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Abstract

Although hematopoietic stem cell transplantation (HCT) is the only curative treatment for

acute myeloid leukemia (AML), it is associated with significant treatment related morbidity

and mortality. There is great need for predictive biomarkers associated with overall survival

(OS) and clinical outcomes. We hypothesized that circulating metabolic, inflammatory, and

immune molecules have potential as predictive biomarkers for AML patients who receive

HCT treatment. This retrospective study was designed with an exploratory approach to

comprehensively characterize immune, inflammatory, and metabolomic biomarkers. We

identified patients with AML who underwent HCT and had existing baseline plasma sam-

ples. Using those samples (n = 34), we studied 65 blood based metabolomic and 61

immune/inflammatory related biomarkers, comparing patients with either long-term OS (� 3

years) or short-term OS (OS� 1 years). We also compared the immune/inflammatory

response and metabolomic biomarkers in younger vs. older AML patients (�30 years vs.�

55 years old). In addition, the biomarker profiles were analyzed for their association with clin-

ical outcomes, namely OS, chronic graft versus host disease (cGVHD), acute graft versus

host disease (aGVHD), infection and relapse. Several baseline biomarkers were elevated in

older versus younger patients, and baseline levels were lower for three markers (IL13, SAA,

CRP) in patients with OS� 3 years. We also identified immune/inflammatory response

markers associated with aGVHD (IL-9, Eotaxin-3), cGVHD (Flt-1), infection (D-dimer), or

relapse (IL-17D, bFGF, Eotaxin-3). Evaluation of metabolic markers demonstrated higher

baseline levels of medium- and long-chain acylcarnitines (AC) in older patients, association

with aGVHD (lactate, long-chain AC), and cGVHD (medium-chain AC). These differentially

expressed profiles merit further evaluation as predictive biomarkers.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0268963 June 14, 2022 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Siamakpour-Reihani S, Cao F, Lyu J, Ren

Y, Nixon AB, Xie J, et al. (2022) Evaluating

immune response and metabolic related

biomarkers pre-allogenic hematopoietic stem

cell transplant in acute myeloid leukemia.

PLoS ONE 17(6): e0268963. https://doi.org/

10.1371/journal.pone.0268963

Editor: Francesco Bertolini, European Institute of

Oncology, ITALY

Received: December 14, 2021

Accepted: May 5, 2022

Published: June 14, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0268963

Copyright: © 2022 Siamakpour-Reihani et al. This

is an open access article distributed under the

terms of the Creative Commons Attribution

License, which permits unrestricted use,

distribution, and reproduction in any medium,

provided the original author and source are

credited.

https://orcid.org/0000-0002-2837-443X
https://orcid.org/0000-0002-4495-3765
https://orcid.org/0000-0002-9779-0883
https://orcid.org/0000-0003-3765-641X
https://doi.org/10.1371/journal.pone.0268963
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268963&domain=pdf&date_stamp=2022-06-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268963&domain=pdf&date_stamp=2022-06-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268963&domain=pdf&date_stamp=2022-06-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268963&domain=pdf&date_stamp=2022-06-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268963&domain=pdf&date_stamp=2022-06-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268963&domain=pdf&date_stamp=2022-06-14
https://doi.org/10.1371/journal.pone.0268963
https://doi.org/10.1371/journal.pone.0268963
https://doi.org/10.1371/journal.pone.0268963
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Introduction

Acute myeloid leukemia (AML) is a molecularly and clinically heterogeneous disease with bio-

logical complexity [1]. There have been major advances in understanding the genetic factors

related to AML and the disease biology and pathophysiology during the past thirty years. How-

ever, induction chemotherapy and consolidation therapy with allogenic hematopoietic stem

cell transplant (HCT) or additional chemotherapy remains the standard treatment, with about

20–30% of AML patients never achieving remission [2]. This is true specifically for intermedi-

ate or high-risk AML patients who have increased risk of relapse, and HCT remains the best

and only chance for cure. Yet, HCT is associated with severe treatment related morbidities

such as infections and graft-versus-host disease (GVHD), and risk of non-relapse mortality

ranges from 8–38% [3, 4]. Low rates of complete remission (CR) (30–50%) and poor overall

survival (OS) (15–55% at one year) have been attributed to a variety of reasons including

increased incidence of poor-risk cytogenetics, mutations such as FMS-like tyrosine kinase 3

with the internal tandem duplication (FLT3-ITD), increased activation of RAS, Src, and TNF

pathways, and intrinsic resistance of leukemic blasts to therapeutic agents [5–7].

The incidence of AML increases with age, with the biology of AML changing with age [5].

