigorously analyzed by effective methods. Table A9- 
Table A10 in the supplementary material depict the STD and AVG ob-
tained for all models after FSIM. The MIS-XMACO model obtained a total 
of 26 optimal FSIM evaluation AVGs; that is, it obtained the maximum 
FSIM evaluation results and 30 minimum STDs among all segmentation 
threshold levels. The MIS-ACOR model obtained a total of 11 optimal 
FSIM evaluation AVGs and 8 minimum STDs. Table A11-Table A14 in 
the supplementary material depicts the STDs and AVGs obtained for all 
models after PSNR and SSIM. The data in bold in the tables represent the 
optimal values. The AVG and the STD obtained by MIS-XMACO are 
better than those of comparison models at all threshold levels. These 
results show that the proposed model can obtain better and more stable 
segmentation results in most images. 

To further demonstrate the segmentation capability of the model, 
Table A15-Table A17 in the supplementary material show the rank re-
sults of WRST of the evaluated results of PSNR, SSIM, and FSIM in all 

models at all thresholds. The proposed model is first in both WSRT 
rankings. In addition, in terms of the results of “+/− / = ”, the proposed 
model has better or equal performance than other comparative models. 
Based on the evaluation results of PSNR, FSIM, and SSIM, Fig. 10-Fig. 12 
show the average values obtained by the MIS-XMACO model for all 
threshold levels on the dataset. The model obtained the maximum value 
on all three evaluation methods and showed better segmentation results. 
The experimental results show that the proposed model performs and 
ranks better on all COVID-19 X-ray images for both the FSIM, SSIM, and 
PSNR analysis results. Therefore, MIS-XMACO obtained superior results 
in COVID-19 X-ray image segmentation. 

To more clearly show the segmentation results of all models on the 
eight COVID-19 X-ray images, Table A18-Table A19 in the supplemen-
tary material show the 2D Kapur’s entropy values obtained by the 
models on all threshold sets. The larger value obtained for 2D Kapur’s 
entropy as the model’s objective function proves that the image seg-
mentation is more effective. The MIS-XMACO model in the table obtains 
the maximum 2D Kapur’s entropy for most of the images. Therefore, the 

Fig. 7. The convergence curve of this benchmark function experiment.  
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data demonstrate that the model can find the optimal threshold sets 
reliably. Meanwhile, Figure B10 in the supplementary material and 
Fig. 13 show the images of the maximum 2D Kapur’s entropy conver-
gence curves obtained for MIS-XMACO and other segmentation models 
at 6 and 12 thresholds, respectively. The curves show more intuitively 
that the proposed model has better convergence speed and convergence 
accuracy. Moreover, the proposed model shows good convergence at 
different threshold levels, which proves that the model has good 
adaptability and stability. 

Figure B11-Figure B18 in the supplementary material show the re-
sults of threshold set (when the threshold value is 6) segmentation for all 
models on the gray value distribution maps of all COVID-19 X-ray im-
ages. Based on the observation and analysis of the segmentation results, 
it can better demonstrate the segmentation effect of the MIS-XMACO 
model. Fig. 14 shows all segmentation models’ multilevel segmenta-
tion effect images of COVID-19 X-ray D. Among them, MIS-XMACO can 
segment the image into different regions, and the color mapping results 
also show that the different regions have relatively clear boundaries. 

After analyzing all experimental results, we found that the proposed 
multilevel image segmentation model can obtain higher quality seg-
mentation results when performing COVID-19 X-ray image segmenta-
tion. However, the COVID-19 case is not enough to verify the 
effectiveness of the proposed XMACO-based optimizer. In future work, 
the method can also be used to tackle more problems, such as human 
motion capture, active surveillance, service ecosystem, location-based 
services, information retrieval services, fault diagnosis, pharma-
coinformatic data mining, urban road planning, and Kayak cycle phase 
segmentation. Moreover, XMACO can also be extended to multiobjective 
or many optimization versions to solve more complex tasks. 

5. Conclusions and future works 

To improve the efficiency of image segmentation of novel corona-
virus pneumonia X-rays, this paper innovatively proposes an MLIS 
model that can be applied to COVID-19 X-ray image segmentation, MIS- 
XMACO. The proposed image segmentation model combines a 2D 

Fig. 8. The convergence curve of this benchmark function experiment.  
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histogram strategy, a nonlocal mean method, 2D Kapur’s entropy, and 
the swarm intelligence algorithm, XMACO. The MIS-XMACO model is 
applied to eight real COVID-19 X-rays to complete the image segmen-
tation experiments. The XMACO algorithm based on 2D Kapur’s entropy 
and 2D histogram selects the optimal set of thresholds for the X-ray 
images. Image segmentation experiments are performed on six thresh-
olds at different high and low levels to ensure the experiments’ accuracy 
and the model’s stability. We compared MIS-XMACO with ten similar 
models and evaluated the performance using the FSIM, SSIM, and PSNR 
methods. The analysis results effectively illustrate the experimental data 
of the variance, the mean, and WSRT of the COVID-19 X-ray image 
segmentation results. The segmentation data, segmentation images of 
COVID-19 X-ray, and 2D Kapur’s entropy convergence curve all 
demonstrate that MIS-XMACO has a better segmentation effect than 
similar models and maintains stability at different threshold levels. 

As the core of the image segmentation model proposed, the ACOR is 
combined with the directional crossover strategy and the directional 
mutation strategy, named XMACO, for the first time in this paper. 

Among them, the directional crossover strategy is effectively applied in 
the end stage of ant foraging, which can improve the population’s 
convergence speed and accuracy. The directional mutation strategy is 
applied at the end stage of the directional crossover strategy to enhance 
the diversity of the population, allowing the algorithm to improve its 
ability to jump out of the LO. We designed XMACO to evaluate the al-
gorithm’s performance on a benchmark function set consisting of IEEE 
CEC2014 and IEEE CEC2017. The performance of XMACO was evalu-
ated by WSRT, FT, and other methods and confirmed that XMACO has 
better convergence and searchability than other similar algorithms and 
the original ACOR. However, the time complexity of the proposed 
XMACO increases due to the change in the algorithm structure. There-
fore, all experiments in this paper were computed using parallel CPUs to 
improve the computational efficiency of the algorithm. 

The work in this paper improves the effectiveness and efficiency of 
image segmentation in COVID-19 X-rays. Nevertheless, image segmen-
tation is a fundamental task in the medical diagnosis of pneumonia 
caused by the novel coronavirus. In the future, we will continue our 

Fig. 9. The original COVID-19 X-ray images and the corresponding 2D histograms.  
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Fig. 10. Average results of FSIM assessment for all threshold levels.  

Fig. 11. Average PSNR assessment results for all threshold levels.  

Fig. 12. Average results of SSIM assessment for all threshold levels.  
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Fig. 13. All convergence curves obtained by all models at threshold level 12.  
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Fig. 14. COVID-19 X-ray D segmentation results of all models at threshold level 20.  
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constructive work on feature extraction, feature selection, and classifi-
cation of COVID-19 X-rays to improve the efficiency of medical diag-
nosis of patients with novel coronavirus pneumonia. Moreover, MIS- 
XMACO, as an efficient image segmentation model, will be applied to 
more kinds of medical image segmentation, aiming to make a more 
significant contribution to the medical field. Meanwhile, XMACO, as a 
more efficient optimization algorithm, will be applied to more fields, 
including engineering design problems, economic emission scheduling 
problems, feature selection, etc. 
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