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of Case/Pseudocontrol Method and Comparison of Prospective
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The case/pseudocontrol method provides a convenient framework for family-based association analysis of case-parent trios,
incorporating several previously proposed methods such as the transmission/disequilibrium test and log-linear modelling of
parent-of-origin effects. The method allows genotype and haplotype analysis at an arbitrary number of linked and unlinked
multiallelic loci, as well as modelling of more complex effects such as epistasis, parent-of-origin effects, maternal genotype and
mother-child interaction effects, and gene-environment interactions. Here we extend the method for analysis of quantitative as
opposed to dichotomous (e.g. disease) traits. The resulting method can be thought of as a retrospective approach, modelling
genotype given trait value, in contrast to prospective approaches that model trait given genotype. Through simulations and
analytical derivations, we examine the power and properties of our proposed approach, and compare it to several previously
proposed single-locus methods for quantitative trait association analysis. We investigate the performance of the different methods
when extended to allow analysis of haplotype, maternal genotype and parent-of-origin effects. With randomly ascertained
families, with or without population stratification, the prospective approach (modeling trait value given genotype) is found to be
generally most effective, although the retrospective approach has some advantages with regard to estimation and interpretability
of parameter estimates when applied to selected samples. Genet. Epidemiol. 31:813—-833, 2007.  © 2007 Wiley-Liss, Inc.
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INTRODUCTION

Numerous methods have been proposed to test
for association between a quantitative trait and a
diallelic locus of interest. In a group of unrelated
subjects, simple linear regression can be used to relate
the quantitative trait phenotype to the genotype.
However, this approach can be adversely affected by
population stratification [Gauderman, 2003] and hence
family-based designs are often preferred. Perhaps the
simplest family-based design is to genotype a sample
of unrelated phenotyped individuals and their par-
ents, generating a set of parent-offspring trios. Anala-
gous to the transmission/disequilibrium test (TDT) for
disease traits [Spielman et al., 1993], tests that are
robust to stratification can be derived by focussing on
the transmission of the parental alleles to the offspring.
If a given marker is not linked to a quantitative trait
locus (QTL) (so that the marker alleles are transmitted
randomly from parents to offspring), offspring quan-
titative phenotype is independent of offspring marker
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genotype given the parental marker genotypes
[Whittaker et al., 2003]. This observation led Whittaker
et al. [2003] and Gauderman [2003] to propose a test
that is robust to population stratification, by adding
terms that code for parental mating type into the linear
regression equation. This approach (denoted QTDTy
by Gauderman [2003]) is closely related to tests
previously proposed by Allison [1997] and Lunetta
et al. [2000] (for details, see Gauderman [2003]).

An alternative approach was proposed by Fulker
et al. [1999] and Abecasis et al. [2000]. These authors
added terms to the linear regression model to separate
out the within and between mating type information.
The within mating type test was referred to as the
hierarchical QTDT (HQTDT) by Gauderman [2003]
and is the method implemented in the QTDT program
[Abecasis et al., 2002]. Gauderman [2003] noted that
for parent-offspring trios, HQTDT and QTDT,, are
virtually identical with regards to inference about the
effects of interest (genotype effects on the trait);
however HQTDT has the advantage that it has also
been extended to apply to general pedigrees [Abecasis
" @WILEY
., InterScience’

DISCOVER SOMETHING




814 Wheeler and Cordell

et al,, 2002]. Yang et al. [2000] described a similar
model to the HQTDT. The differences between the
models have little or no effect on the estimates and
test of interest [Gauderman, 2003], and the Yang et al.
[2000] method was therefore treated as equivalent to
HQTDT by Gauderman [2003].

The above models are prospective models, that is,
they model the quantitative phenotype in terms of the
offspring genotype. They all assume that the quanti-
tative traits are normally distributed, or else rely on
the central limit theorem. To protect against the
effects of possible deviations from either normality or
selection on the trait, the HQTDT implemented in the
QTDT program can carry out a permutation proce-
dure based on permutation of genotypes to produce
an empirical P-value. The connection between max-
imum likelihood inference under an assumed normal
distribution and least-squares regression, however,
means that in general we expect these regression-
based methods to be reasonably robust to small
deviations of the trait from normality, even without
use of permutation arguments.