Unfortunately, many older AML patients are considered unfit for intensive treatment because

of frailty and the risk of fatal toxicity [1, 2, 8, 9]. Even in older patients who receive intensive

treatment, outcomes remain unsatisfactory with low rates of CR, poor disease-free survival

(DFS) and OS [3, 4]. Given improvements in therapeutic regimens and supportive care

(including infection control and transfusion support), in patients younger than 60, AML is

now cured in approximately 35–40% of cases. However, for AML patients >60 years, although

the prognosis has improved, survival is still poor, with OS<1 year compared to OS of almost 3

years for patients aged 15 to 55 [5, 8–10].

Genomic profiles and multiple somatically-acquired mutations can be used for AML char-

acterization, affecting prognosis and serving as predictive biomarkers. Genetic alterations in

AML can be divided into three groups: 1) cytogenic abnormalities such as translocations,

inversions, deletions, trisomies and monosomies, 2) cytogenetically normal but with gene

mutations, such as in NPM1, FLT3, CEPBA, RAS, WT1, and TP53 and 3) epigenetic muta-

tions, such as DNMT3A, IDH1/2, and TET (C). In AML patients, genetic screening is used for

prognostic categorization (favorable, intermediate, and poor risk) and the subsequent selection

of treatment strategies. Currently, the World Health Organization (WHO) classification of

myeloid neoplasms distinguishes between AML with mutations in RUNX1 and AML with the

BCR-ABL1 fusion. In addition, the 2017 European LeukemiaNet recommendations for AML

adds mutations in three genes—RUNX1, ASXL1, and TP53—for risk stratification of AML

[11, 12]. The random accumulation of mutations due to aging is one reason that AML is con-

sidered a disease of the elderly. Despite these genetic associations, there is a need for additional

blood based markers for phenotyping patients because genetics alone are not fully prognostic.

Aging is a complex process that is characterized by physical, molecular, and deleterious

immune and metabolic changes [13, 14]. Biological aging is characterized by dysregulated

immune and metabolic homeostasis [15]. Regardless of the cause, a common feature of aging

and many age-related diseases is chronic inflammation in the absence of infection (termed

"inflammaging”). Changes in circulating levels of blood based biomarkers of inflammation/

immune response have been shown to be associated with inflammaging. Examples of such bio-

markers are C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor alpha

(TNFa) and its soluble receptors (tumor necrosis factor receptors I (TNFR-I) and II

(TNFR-II), vascular cell adhesion molecule I (VCAM-I), and D-dimer [14, 16, 17]. The Pepper

Panel, developed by the Duke Pepper Center for Aging, includes biomarkers of aging,

PLOS ONE Immune and metabolic biomarkers pre-allogenic HCT in AML patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0268963 June 14, 2022 2 / 16

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: 1. American Society of Hematology

(ASH), (PI: Anthony D Sung) https://www.

hematology.org/ 2. NIH/National Institute on Aging

1R21AG066388-01 award (PI: Anthony D Sung).

https://reporter.nih.gov/search/

5NyHmfz0skuWJC2JAuThRw/project-details/

9980757 3. NIH/National Institute on Aging Duke

Pepper Older Americans Independence Center P30

AG028716, (PI: Schmader, Mini #6, PI of Mini:

Anthony D Sung) https://reporter.nih.gov/search/

KsvVX_8rwUKk6CXVf2k0vg/project-details/

9971412 The funder’s role included all aspects of

the study design, supervision of the data collection,

data analysis, decision to publish, and preparation

of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0268963
https://www.hematology.org/
https://www.hematology.org/
https://reporter.nih.gov/search/5NyHmfz0skuWJC2JAuThRw/project-details/9980757
https://reporter.nih.gov/search/5NyHmfz0skuWJC2JAuThRw/project-details/9980757
https://reporter.nih.gov/search/5NyHmfz0skuWJC2JAuThRw/project-details/9980757
https://reporter.nih.gov/search/KsvVX_8rwUKk6CXVf2k0vg/project-details/9971412
https://reporter.nih.gov/search/KsvVX_8rwUKk6CXVf2k0vg/project-details/9971412
https://reporter.nih.gov/search/KsvVX_8rwUKk6CXVf2k0vg/project-details/9971412


inflammation, mitochondrial dysfunction, and dysregulated protein metabolism. Age was pos-

itively correlated with TNF-α, TNFR-I, TNFR-II, IL-6, IL-2, VCAM-1, D-dimer, matrix metal-

loproteinase-3 (MMP-3) and adiponectin markers; age was negatively correlated with G-CSF,

RANTES, and paraoxonase activity [14].

