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Abstract
Several applications such as multiprojector displays and microscopy require the mosaicing 
of images (tiles) acquired by a camera as it traverses an unknown trajectory in 3D 
space. A homography relates the image coordinates of a point in each tile to those of a 
reference tile provided the 3D scene is planar. Our approach in such applications is to 
first perform pairwise alignment of the tiles that have imaged common regions in order to 
recover a homography relating the tile pair. We then find the global set of homographies 
relating each individual tile to a reference tile such that the homographies relating all 
tile pairs are kept as consistent as possible. Using these global homographies, one can 
generate a mosaic of the entire scene. We derive a general analytical solution for the 
global homographies by representing the pair-wise homographies on a connectivity 
graph. Our solution can accommodate imprecise prior information regarding the global 
homographies whenever such information is available. We also derive equations for the 
special case of translation estimation of an X-Y microscopy stage used in histology imaging 
and present examples of stitched microscopy slices of specimens obtained after radical 
prostatectomy or prostate biopsy. In addition, we demonstrate the superiority of our 
approach over tree-structured approaches for global error minimization.
Key words: Image mosaicing, Whole-slide scanning in digital pathology, Graph  
Connectivity
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1. INTRODUCTION

Several applications such as multiprojector displays, 
underwater sea-floor mapping, microscopy, etc., require 
the mosaicing of images (tiles) acquired by a camera 
as it traverses an unknown trajectory in 3D space. A 
homography relates the image coordinates of a point in 
each tile to those of a reference tile provided the imaged 
3D scene is planar.[1] One approach[2] in such applications 
is to first perform pair-wise alignment of the tiles that 
have imaged common features (points) in order to recover 

a homography relating the tile pair. We then find the 
global set of homographies relating each individual tile to 
a reference tile such that the homographies relating all 
tile pairs are kept as consistent as possible. Using these 
global homographies, one can generate a mosaic of the 
entire scene. The present paper is concerned with a 
method to compute the global homographies from the 
pair-wise homographies via global error minimization 
(GEM) under the assumption that the 3D object being 
imaged is planar. We first describe our algorithm in the 
general case in section 2 and then describe a specific 
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solution for microscopy in section 3. We demonstrate the 
performance of our algorithm on real microscopy data in 
section 4 and conclude with a discussion in section 5.  
Our contributions in this paper are threefold: (1) We 
provide a novel objective function and error minimization 
technique for global homography estimation in section 2  
that can accommodate prior information regarding 
the global homographies whenever such information 
is available. (2) For the previously investigated case of 
global translation estimation in microscopy, we provide 
novel techniques to incorporate prior information. (3) We 
demonstrate the reduced error of the GEM techniques 
with respect to tree-structured approaches in section 4 
(Results) and also consider application of the general 
solution in section 2 for the microscopy application.

Relationships between our algorithms and the 
existing literature are pointed out in sections 1.1 
and 3. Applications of image mosaicing algorithms 
to histology are separately discussed in section 1.2, 
wherein we also discuss our primary applications, namely 
histopathological imaging after radical prostatectomy 
and prostate biopsy.

1.1. Related Algorithms
Several existing approaches have focused on fast 
incremental mosaicing by imposing a suitable tree-
structure on the pairwise homography estimates.[3-6]  

These approaches do not try to minimize global mosaicing 
error by integrating information from all pairwise estimates. 
To our knowledge, the only techniques attempting 
to reduce a global measure of mosaicing error.[7-13]  

However, the global sum of Euclidean distance errors 
between common feature points across image pairs is 
considered[9,10] rather than our metric in (1), whereas 
Kang E,[7] uses the sum of intensity errors between such 
feature points as their metric. The homogeneous nature 
of microscopic tissue, e.g., lumen or stroma, can make 
it difficult to identify a sufficient number of common 
salient feature points for such approaches, rendering the 
metrics[7,9,10] harder to use. The focus is on reducing the 
cycle error from the pairwise 3D rotations and translations 
(they do not consider homographies) by back propagating 
it into the individual pairwise estimates.[11] Unlike us, 
they do not try to estimate homographies with respect 
to a single reference. The mosaic is built incrementally 
and translation and rotation errors in cycles are corrected 
whenever a cycle is detected.[12] However, this approach 
is not guaranteed to minimize a global error metric. The 
work[8,13] does minimize a global error metric and has 
inspired us to extend their approach in several ways. Note 
that they only address the case of translation estimation 
discussed in section 3 and we additionally present our 
generalization to global homography estimation. The 
work[13] uses the same objective function for GEM as in 
(5), but without the prior information.The work[8] uses 
the SVD to solve a linear system involving the edge-

node incidence matrix discussed in section 3, but this is 
equivalent to the solution in Preibisch S et al.[13] Neither 
Emmenlauer M et al[8] nor Preibisch S et al[13] present our 
alternative technique with prior information or discuss 
the connections with the graph Laplacian and the related 
efficient linear system solver presented in section 3.