An alternative approach is to use a retrospective
approach, in which offspring genotype is modelled
as a function of quantitative phenotype (possibly
given parental genotypes). This approach is more
akin to the original TDT of Spielman et al. [1993].
Such an approach provides the rationale for the
family-based association test (FBAT) of Laird et al.
[2000], although Lange et al. [2002] showed that this
retrospective FBAT approach is in fact equivalent to
implementing the HQTDT of Abecasis et al. [2000]
via a score test rather than via a likelihood ratio test.
Kistner and Weinberg [2004, 2005] describe a retro-
spective approach in which the offspring genotype
is modelled as a function of their phenotype and
parental genotypes, making no explicit assumptions
about the distribution of the quantitative trait. This
model, called the quantitative polytomous logistic
(QPL) model, can be thought of as an extension of
the log-linear model proposed by Weinberg et al.
[1998] for qualitative traits.

The log-linear model for qualitative traits pro-
posed by Weinberg et al. [1998] is very similar to the
case/pseudocontrol approach for case-parent trios
proposed by Cordell and Clayton [2002] (described
in more detail by Cordell et al. [2004]). The main
difference between the two approaches is that
Cordell and Clayton [2002] model offspring geno-
types conditional both on parental genotype and
ascertainment through the affected offspring,
whereas Weinberg et al. [1998] model the frequencies
of the 15 possible trio types consisting of offspring
genotype and parental mating type. The case
/pseudocontrol approach can be thought of as a
generalization of the TDT and the approaches of
Schaid and Sommer [1993], Schaid [1996] and
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Weinberg et al. [1998], generalized to allow the
fitting of more complex models where several linked
and/or unlinked loci may contribute to disease via a
combination of offspring and/or maternal genotype
or haplotype effects, parent-of-origin effects and
gene-gene or gene-environment interactions. Given
the flexibility of the case/pseudocontrol approach,
here we extend this approach to deal with quanti-
tative traits, and compare the resulting method
to original and extended versions of previously
proposed quantitative trait association approaches.

METHODS

THE QTDTwm

Gauderman [2003] and Whittaker et al. [2003]
incorporate parental mating type as a fixed effect in
a linear regression model. The model is of the form

yi=om+ B, tei (1

where y; denotes a quantitative phenotype, g; the
genotype at a particular locus for the ith individual
(gi=0, 1, 2 according to whether the genotype is 1/1,
1/2 (or2/1) or2/2), and oy M =1, ..., 6) are mating-
type specific intercepts. The residual e; is assumed to
be normally distributed with mean 0 and variance .
The formulation above suggests that the model is
parameterized in terms of six mating-type parameters
(the apg) and three child-genotype parameters (B,
B; and By), but, in fact, only two child-genotype
parameters are estimable, with one of the genotype
categories being chosen as the reference genotype
category (the baseline genotype category to which
the other genotype effects are compared). For example,
if 1/1 is chosen as the reference genotype, Py is set
equal to 0 and the test of no association between y and
g is Hy: By = P2 =0. Alternatively, if the heterozygous
genotype 1/2 is chosen as the reference genotype, By
is set equal to 0 and the test of no association between
yand gis Hy:Bo=p=0.

Similar to the HQTDT of Abecasis et al. [2000], the
QTDTy draws information from both within and
between mating types. The HQTDT models the
differences across mating types using a between
mating type parameter whereas the QTDT)y; uses
the multiple fixed intercepts o, Gauderman [2003]
notes that inferences for the genotype effects are
the same using the HQTDT and QTDT,; methods.
The differences between the methods are in the
estimates and interpretation of the mating-type
specific intercepts, which are treated as random
effects in the HQTDT and fixed effects in QTDTy,.

THE QPL METHOD

Kistner and Weinberg [2004, 2005] describe a
retrospective model in which offspring genotype is
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modelled as a function of offspring phenotype and
parental genotypes. The model is an extension of the
log-linear model proposed by Weinberg et al. [1998]
for qualitative traits and is fit using a polytomous
logistic model with a generalized logit link function.
Assuming parental mating symmetry in the popula-
tion, there are six distinct parental mating types and
the offspring genotype is modelled conditional on
the offspring’s quantitative trait (y;) and the parental
mating type. Let Sp; denote the set of possible
of fspring genotypes for mating type M. The summa-
tion Zg;‘eSM denotes the restricted summation over

the offspring genotypes consistent with Sp.. The

contribution of a trio to the likelihood is modelled as
exp(Bs, vi + o'mg,)

g €Su eXP(B//g? yi+ O(//Mg,-*)