Metabolic changes are part of the aging process. Aging related dysregulation of inflamma-

tory/immune responses occurs in tandem with metabolomic dysregulation. However, the

mechanisms are poorly understood [14]. It has been reported that changes in such circulating,

energy–related metabolites as acylcarnitines, carbohydrates, and amino acids (AA), can be

associated with age, BMI and insulin resistance. Metabolic markers such as adiponectin, gly-

cine, nonessential AA, and relative proportions of circulating large, neutral AAs (LNAAs) and

medium-chain acylcarnitines have been suggested as markers of metabolic health. For exam-

ple, higher plasma concentrations of glycine have been reported to be associated with better

metabolic health [14, 18–20].

We hypothesized that circulating metabolic, inflammatory, and immune molecules have

potential as predictive biomarkers for AML patients who receive HCT treatment. We have

studied those biomarkers in AML-HCT patients who have shorter vs longer OS (OS of less

than one year (OS�1) or more than three years (OS�3). We compared the blood based bio-

markers and metabolomics profiles in younger vs. older AML patients (�30 years vs.

patients� 55 years). We also analyzed the biomarker and metabolomics profiles for their asso-

ciation with clinical outcomes, namely OS, chronic graft versus host disease (cGVHD), acute

graft versus host disease (aGVHD), infection and relapse.

Methods

Patient population

We retrospectively identified patients with AML who underwent HCT, and had baseline (pre-

HCT) EDTA plasma samples. The samples were stored according to our Duke Health Institu-

tional Review Board (IRB)-approved protocols (IRB# Pro00006268 and Pro00100650). Our

protocols involved obtaining witnessed informed consent for sample collection for future

research purposes, as well as use of associated clinical data.

Fully anonymized samples were thawed, aliquoted, refrozen and stored at −80˚C until

tested. All samples underwent one freeze-thaw cycle before ELISA analysis. In order to com-

pare biomarkers in older vs. younger patients and those with good vs. poor OS outcomes, we

selected samples based on patient age (�30 years vs.� 55 years old) and OS outcomes

(OS� 1 years vs. OS� 3 years). (Table 1). The age cut-offs were arbitrary selection and mostly

based on what we had samples for. Though there is support that AML in patients >55years

behaves differently than AML in patients <55 years [5].

Biomarkers of inflammation and aging

To evaluate plasma biomarkers of inflammation/immune response, we employed the Meso

Scale Quickplex SQ 120 system from Meso Scale Diagnostic (MSD), LLC. (Rockville, MD).

We used the V-PLEX Human Biomarker 54-Plex Multiplex Plates, (Cat#K15248D, MesoScale

Diagnostics, Rockville, MD). The 54-Plex is designed to provide a multiplex assay for measur-

ing markers involved in inflammation response and immune system regulation [21–23]. As

previously mentioned the biological aging is characterized by dysregulated immune and meta-

bolic homeostasis [15]. We chose the 54–plex to get a broad understanding of the potential dif-

ferences in the immune/inflammatory response biomarker based on the patients’ age, survival

and their association with clinical outcomes. The 54-Plex assay evaluated the following mark-

ers: CRP, eotaxin, eotaxin-3, FGF (basic), GM-CSF, ICAM-1, IFN-γ, IL-10, IL-12/IL-23p40,
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IL-12p70, IL-13, IL-15, IL-16, IL-17A, IL-17A/F, IL-17B, IL-17C, IL-17D, IL-1RA, IL-1α,

IL-1β, IL-2, IL-21, IL-22, IL-23, IL-27, IL-3, IL-31, IL-4, IL-5, IL-6, IL-7, IL-8, IL-8 (HA), IL-9,

IP-10, MCP-1, MCP-4, MDC, MIP-1α, MIP-1β, MIP-3α, PlGF, SAA, TARC, Tie-2, TNF-α,

TNF-β, TSLP, VCAM-1, VEGF-A, VEGF-C, VEGF-D, and VEGFR-1/Flt-1. Each individual

multiplex panel was run at the prespecified dilution for optimal performance and all samples

were tested in duplicate.

To evaluate plasma biomarkers of aging, we also used markers from the Duke Pepper Panel

[14], and other markers reported as significant in GVHD (REG3 and ST2) [24, 25]. The Duke

Pepper Panel included the following 12 blood based markers: adiponectin, IL-2, IL-6, TNF- α,

TNFRI�, TNFRII�, D-dimer�, G-CSF, regulated on activation, normal T cell expressed and

secreted (RANTES)�, MMP-3�, paraoxonase�, VCAM-1 [14]. Many of these biomarkers were

Table 1. Demographic data and patient characteristics.