1.2.  Applications of Image Mosaicing Algorithms 
in Histology and Prostate Histopathology
As discussed in section 1.1, the work[8,13] applied GEM 
techniques for 3D translation estimation in microscopy. 
That work was applied for 3D stitching of confocal 
microscopy images in nonpathological histology applications 
such as zebrafish embryo development,[8] cerebellum 
imaging of transgenic mice,[13] and central nervous system 
imaging in drosophila.[13] The work[6] mentioned above 
was concerned with 2D translation estimation in generic 
hematoxylin and eosin (H and E) stained histopathological 
imaging,whereas the work[5] was concerned with 2D rigid 
motion estimation for a variety of histological applications 
(both pathological and nonpathological) involving in vivo 
fibered microscopy videos.

The major clinical motivation for developing our 
novel mosaicing system for the assembly of whole-
slide histopathological scans is the ability to utilize 
digital zoom in the context of feature recognition for 
the rapid automated prediagnosis of disease with the 
ability for pathologists to confirm suspicious areas 
rapidly. We have investigated two usage scenarios for 
our novel mosaicing algorithms. The first use case 
involves the online stitching of image tiles obtained 
by scanning a clinical histopathology slide using a 
microscope equipped with a motorized stage.[14] We 
have put our algorithm to this particular use as part of 
a special-purpose whole-slide scanner being developed 
in our laboratory for optical imaging in both the visible 
and near-infrared (NIR) spectra. However, the current 
computational implementation of our algorithm is 
suboptimal and hence slow, for the reasons described 
in section 4. Nevertheless, we are currently using it for 
prostate histopathology imaging, as described below, 
as part of a clinical research study. Our whole-slide 
scanner design falls under the progressive tile scanning 
category, and hence our image mosaicing algorithm 
can also be incorporated into other scanners that are 
similarly designed.[14] However, it is not useful in designs 
employing line-scanning cameras (that are currently 
limited to optical imaging in the visible spectrum), such 
as those manufactured by Aperio.[14] The second use case 
involves the offline correction of mosaics that have been 
generated by other techniques used in other tile-based 
whole-slide scanners, and that have stitching errors. The 
correction of stitching errors from whole-slide scanners 
is not a major requirement in most applications, but 
apart from being visually disturbing, such errors can 
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adversely affect the performance of automated image 
analysis algorithms in niche applications such as rare 
event counting, e.g., the counting of mitotic events in 
breast cancer histopathological imaging. However, we 
shall focus on the first use case in the remainder of this 
paper.

Our fully automated image mosaicing system employing 
the global energy minimization algorithm described in 
this paper has been used to yield qualitatively pleasing 
light microscopy mosaics of several 10× images of 
radical prostatectomy specimens and 40× images of 
prostate biopsy specimens. However, we do not address 
the specific problem of stitching quadrant prostatectomy 
specimens, which have specific problems associated 
with tearing and folding of tissue and require manual 
annotation of landmark points.[15] Our algorithm has only 
been used to stitch entire nonquadrant prostatectomy 
specimens acquired via a special microtome and 
processing techniques. However, it could potentially 
be used to stitch the individual quadrants in quadrant 
prostatectomy as well.

We also note that our prostate scanning procedures use 
an autofocusing technique, wherein the stage moves 
in the Z-direction for each tile to adjust focus while 
acquiring different tiles by moving in the X-Y plane. 
Therefore our stage motion differs slightly from the 2D 
translations considered.[6] and provided the motivation 
for developing our homography-based GEM algorithm in 
section 2. However, the comparison between the general 
homography model and the 2D translation model in 
section 4.3 shows that we can obtain very good stitching 
results solely with the 2D translation model and that the 
scaling issues can be ignored in our datasets.