All Patients Older than 55 Younger Than 30

N = 34 (100%) N = 18 (52.9%) N = 16 (47.1%) P-Value

Age

Median (IQR) 56.5 (21–59) 59 (57–65) 21 (20–23.5) < .0001

Sex

F 19 (50%) 10 (55.6%) 9 (56.3%) 0.9675

M 15 (39.5%) 8 (44.4%) 7 (43.8%)

Race

Black 6 (15.8%) 1 (5.6%) 5 (31.3%) 0.0678

Pacific Islander 1 (2.6%) 0 (0%) 1 (6.3%)

White 27 (71.1%) 17 (94.4%) 10 (62.5%)

Conditioning

Myeloablative 21 (55.3%) 8 (44.4%) 13 (81.3%) 0.0275

Non-myeloablative 17 (44.7%) 10 (55.6%) 3 (18.8%)

Graft Source

Bone marrow 1 (2.6%) 1 (5.6%) 0 (0%) 0.4388

Cord 14 (36.8%) 6 (33.3%) 8 (50%)

Peripheral blood progenitor cells (PBPCs) 19 (50%) 11 (61.1%) 8 (50%)

Donor Type

Related 12 (31.6%) 7 (38.9%) 5 (31.3%) 0.6418

Unrelated 22 (57.9%) 11 (61.1%) 11 (68.8%)

Survival group

OS<1yr 28 (73.7%) 13 (72.2%) 11 (68.8%) 0.8245

OS>3yrs 10 (26.3%) 5 (27.8%) 5 (31.3%)

aGvHD

No 20 (52.6%) 11 (61.1%) 8 (50%) 0.5149

Yes 18 (47.4%) 7 (38.9%) 8 (50%)

cGvHD

No 26 (68.4%) 12 (66.7%) 14 (87.5%) 0.1529

Yes 12 (31.6%) 6 (33.3%) 2 (12.5%)

Relapse

No 30 (78.9%) 15 (83.3%) 11 (68.8%) 0.3170

Yes 8 (21.1%) 3 (16.7%) 5 (31.3%)

infection

No 8 (21.1%) 3 (16.7%) 4 (25%) 0.5486

Yes 30 (78.9%) 15 (83.3%) 12 (75%)

https://doi.org/10.1371/journal.pone.0268963.t001
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already included in the 54-Plex panel, markers denoted by � were analyzed using separate

enzyme-linked immunosorbent assay (ELISAs) including: RANTES (MesoScaleDiscovery

Cat#F21ZN-3), TNFRI/TNFRII/MMP-3 (MesoScaleDiscovery Cat#F210V-3/F21ZS-3) D-

dimer (Sekisui Diagnostics Cat#602), IL6Ra (R&D Systems Cat#DR600), and Paraoxonase

(Invitrogen Molecular Probes Cat#E33702).

To evaluate plasma biomarkers of GVHD, in addition to IL6R as described above, samples

were analyzed using ELISAs for regenerating family member 3 alpha (REG3A) (MBL

Cat#5323/5310) [26–28]: REG3A is an anti-microbial peptides (AMP) and has been identified

and validated as a diagnostic biomarker of gastrointestinal (GI) GVHD [24, 29]. Plasma

REG3A plasma concentrations have been reported to be higher in GI GVHD patients [24, 30].

We have also evaluated suppression of tumorigenicity 2 (ST2, also known as interleukin 1

receptor like 1, (IL1RL1), IL1RL1/ST2 MesoScaleDiscovery Cat#F214H-3). ST2 has been eval-

uated as biomarker of GVHD, with elevated ST2 levels being associated with therapy-resistant

GVHD and mortality [25, 30].

Biomarkers of metabolism

We evaluated 65 metabolic biomarkers including: amino acids (N = 15), acylcarnitines

(N = 45), and conventional clinical analytes (N = 5). Amino acids and acylcarnitines were ana-

lyzed by flow injection electrospray-ionization tandem mass spectrometry and quantified by

isotope or pseudo-isotope dilution using methods described previously [31, 32]. Conventional

analytes, including non-esterified fatty acids (NEFA), triglycerides, glycerol, 3-hydroxybuty-

rate, and lactate and were measured using a Beckman DxC 600 clinical analyzer (Brea, CA).

Reagents for 3-hydroxybutyrate and NEFA were from Wako (Mountain View, CA), and those

for lactate and triglycerides were from Beckman (Brea, CA). We measured free glycerol using

the initial absorbance in the triglycerides assay, a signal that is normally blanked in the test

procedure preceding the addition of lipase.

Statistical analysis for biomarker studies

The 54-plex immune/inflammatory response biomarkers, the additional plasma biomarkers,

and metabolomic biomarkers were analyzed using Cox Proportional Hazard models with OS

as the response, and age groups, baseline biomarkers, and their interactions as predictors. Cor-

responding to the Cox PH model, p-values were reported from Chi-square test with df = 2

[33]. Box plots were used to illustrate the variability of the markers for association with clinical

outcomes. Boxes represent 25th (Q1) and 75th (Q3) percentiles; Horizontal lines indicate the

medians; Upper whiskers indicate maximum; Lower whiskers indicate minimum; Points indi-

cate any observations outside the whiskers. Expression levels were log2-transformed and ana-

lyzed as continuous measures (Please see S1 File for the data underlying the findings). OS

groups with survival of equal and less than one year or more than three years (OS� 1 years or

OS� 3 years) were used as the output in logistic regression models. OS time was defined as

time from transplant to death/last follow-up. Baseline samples’ biomarker levels in different

age and OS groups were analyzed using a Wilcoxon rank-sum test [34]. Effect sizes of each bio-

marker for aGVHD, cGVHD, relapse and infection were assessed using logistic regression

models. Odds ratios (OR), score test p-values, and 95% CI were reported for the logistic regres-

sion models assessing biomarker effects on clinical outcomes (aGVHD, cGVHD, relapse and

infection). Multiple comparison was addressed within a framework of control of False Discov-

ery Rate (FDR) using the method by Storey [35, 36]. However, due to the limited sample size

and number of markers analyzed, we used 0.1 as the significant q-value cutoff.
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All analyses were performed using the R Statistical Environment [R], [6] and extension

packages from CRAN [37, 38]. The analyses were conducted with adherence to the principles

of reproducible analysis using the knitr package for generation of dynamic reports [39].

Results

Blood based biomarkers

Evaluation of the blood based immune/inflammatory response markers in younger vs. older

HCT patients revealed significant differences in the pre-HCT baseline levels of the biomarkers

(Table 2 and Fig 1). Compared to younger patients, older patients tended to have higher val-

ues of the following markers (Fig 1A–1H): interleukin-6 (IL6 p-value = 0.002), interleukin-12

(IL12/ IL12p70 p-value = 0.031), interleukin-16 (IL16 p-value = 0.022), interleukin-17 (IL17B

p-value = 0.028, IL17C p-value = 0.007, IL17D p-value = 0.032, IL17A p-value = 0.036), inter-

leukin-27 (IL27 p-value = 0.008), interleukin-1 receptor antagonist (IL1RA p-value = 0.015),

macrophage inflammatory protein (MIP1a p-value = 0.041), placental growth factor (PlGF p-

value = 0.001), thymic stromal lymphopoietin (TSLP, p-value = 1.0×10−4), tumor necrosis fac-

tor alpha (TNF-α (also known as TNF) p value = 0.010), cell receptors tumor necrosis factor

receptor I (TNFRI, p-value = 0.013) and tumor necrosis factor receptor II (TNFRII, p-

value = 0.005), cellular adhesion protein vascular cell adhesion molecule 1 (VCAM1 p-

value = 0.0002), and apolipoprotein serum amyloid A (SAA, p-value = 0.019) (Table 2). This

higher baseline inflammatory state may predispose older patients to worse outcomes after

HCT, including the potential for increased risk of GVHD [40, 41]. Our data demonstrates that

only interleukin-23 (IL23�, p-value = 0.022) was significantly higher in younger patients (age

�30 years) compared to older patients (age�55 years) (Fig 1I).

Table 2. Baseline marker levels comparing younger (age�30 years) to older patients (age�55 years).

Marker Base level p value

TSLP 0.00009

VCAM1 0.0002

PlGF 0.001

IL6 0.002

IL17C 0.007

IL27 0.008

TNFRII� 0.005

TNF-α 0.010

TNFRI� 0.013

IL1RA 0.015

SAA 0.019

IL23 �� 0.022

IL16 0.022

IL17B 0.028

IL12p70 0.031

IL17D 0.032

IL17A 0.036

MIP1a 0.041

� are separate ELISAs not part of the 54-plex.

�� Higher baseline levels in younger patients.

https://doi.org/10.1371/journal.pone.0268963.t002
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Association between OS and baseline biomarker expression. Evaluating the association

between OS and baseline biomarker expression using the Wilcoxon Rank-Sum test revealed

that three markers C-reactive protein (CRP, p-value = 0.027), SAA (p-value = 0.018) and

IL13, p-value = 0.017) had significant association with survival regardless of age. Baseline levels

are lower in all the three markers in patients with OS� 3 years (Fig 2).

Association between baseline biomarker levels and clinical outcomes (aGVHD,

cGVHD, relapse and infection). Baseline levels of three biomarkers were significantly asso-

ciated with post-HCT “relapse”. Patients with post HCT relapse had lower baseline levels of

Interleukin 17D (IL17D, OR = 0.17, 95% CI = (0.03, 0.63), p-value = 0.020) and fibroblast

growth factor 2 (bFGF (also known as (FGF2), OR = 0.63, 95% CI = (0.38, 0.94), p-

value = 0.038). In contrast, patients with relapse had higher baseline levels of eotaxin-3

(OR = 3.89, 95% CI = (1.43, 15.64), p-value = 0.027) (Fig 3A–3C).