2. MOSAICING VIA GLOBAL ERROR MINI-
MIZATION USING GRAPH CONNECTIVITY: 
GENERAL CASE

Let us assume that N tiles were acquired by the camera. 
Mathematically, the global homography for tile i can 
be expressed as M K R

d
Ki i

i
i

T= − −( )
1 1p n [1]. Here K denotes the 

intrinsic camera matrix,[1] Ri denotes the rotation of 
the camera axis of tile i with respect to a reference 
tile, pi denotes the translation of tile i’s center with 
respect to a reference tile’s center, n and di are the 
normal vector of the plane and the distance to the plane 
respectively. We can form a connectivity graph between 
all acquired images (tiles) by considering each tile, 
with its associated global homography, as a node, and 
by placing an edge between tiles that share a border to 
have some overlap. Let N(i) denote the set of tiles that 
share any overlap with tile i. Let Mij denote the pairwise 
homography between tiles i and j found via pairwise 
alignment and let the weight wij denote a measure of 

confidence in this pairwise estimate. To determine the 
global homographies, we need to minimize the following 
objective:
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We take the squared distance between 
any two homography matrices A and B as 
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T− = − −∑∑ 2 Trace , i.e., the squared 

Frobenius norm of A-B, although alternative matrix 
distance measures such as those based upon the Log-
Euclidean transform or the Baker-Campbell--Hausdorff 
formula may also be used for special cases involving 
positive-definite homographies.[5] Note that it is 
desirable to use to symmetric distance measures s.t. 
dist dist( , ) ( , )
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2 2= , a condition that is satisfied 

by the squared Frobenius norm.

In certain instances, a noisy estimate Mi of the global 
homography for each tile may be available as prior 
information, e.g., from an electromagnetic tracking 
sensor. In such situations, we prefer to minimize the 
alternative objective function:
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In Equation (2), the weight λ controls the trade-off 
between the usages of the information in the pairwise 
estimates and the prior information. The above objective 
can be interpreted from a Bayesian viewpoint with the 
prior information corresponding to a uniform Gaussian 
prior probability. Strictly speaking, since matrices Mi

~

are 
derived from sensors during acquisition, they represent 
side information rather than prior knowledge. We are 
not restricted by symmetry considerations in choosing 
the distance measure for the prior information terms, 
but we continue to use the Frobenius norm. 

The unique minimum of the objective function in 
Equation (2) can be found by setting its gradient to 
zero. The gradient of the objective function in Equation 
(2) with respect to the homography matrix Mi is
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Setting the gradient in Equation (3) to zero, we get the 
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following set of N simultaneous matrix equations:
~ ~

( ) ( )

( )l l
Î Î

+ = +å å
N N

ijij i i ij j
j i j i

w M M w M M (4)

The equations in (4) imply that each global homography 
matrix can be obtained by updating the prior estimate 
with a linear combination (with matrix-valued 
coefficients involving the unknown global homography 
matrices) of the neighboring global homography 
matrices. Each matrix equation in (4) is equivalent to 
a set of nine scalar equations for the individual matrix 
elements. We can concatenate the (a,b)th elements Mi of 
the set of the 3×3 matrices Mi into a vector x and then 
compute this vector by solving the linear system Ax = y, 
where A is a 9N × 9N matrix . The exact form of A and 
y is given in Appendix A.

In case prior information is not available, we assume that 
a reference homography MN is known and solve for the 
remaining N-1 homographies in (4) with λ = 0. Note 
that knowing a single-reference homography may not 
guarantee a unique solution to these matrix equations, 
especially when the connectivity graph is disconnected. 
We shall revisit this issue in the case of translation 
estimation in section 3. For the case of a single-reference 
homography MN, the matrix A in the linear system now 
becomes a 9(N - 1) × 9(N - 1) matrix and details are 
again provided in Appendix A.

Note that the above derivation assumes a general 3 × 3 
homography matrix without any constraints on its form. 
However, general homography matrices have at most 
8 degrees of freedom[1,16] (up to scale), with 3 degrees 
of freedom each for the rotations and translations, and 
additional degrees of freedom arising from the variations 
in the intrinsic camera matrix during the scanning 
process, e.g., due to a changing focus. We can deal with 
this 8-degree homography problem by setting Mi=1 for 
all homographies[17] and drop the corresponding rows 
and columns of A to get an updated 8(N -1) × 8(N 
-1) matrix for A. The vector y would also get updated 
with the appropriate terms transferred from the original 
LHS. Note that since Mi is nonzero for all tiles in our 
microscopy application (since the origin does not project 
to a line at infinity), we do not need to use the minimum 
norm constraints discussed.[1] In case the intrinsic 
matrix is fixed, but both translations and rotations are 
allowed, the homography matrix has the form Mi = 
(Ri – tin