Only D-dimer was significantly associated with infection post-HCT; patients who devel-

oped infection post-HCT had higher baseline levels of D-dimer (OR = 2.68, 95% CI = (1.18,

7.91), p-value = 0.038) (Fig 3D).

One baseline plasma marker was significantly associated with cGVHD: fms-like tyrosine

kinase 1 (Flt-1, also known as VEGFR-1, OR = 1.71, 95% CI (1.13, 2.78), p-value = 0.017).

Patients who developed cGVHD post-HCT had higher baseline expression levels of Flt-1 (Fig 3E).

Fig 1. Evaluating baseline levels of blood based biomarkers in younger vs. older HCT patients (�30 years vs.� 55 years old).

The Wilcoxon rank-sum test was used to compare biomarker levels of baseline in different age groups (�30 years vs.� 55 years

old). Data is presented as a boxplot. Of the n = 18 blood- based biomarkers with significant p-value, only IL23 was significantly

higher in younger patients (age<30 years) compared to older patients (age>55 years). The rest of the markers had higher

baseline levels in older patients (for the full list of the 18 markers please refer to Table 2).

https://doi.org/10.1371/journal.pone.0268963.g001
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Two baseline plasma markers were significantly associated with aGVHD: interleukin 9

(IL-9, OR = 0.37, 95% CI (0.16, 0.71), p-value = 0.009); and eotaxin-3 (also known as C-C

motif chemokine ligand 26 (CCL26), OR = 0.35, 95% CI = (0.11, 0.84), p-value = 0.040).

Patients who developed aGVHD post-HCT had lower baseline expression levels of both mark-

ers (Fig 3F and 3G).

Metabolic biomarkers

The aging process is a complex, characterized by physical, molecular, immune, and metabolic

changes that can cause functional decline [24, 28]. In addition to evaluating plasma biomarkers

of immune and inflammatory response, we have 65 metabolites, including: amino acids

(N = 15), acylcarnitines (N = 45), and conventional clinical analytes (N = 5). Markers were

evaluated for association with age, OS and clinical outcomes (aGVHD, cGVHD, relapse and

infection).

Association between baseline metabolic biomarkers and clinical outcomes (aGVHD,

cGVHD, relapse and infection). No metabolic marker showed significant association with

survival for AML/HCT patients.

Baseline circulating lactate was associated with development of aGVHD post HCT.

Patients with aGVHD had lower baseline levels of lactate (LACT, OR = 0.24, 95% CI =

(0.06, 0.69), p-value = 0.019) (Fig 3H). Baseline acylcarnitines (AC) also demonstrated

association with aGVHD, specifically C2-acylcarnitine, 3-hydroxy-tetradecanoyl carnitine

or dodecanedioyl carnitine (C14-OH/C12-DC, OR = 0.24, 95% CI = (0.05,0.75), p-

value = 0.028), 3-hydroxy-tetradecenoyl carnitine (C14:1-OH, OR = 0.35, 95% CI = (0.11,

0.93), p-value = 0.049), and long-chain acylcarnitines. Patients with aGVHD had lower

baseline levels of C14-OH/C12-DC and C14:1-OH compared to patients with no aGVHD.

Baseline levels of a medium-chain AC markers of oxidative stress, glutarylcarnitine,

(C5-DC), demonstrated association with cGVHD. In contrast to aGVHD, patients with

cGVHD had higher levels of C5-DC (OR = 4.97, 95% CI = (1.49, 21.99), p-value = 0.017).

(Fig 3I–3K).

Compared to younger patients, baseline levels of various medium- and long-chain acylcar-

nitines [42] (p<0.05) were higher in older HCT patients. (Fig 4 and metabolomics S2 File).

Fig 2. Association between OS and baseline biomarker. We have evaluated the association between components of the blood based biomarkers’ baseline levels and OS.

Data is presented as a boxplot. OS groups (OS� 1 years or OS� 3 years) were used as the output in logistic regression models. Logistic regression with OS groups as

response, age groups, marker and their interaction as predictors was performed. The function was used to provide p-values of testing whether marker has significant effect

on OS groups in either age group. Three markers (CRP, SAA and IL13) showed significant association with survival. Baseline levels are lower in all the three markers in

patients with longer OS (OS� 3) years.

https://doi.org/10.1371/journal.pone.0268963.g002
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Discussion

Age related inflammation, also termed “inflammaging” is related to the activation/dysregula-

tion of both innate and adaptive immune systems and is considered a significant risk factor in

many age-related diseases [13, 16]. The exact mechanism of inflammaging and its contribution

to adverse health outcomes are mostly unknown [16]. However, numerous studies have shown

that several pro inflammatory cytokines, including IL-6 and TNFα increase with age in healthy

individuals and in the absence of infection [43–45].

Of the 61 immune and inflammatory response related biomarkers we investigated, 17 were

increased in older patients and only one marker (IL-23) was increased in younger patients

pre-HCT compared to older patients. Unsurprisingly, most of the biomarkers elevated in

elderly patients were inflammatory cytokines, such as IL16, IL17, MIP1a, TNF-α, and TNF

receptors TNFRI and TNFRII. In addition, TNF-α an essential signaling protein in the innate

and adaptive immune systems, is considered a biomarker of HCT treatment toxicity and a key

cytokine in the effector phase of GVHD. TNF inhibitors have shown efficacy in clinical and

experimental models of GVHD [46, 47]. Surprisingly, IL-23 levels were increased in younger

patients compared to older patients. The differing expression levels of IL-23 and IL-17 were

unexpected, since IL-23 and IL-17 are closely intertwined. IL-23 is known to drive promotion

Fig 3. Association between baseline biomarker levels and clinical outcome. Data are presented as boxplots for immune/

inflammatory response and metabolomic biomarkers that demonstrated significant association with post-HCT aGVHD,

cGVHD, relapse or infection at baseline. Effect sizes of each biomarker for clinical outcomes (aGVHD, cGVHD, relapse and

infection) were assessed using logistic regression models. Odds ratios (OR), score test p-values, and 95% CI were reported for

the logistic regression models assessing biomarker effects on clinical outcomes.

https://doi.org/10.1371/journal.pone.0268963.g003
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of T helper type 17 (Th17) cells that secrete IL-17 [48]. This signaling pathway is critical in

autoimmune conditions such as psoriasis and rheumatoid arthritis, and therapeutics targeting

IL-17 or IL-23 are under clinical investigation [49]. In addition, ustekinumab, an antibody tar-

geting IL-23 was reported to be effective in glucocorticoid-refractory aGVHD [50]. Other

potential targets for aGVHD treatment involving the IL-23/IL-17 pathway, include the bromo-

domain and extra-terminal domain (BET) proteins. In vitro and in vivo assays [51], have dem-

onstrated the potent anti-inflammatory effects of BET inhibition, and its effect on impacting

IL-23R/IL-17 immune axis (decreasing the expression levels of IL23-R and IL17). BET inhibi-

tors (Plexxikon-51107 and -2853 (PLX51107 and PLX2853)) have demonstrated that they can

significantly improves survival and reduces aGVHD progression. PLX51107 will be studied in

a phase Ib/II clinical trial for its effects on in treating Steroid-Refractory aGVHD

(NCT04910152) [51].

Baseline levels of three markers (CRP, SAA and IL13) showed significant association with

survival. Basal levels were lower in all the three markers in HCT patients with longer OS (OS�

3 years). IL-13 is involved in Th2 inflammation and higher pre transplant levels of IL13 have

been reported as a strong predictor of developing aGVHD [52]. IL13 and its receptors have

been evaluated as a possible therapeutic target in different diseases including various types of

cancer [52–55].

Fig 4. Acylcarnitines metabolomics profiling differential expression in younger vs. older Patients (�30 years vs.� 55 years

old). The Wilcoxon rank-sum test was used to compare metabolomic marker levels of baseline in different age groups ((�30 years

vs.� 55 years old). Compared to younger patients, baseline levels of various medium- and long-chain acylcarnitines were higher in

older patients.

https://doi.org/10.1371/journal.pone.0268963.g004

PLOS ONE Immune and metabolic biomarkers pre-allogenic HCT in AML patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0268963 June 14, 2022 10 / 16

https://doi.org/10.1371/journal.pone.0268963.g004
https://doi.org/10.1371/journal.pone.0268963


Clinically, CRP is frequently examined broad-scale in a variety of disease states. CRP, C-reac-

tive protein, is often measured as a broad-scale marker of inflammation in infection and auto-

immune/rheumatologic conditions [56]. SAA or serum-amyloid A is a group of apolipoproteins

associated with high density lipoprotein (HDL) that is both expressed constitutively and in

response to inflammation [57]. Additionally, SAA has been implicated in the suppressive effects

of tumor cells on immune cells in both melanoma and glioblastoma models [58, 59].

Similar to CRP, D-dimer is an established biomarker of a number of disease states. D-

dimer, a product of blood clot degradation, is most often measured when there is suspicion of

pulmonary embolism or deep-vein thrombosis, but it can also be elevated in infection, inflam-

mation, pregnancy, trauma, and malignancy [60]. The association between elevated D-dimer

and infection post-HCT observed here might suggest a chronic inflammatory state, which

combined with the immunosuppression after bone marrow transplant might lead to increased

inability to fight off infection. CRP, D-dimer and SAA are notable for being highly upregulated

during the “acute phase response”–the body’s physiological reaction to stresses such as infec-

tion, inflammation, and trauma [61].