T) and thus has only 6 degrees of freedom (the 
scalar factor di has been absorbed into ti). In this case, 
using the method.[12] Ri and ti can be recovered from the 
Mi found by the 8(N-1) × 8(N-1) linear system solver. 
For other special cases of homographies such as pure 
rotations (which would occur, e.g., when the camera 
is rotated from a single-vantage point to cover a large 
wall painting), we can impose these constraints on the 

solution found via the 8(N -1) × 8(N-1) linear system 
solver using the SVD-based rotation extraction approach 
described.[16] However, pure rotations are not likely to 
happen in our microscopy applications. For the case of 
2D translations considered in section 3, we obtain only 
two independent equations per matrix equation and do 
not need to impose any additional constraints on the 
resulting linear system solution, as demonstrated by the 
first-principles derivation in that section. In that section, 
we also describe how to deal with the case of multiple 
connected components in the graph connectivity 
(whenever they arise).

3. MICROSCOPY X-Y STAGE MOTION ESTI-
MATION AND IMAGE MOSAICING

We now describe how our image mosaicing method 
from section 2 can be used in histological microscopic 
imaging. Since the motion reported by the slide-scanning 
microscopy X-Y stage in histopathology imaging is 
typically unreliable, our image-based mosaicing method 
is particularly useful in this application. Assuming that 
the microscope moves in a plane parallel to the planar 
specimen (we may assume this plane to be normal to 
the Z-axis) and K = I, the homography Mi thus reduces 
to M I

di i z
T= −( )
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di ij j i j
T− = − − −

~ ~

( )
1

p p p eij z , M M
di i i i

T− = − −
~ ~

( )
1

p p ez  and 
the objective function to be minimized can be rephrased 
as

Φ( , , )
~

( )

~

p p p p p

p p

1

2

1

2

1

1
2

2

 N ij i j ij
j ii

N

i i
i

N

w= − − +

−

∈=

=

∑∑

∑

N

l
(5)

where pi denote the coordinates available as prior 
information and pij denote the pairwise estimates. The 
new linear system to be solved in order to minimize (5), 
in lieu of (8), is derived below in Appendix A, and is 
much simpler.

Our method thus reduces to a simple three step 
noniterative approach similar:[4,10] (1) Perform pairwise 
registration for all neighboring tiles by maximizing 
a similarity measure such as the normalized cross-
correlation (NCC) function. (2) Obtain absolute 
locations for each tile by solving a linear system 
such that the global measure of registration in (5) is 
minimized. Unlike,[8,13] our method can accommodate 
imprecise prior information about the prior tile locations. 
(3) Perform blending to obtain a stitched image with 
nonoverlapping tiles. 

We again present a first-principles derivation of the 
second step similar to the one in section 2. The tile 
connectivity and the homographies now have a special 
form. We describe the second step in detail in section 
3 in order to point out the connections with the graph 



J Pathol Inform 2011, 2:8 http://www.jpathinformatics.org/content/2/1/8

Laplacian and because our method of solution differs 
from the SVD-based solution reported.[8]

3.1. First-Principles Derivation Based Upon the 
Graph Laplacian
Assuming a rectangular scan with R rows and C columns, 
we now form a graph with N = RC vertices with edge 
connectivity based upon eight-connected neighborhoods 
because only the eight nearest neighbors (NN) have 
overlapping regions. An example of this connectivity graph 
is shown in Figure 1a. We assume equal (unity) weights 
for all connections. Technically, we could choose weights 
based upon the NCC values, but we avoid doing this so 
that our solution is unaffected by inconsistencies in the 
NCC values across tile pairs. Such inconsistencies arise 
because NCC is not a true measure of pairwise registration 
accuracy, e.g., a given tile pair containing featureless 
regions has a high NCC value although the error in NCC 
peak estimation could be high on account of the relatively 
flat peak. In fact, evaluating registration accuracy is an 
important topic in its own right.[18] Note that we could 
have assigned smaller weights to the diagonal edges within 
the 8NN connectivity, but we do not do this because the 
diagonal input translations appear to be just as reliable as 
the vertical or horizontal translations.

The optimal locations for the tiles are found using 
a procedure similar to that in section 2. The partial 
derivative of the above objective in (5) w.r.t. pi is

~ ~

i i ji ij
j (i) j (i) j (i)i

(p p ) p 1 p p
p

( )l
Î Î Î

¶F
= - + - -

¶ å å å
N N N

(6)

By setting this gradient to zero, we can see that the global 
position of each tile is the weighted sum of three terms, 
namely the average global positions of the neighboring 
tiles, the average of the pairwise neighboring translations 
and the prior position. Note that the X and Y coordinates 
are decoupled in this set of equations. If x [p p1

X X= , , ] N  
represents the concatenation of all the unknown 
X-coordinates, we again need to solve a linear system Ax 
= y, the details for which are provided in Appendix A. 
The optimal Y-coordinates can also be obtained by solving 
a similar linear system. In case no prior information is 
available, and reference pN is fixed to a known value, the 
dimension of x becomes (N-1) and the resulting linear 
system is also provided in Appendix A.

The objective in Equation (5) is also decoupled in X, Y 
and the part corresponding to the X-coordinates alone, 
ΦX, can be rephrased in terms of the graph Laplacians 
and the edge-node incidence matrix.[19] The N×N 
connectivity graph Laplacian is defined as L = D-W, 
where D is a diagonal matrix such that Dii

j i

=
∈
∑1

N
 and W is 

a binary adjacency matrix such that Wij = 1 if j ∈ N (i)
and j≠i. Assuming Ne total edges in the graph, the Ne  
N edge-node incidence matrix E is defined to have the 
nonzero row entries Eki = 1 and Ekj = -1 if i < j and j 

∈ Ni. Note that L = ETE. If t is the concatenation of all 
the Ne pairwise translations (X-components), then

T T T Tx x 2t x t t (x x) (x x) ,lF = - + + - -X L (7)

and the linear system in Equation (10) corresponds to 
T(L I)x x E tl l+ = + . In the absence of prior information, 

the linear system corresponds to A FT N
X

Nx t p= − 1 , 
where the matrix A is obtained by dropping the last row 
and column of L, F is obtained by dropping the column 
of E corresponding to the last tile and lN denotes the 
vector of the first (N-1) rows of the last column of L. 
We note that A = FTF in this case. Since matrix (L 
+ λI) is positive definite,[19] we can use the Cholesky 
decomposition or the preconditioned conjugate gradient 
(PCG) algorithm to solve the corresponding linear 
system. When λ is large (indicating more confidence in 
the prior information), fewer PCG iterations are required 
for convergence.

With full 8NN connectivity (as described above), in the 
absence of prior information, matrix A of dimension 
(N – 1) × (N – 1) is invertible because we include 
the Nth tile in the neighborhood connectivity. Also, 
note that this linear system can be easily modified to 
accommodate holes (i.e., constant intensity tiles which 
cannot be aligned via pairwise estimation) within the 
specimen. We simply drop the corresponding images, 
appropriately change the 8NN connectivity and modify 
the matrix A and the column vector y. If the holes 
end up disconnecting the specimen, then we need to 
supply reference pixel coordinates for each connected 
component and solve one linear system per component.[19]  
Note that we can also accommodate partial holes that 
only remove a part of the 8NN connectivity. Using W, 
we can find all connected components in N steps using 
depth-first-search or breadth-first-search (regardless of 
the actual number of components) and compute the 
matrices Ac corresponding to each component. Since 
each matrix Ac is also positive definite, we can again 
use the Cholesky decomposition or the preconditioned 
conjugate gradient algorithm to solve the corresponding 
linear system. For each connected component, we select 
a reference tile and use the following technique to pick 
reference tile coordinates: We specify the reference 
coordinates for only one component (the largest one) 
using the X-Y stage report and use linear extrapolation 
in order to propagate reference coordinates from the 
largest component to all others. This choice is motivated 
by the need for automation and the various stage error 
considerations discussed in section 4.

4. RESULTS AND DISCUSSION

Our microscopy data consists of hematoxylin and 
eosin (H and E) stained images of sliced prostate 
specimens imaged with a light microscope after radical 
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prostatectomy or after a prostate biopsy. After radical 
prostatectomy, each image tile was acquired using a 
Nikon Eclipse TE2000 microscope equipped with a 
Velmex BiSlider motorized stage at 10× resolution 
with 0.64 micron pixel size and was of size 1392 × 
1040 pixels. In addition to problems associated with 
CCD/stage misalignment and backlash, this Velmex 
stage has a repeatability error of 5 microns, which 
translates to roughly 8 pixels at 10×. Following 
prostate biopsy, each image tile was acquired using a 
Nikon Eclipse 55i microscope equipped with a PRIOR 
H101A motorized stage at 40× resolution with 0.16 
micron pixel size and was of size 1360 × 1024 pixels. 
This PRIOR stage does not suffer from backlash 
problems, but we still have some irremovable CCD/
stage misalignment and a repeatability error of 0.75 
microns, which translates to roughly 5 pixels at 40×. 
For pairwise homography estimation, the translation 
estimate found via NCC was used to identify rough 
correspondences which were then refined using local 
normalized cross-correlation and subsequently used 
for homography estimation.