Of the 65 metabolomic biomarkers analyzed, we noted that lower mean levels of lactate

were associated with aGVHD. A growing body of clinical evidence indicts dysregulation of lac-

tate–pyruvate fuel metabolism in poor clinical outcomes after HCT [62, 63]. Lactate is the

product of glycolysis and substrate for mitochondrial respiration. It has a variety of roles,

including its importance as an energy source, a precursor for gluconeogenesis, and an essential

signaling molecule [64]. Critically, T cells rely upon glycolysis and lactate to perform their

effector functions. In fact, 13C-pyruvate MRI has been used to detect aGVHD in a mouse

model of HCT. In that study, plasma levels of lactate were significantly elevated at day 7 post-

HCT after allogenic but not syngeneic transplants [65]. This timing of lactate elevation could

explain why we observed that a lower baseline level of lactate was associated with aGVHD.

Acylcarnitines also play an important role in energy metabolism by participating in the

transfer of fatty acids into mitochondrial membrane [42, 66]. Acylcarnitines, esters of L-carni-

tines and fatty acids, are important intermediates in metabolism. They are responsible for

transporting long chain fatty acids across the mitochondria for beta-oxidation. They have been

used as biomarkers for inherited metabolic disorders since dysfunction in fatty acid or amino

acid metabolism can lead to changes in plasma acylcarnitine concentration [67]. Our previous

studies have shown that long-chain acylcarnitines, and carnitine esters of dicarboxylic acids

are associated with cardiovascular disease, including heart failure [68–70]. Acylcarnitines can

mediate inflammation [71], and have been proposed as biomarkers for hepatocellular carci-

noma and liver dysfunction since the liver is the most active organ for acylcarnitine synthesis

and metabolism [72].

Our results suggest that baseline levels of medium- and long-chain AC markers were higher

in older HCT patients compared to younger HCT patients. In patients with aGVHD compared

to patients who did not develop aGVHD, the baseline levels of certain long-chain acylcarni-

tines were lower. Baseline levels of the short chain AC marker, glutaryly carnitine, C5- DC

[42], a marker of omega oxidation and oxidative stress, demonstrated association with

cGVHD: patients with cGVHD had higher levels of C5-DC. Accumulation of medium- and

long-chain acylcarnitines in older patients suggests incomplete beta-oxidation of fatty acids,

resulting in lower flux of fatty hydrocarbon toward acetylcarnitine (AC C2) and, hence, acetyl

CoA. To maintain overall energy balance, glycolytic pyruvate metabolism might shift away

from lactic acid and toward production of acetyl CoA and Krebs cycling [73, 74].

Our data show a significant decrease in lactate with aGVHD, as they also do decreases in

various ACs. This could potentially signify a pathway emphasis towards Krebs (and oxidative

phosphorylation) and away from lactate or fatty acid synthesis, or alternatively a drive in the

PLOS ONE Immune and metabolic biomarkers pre-allogenic HCT in AML patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0268963 June 14, 2022 11 / 16

https://doi.org/10.1371/journal.pone.0268963


opposite direction through pyruvate towards gluconeogenesis. In order to have the data and

conclusion, to support such claims further in-depth studies are needed.

Strengths of this exploratory study include the large number of biomarkers (>100 total)

analyzed from patient samples, the long-term survival data, and similar pre-HCT and peri-

HCT conditioning treatment. The major limitation of this study is the small cohort size. The

small sample size and the large number of the markers will not allow for the adjusted p-value

analysis. Other limitations include disparate cohort sizes, lack of matched healthy control data

and reliance on single institution data. In addition, we have only measured the baseline levels

of the markers, which did not evaluate the longitudinal changes of these markers (including

known GVHD markers REG3 and ST2, that did not show significant association in our base-

line analysis). As previously stated this retrospective study was designed with an exploratory

and hypothesis-generating approach to comprehensively characterize immune, inflammatory,

and metabolomic biomarkers. Thus, biomarkers highlighted here should be subjected to fur-

ther analyses.

In conclusion, we have identified several inflammatory and metabolomic biomarkers that

are differentiate young vs old HCT patients and are associated with survival and clinical out-

comes in HCT. Many of these biomarkers have been previously associated with malignancy or

immune responses. Given the generally poor outcomes for older patients with AML, addi-

tional investigation is warranted. A combination of biomarkers could guide interventions, and

personalized immune-modulatory therapeutics post-HCT could help to improve clinical out-

comes in AML.
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