4.1. Global  Translation Estimation Results on 
Radical Prostatectomy Data
Figure 1 shows the global positions computed using 
the GEM algorithm in section 3 without any prior 
information, for the largest component of a specimen 
comprised 79 × 34 tiles that contained both partial 
and full holes. On account of the holes, only 7942 
pairwise translations out of a total possible 11207 
8NN-connectivity edges were fed to our system and our 
system first eliminated more than 50 tiny components. 
Note the missing tiles (holes) in the center of the 
specimen in Figure 1. Also note the slight tilt in the 
X-coordinates possibly on account of the backlash 
that occurs when the X-Y stage returns to its leftmost 
X-coordinate after scanning an entire row. This 
indicates imperfect backlash correction by our stage. 
Part of this tilt is due to CCD/stage misalignment as 
well. The complete stitched image is shown in Figure 2.  
We currently observe a run-time of a few seconds on 
79 × 34 images (tiles) for the global registration and 
a run-time of around 1 hour to obtain all pairwise 
translations. Therefore, speed is not a critical issue for 
the global registration. The net computation time of 
about 1 hour for the global coordinates calculation is 
reasonable for this application since this acquisition also 
required about 1 hour (on account of our autofocusing 
procedure) and the subsequent mosaic pyramid 
creation also required about an hour (on account of 
the large image sizes). In addition, since the pairwise 
registration step is highly parallelizable on account of 
registrations being independent, greater speed-up can 
be obtained by using more processor cores. Moreover, 
the pairwise registration step can be simultaneously 

performed during the hour-long acquisition thus 
significantly reducing the net computation time for 
calculation of global coordinates. Since each image 
tile needs to be registered to four previously acquired 
tiles (except for tiles located on some of the borders), 
the parallelization potential is present even when 
the pairwise registration is performed in conjunction 

Figure 1: (a) Connectivity graph, (b) global X-Y coordinates of 
the largest connected component, for a specimen comprised of 
79×34 tiles

Figure 2: Stitched image of the largest connected component from 
the 79×34 tiles in Fig. 1

a b
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with acquisition. Additionally, individual pairwise 
registrations can themselves be sped up, e.g., via 
parallelization on GPU’s (graphical processing units).

4.2. Comparison of Methods on Simulated Data
We conducted an experiment with noisy simulated 
translations (not derived from images) on a 3 × 3  
mosaic in order to confirm the error-minimizing 
advantages of our approach with respect to tree-
structured approaches [Figure 3]. We considered 
equi-spaced square tiles with 10% overlap and added 
independent zero-mean Gaussian noise (σt=2% of the 
square image tile size) to each coordinate of the 20 
pairwise translations. We chose the central tile as the 
reference tile for our GEM approach as it minimized 
trace (A-1) and hence the positioning error in Table 1. 
When averaged over 5000 runs, we obtained an average 
positioning error of 1.34% [row 5 of the Table in Figure 
3] with our GEM approach using the central (5th) tile. 
For comparison, we also show the average positioning 
error corresponding to tiles 1 (left top) and 2 (middle 
top) in rows 3 and 4 respectively. This central tile is 
also the optimal reference for the tree-structured 
approaches considered below. We obtained an error 
and 2.70% (row 1) with the fish-bone approach.[3] Since 
we allow diagonal connections and each connection 
is associated with the same noise level, the star 
graph (rather than the fishbone graph) is the ideal 
tree for our connectivity graph because it minimizes 
the sum of all path lengths from the reference node 
to all other nodes. The star tree yielded an average 
positioning error of 2.23% (row 2). The mean sum of 
the squared positioning errors (last column) for the 
GEM approaches (rows 3-5), the fishbone approach 
and the star approach assumed their expected values: 

-1 2
t

2
Trace(A )

9
s , 2

t
2

12
9

s´ , and 2
t

2
8

9
s´ , respectively, in this simulation. 

The GEM approach (rows 3-5) clearly reduces the 
overall positioning error although the need to obtain all 
pairwise translations increases its computation time. In 
the last two rows, we also show the results using prior 

information. Zero-mean Gaussian noise with σp=2% 
and 4% was added to the X, Y coordinates of the true 
locations and used as prior information in rows 6 and 
7, respectively. The parameter λ was set to 8 and 32 
in rows 6 and 7, respectively, which represented near-
optimal values in this simulation. The squared error 
with prior information as precise as the translation 
estimates (row 7) was greatly superior to the best result 
without prior information (row 5) and even with very 
noisy prior information, the advantage of using prior 
information persisted (row 6).

4.3. Comparison of Methods on H and E Data
We shall now compare our methods on H and E 
microscopy images acquired with motorized stages 
yielding different levels of accuracy in the prior 
coordinates. Unlike section 4.2, we no longer possess 
knowledge of the true global coordinates, i.e., the 
ground truth. We start by presenting a 40× cut-
out partial mosaic from a prostate biopsy specimen 

Figure 3: (a) 3 x 3 connectivity graph used during global error minimization, (b) Star graph (optimal tree, please see text for explanation), 
(c) Fishbone graph[3]

Table 1: Positional errors for different global 
position estimators (GEM-1, GEM-2, GEM-
5 represent our global error minimization 
technique without prior information with tiles 1, 
2, and 5 as references and GEM-P represents our 
GEM technique with prior information)

Method 
description

Average  
position error

Average position 
-squared error

Fishbone 2.70 ± 0.64 10.75 ± 5.03
Star 2.23 ± 0.42 7.15 ± 3.56
GEM-1 1.70 ± 0.58 4.21 ± 2.84
GEM-2 1.49 ± 0.42 3.20 ± 1.76
GEM-5 1.34 ± 0.31 2.59 ± 1.15

GEM-P, p

t

2
s
s

= 1.33 ± 0.32 2.27 ± 1.04

GEM-P, p

t

1
s
s

= 0.91 ± 0.17 1.07 ± 0.38

a b c
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obtained with a newly-purchased, freshly calibrated, 
encoded X-Y stage (PRIOR H101A) providing 
extremely reliable prior information. There was a 15% 
overlap between neighboring tiles during acquisition. 
There was no backlash with this stage, but we note 
that there was an alignment error between the camera’s 
CCD and the X-Y stage motion which could not be 
easily removed by rotating the camera on account of 
camera rotation accuracy limitations. We estimated the 
true motions in the X and Y directions by performing 
multiple pairwise registrations and subsequently using 
a line-fitting procedure. The beneficial effect of using 
the corrected vs. the original prior coordinates is shown 
in Figure 4. (Please see insets 4(c)-(f) of highlighted 
areas to notice the presence of the seams of the tiles 
in Figure 4a and their absence in Figure 4b. We note 
that there were no visible stitching errors within this 
entire mosaic consisting of 72 × 168 tiles. Given this 
accurate corrected prior information, there is no need 
to use our GEM algorithms. It also indicates that the 
Z-motion due to autofocusing can be ignored during 
stitching.

We now present a 10× partial mosaic from a radical 
prostatectomy specimen acquired with an inexpensive 
stage (Velmex BiSlider) providing highly unreliable prior 
information, with 20% overlap between neighboring tiles. 
In Figure 5, we show a comparison of a partial 2 × 3 
mosaic, independently stitched from the corresponding 2 
× 3 tiles, via homography estimation and pure translation 
estimation with and without prior information. The prior 
information was obtained via line fitting [Figure 4] and 
linear extrapolation to coordinates obtained without prior 
information and was hence biased and not very reliable. 
As seen in this example, the differences between our 
three GEM approaches on this partial dataset are not very 
significant. Figure 5c shows extremely minor errors (please 
see inset 5e-f of yellow highlighted areas) although we set 
λ to 2.0 (a lower value than any diagonal Laplacian entry), 
indicating the need for more reliable prior information. 
By manual placing landmarks, we obtained ground truth 
translations between neighboring pairs and compared the 
results of our automatic pairwise alignment procedure 
with the ground truth. The median (maximum) Euclidean 
pairwise alignment error for the 11 2D translations was 1.0 
(3.6) pixels, indicating near-perfect pairwise alignment. 
Some of the homography matrices indicate that the X-Y 
stage motion does not seem to be perfectly parallel to the 
plane of the specimen. However, we have observed our 
pairwise homography estimation to be less stable (please 
see errors in insets 5g-h of red highlighted area in Figure 
5d than the pairwise translation estimation on account of 
the small overlap and the occasional almost feature-less 
overlapping regions and are currently in the process of 
improving our pairwise homography estimation algorithm. 
Moreover, at this moment, our visualization software 

builds multiresolution pyramids computed from 2D tile 
coordinates. Therefore, we have not attempted to stitch 
a full slide using homographies as in Figure 2. Note that 
in Figure 5, we have used image replacement rather than 
blending in order to highlight the differences between the 
different GEM approaches.

Finally, in Figure 6, we present an example of a 40× 
cut-out partial mosaic from a prostate biopsy specimen 
(56 × 156 tiles) obtained with the same reliable PRIOR 
stage, as in Figure 4, but after several months of usage. 
There was a 10% overlap between neighboring tiles 
during acquisition. The prior information was no longer 
as reliable and the benefit of using our 2D translation-
based GEM algorithm with a prior weight of 0.01 is 
clearly visible in Figure 6. According to the manufacturer, 
this stage does not require any recalibration procedure 
and the exact cause for this drop in accuracy with 
respect to Figure 4 is not yet clear. Nevertheless, given 
the fact that the quoted repeatability error of this stage 
is roughly 5 pixels, we cannot always expect the near-
perfect scans corresponding to Figure 5.

We note that although the GEM algorithm without 
prior information could be readily applied to our radical 
prostatectomy data obtained with large overlaps (e.g., 
20%), the use of GEM algorithms with prior information 
is more desirable for prostate biopsy scans with smaller 
overlaps (e.g., 10%). This is because biopsy scans with 
smaller overlaps lead to more errors in the pairwise 
alignment on account of the more frequent feature-
less (often nearly empty) overlapping regions. (We note 
that smaller overlaps are desirable on account of the 
resulting faster acquisition times.) Also, biopsy scans 
involve thin individual structures and contain more 
large connected components than radical prostatectomy 
specimens which typically contain only one or two large 
components.

5. CONCLUSION

We have presented a novel general solution for image 
mosaicing using graph connectivity and demonstrated 
its applicability for homography estimation and 2D 
translation estimation in histological microscopy 
imaging. Our solution can accommodate imprecise prior 
information regarding the unknown homographies or 
translations whenever such information is available. The 
general solution of section 2 has been applied to the 
microscopy data in section 4 and the X-Y stage motion 
estimation algorithm from Section 3 has been used to 
stitch full slides obtained after radical prostatectomy. 
Note that the same graph connectivity plays an 
important role in the solutions for both the generic 
and the microscopy scenarios, as seen by equations (8) 
and (10). Through experiments with simulated data, 
we have shown that prior information can significantly 
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Figure 4: Precise prior information: (a) Translation-based mosaic stitched using the original prior coordinates, (b) Translation-based mosaic 
stitched using the corrected prior coordinates, (c) Red inset from 4(a), (d) Yellow inset from 4(a)
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improve the accuracy of the GEM approaches and 
have also shown that the GEM approaches are superior 
to tree-structured approaches. We could also use an 
algorithm similar to the one in section 3 to compute 
3D global positions from 3D translations as in the 
confocal microscopy volumetric stitching application 
considered in Ref.[8] We also note that having provided 
a general energy minimization framework incorporating 
prior information in equation (2), we could replace 
the Frobenius norm in equation (2) with outlier-
resistant norms and perform the optimization in an 
iterative manner. Another interesting avenue for future 

work would be to investigating the trade-off between 
computational speed and accuracy in our GEM 
approach with prior information by selecting fewer 
pairwise connections, e.g., those corresponding to an 
optimal tree. This would reduce the number of pairwise 
registrations required and hence increase speed.
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Figure 6: Semi-precise prior information: (a) Translation-based mosaic stitched using the corrected prior coordinates (b) Translation-based 
mosaic using our GEM approach with prior information (Sec. 3) (c) Yellow inset from 6(a) (d) Red inset from 6(a) (e) Yellow inset from 
6(b) (f) Red inset from 6(b)
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Figure 5: Imprecise prior information: (a) Neighboring 2x3 image tiles (b) Translation-based mosaic stitched using our GEM approach 
without prior information (Sec. 3) (c) Translation-based mosaic using our GEM approach with prior information (Sec. 3) (d) Homography-
based mosaic stitched using our GEM approach without prior information (Sec. 2) (e) (e) Yellow inset from 5(b) (f) Yellow inset from 5(c) 
[The difference between (e) and (f) is minor, but note that the size of the central purple nucleus slightly reduces in (f)] (g) Red inset from 
5(b) (h) Red inset from 5(d)
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APPENDIX A

The matrix A and vector y in the linear system 
corresponding to equation (4) are as follows:
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When no prior information is available and MN is known, 
we set λ to 0 in (8), the index i ranges from 1 to N-1 and 
y becomes
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The matrix A and vector y in the linear system 
corresponding to (6) are as follows:
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When no prior information is available and X
Np is known, 

we set λ to 0 in (10), the index i ranges from 1 to N -1, 
and y becomes:
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