P(gilgim Sif Vi) = 5 (2

where Bg are parameters representing association
between quantitative trait and genotype, and o}, are
nuisance parameters to account for non-Mendelian-
ism and/or population stratification and depend on
both parental mating type and the offspring geno-
type. In the formulation described by Kistner and
Weinberg [2004], these parameters are denoted as B,
and o, but here we instead use the double primed
notation (B; and o) to distinguish these parameters
from the “parameters B, and oy used in the
prospective formulation of equation (1). Kistner and
Weinberg [2004] code the offspring, maternal
and paternal genotypes as 0, 1 or 2 depending on
the number of ‘variant’ alleles (here considered to
be allele 2) they carry (the results of the test will be
the same regardless which allele is considered to be the
‘variant’). For the ith trio, let the offspring’s quanti-
tative trait value be denoted by y;. Column 3 of Table I
shows the conditional likelihoods for all combina-
tions of parent and offspring genotypes that would
result from equation (2) if all the parameters were
estimable. Note that there are three child genotype
parameters (B;, B; and PB;) and seven nuisance
parameters (9,0, %11, H10/ 11/ H12s W21, Hpp) With
o corresponding to the nuisance parameter for the
category with (unordered) parental genotypes j and
k and child genotype I. In practice, this model is
overparameterized, and Kistner and Weinberg
[2004] treat the heterozygous offspring genotype,
1(1/2 or 2/1), as the reference genotype category. This
results in a final model with six estimated parameters
(B, B2, %10, A1, iz, and o), with B, oy, oy and
ofy being set equal to zero, as shown in the fourth
column of Table I. An alternative parameterization
for the child’s genotype parameters (which we shall
we use in our simulation study) would be to set By to
zero and to estimate B] and PB,. Regardless of the
parameterization chosen, the categorization into three
possible offspring genotype categories means that

there are a maximum of three possible terms in the
denominator of equation (2), clearly seen in the
columns 3 and 4 of Table L.

THE QCPG METHOD

The method we propose is closely related to the
approach by Kistner and Weinberg [2004, 2005], but
the parameterization and implementation of the
methods are somewhat different. Our approach
derives from the case/pseudocontrol method for
dichotomous traits [Cordell and Clayton, 2002,
Cordell et al., 2004]. This method involves construct-
ing (from a sample of case-parent trios) a sample
of cases and matched pseudocontrols. We focus here
on the ‘conditioning on parental genotypes’ (CPG)
approach of Cordell et al. [2004], which generates
pseudocontrols conditional on the mother’s and
father’s genotypes (and possibly also conditional
on some other event &, such as phase or parent-of-
origin being determinable).

The extension of the CPG method to quantitative
traits, here named the quantitative CPG (QCPG), is
based on a calculation of the conditional likelihood
of the offspring genotypes, conditional on the
parental genotypes and the offspring phenotypes.
For family i, let g;, gim, 8ir be the offspring, maternal
and paternal genotypes respectively, and let y; be the
offspring’s quantitative trait. Then,

P(gi, §im> &ip- Y1) P(8i, im» 8if> i)
P(im: i Yi) g P87 gims &if Y1)
_ P(yilgi, gim, 8if) P(&ilgims 8if) P(Gim, &if)
B > g Pilgy s im» 8if) P(8F1Qim: 8if) P(Gim: if)
P(yilgi) P(8i|gim» i)
 Yges, PWils) P8} 1gim 8ir)

P(gilgimagifa yl) =

®)
where 3 .. denotes summation over the four

possible offspring genotypes and Zg_*e% denotes

summation over all possible offspring genotypes
that could have been transmitted to the offspring
given the parental genotypes (the probabilities
P(gf|gim»gif) = 0 for offspring genotypes that are
inconsistent with the parental genotypes). This is
of the form of the case/pseudocontrol likelihood
for qualitative traits [Cordell and Clayton, 2002]
with the offspring’s affection status replaced by a
quantitative phenotype. The likelihood can be
calculated via conditional logistic regression as
implemented in standard statistical software. In
Appendix A we show that the contribution of a trio
to the likelihood may be assumed to be of the form

eXp(B/gi Yi+ O(/Mgi)
2 gres, XP(B vi + &nag;)

(4)
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TABLE 1. The conditional likelihoods associated with the QPL model

Parents (g,,, &)

Offspring (g)

QPL likelihood

Overparameterized model

Six estimable parameters estimated

00 0 1 1
02 1 1 1
22 2 1 1
01 0 77 eXI?/(B[/)/y + “610)/7 77 expg’Bgy +”u8w)
exp(Boy + og19) + exp(Bry + ogy1) exp(Boy + ogy0) +1
1 77 EXE(H/{}/ + CLSH 2/ ey 1
exp(Boy + og10) + exp(Bry + o) exp(Boy + o) + 1
1 0 Pyt ap0) — B VR T —
exp(Boy + o39) + exp(Bry + o31) + exp(Boy + oy1,) exp(Byy + ay39) + 1+ exp(Byy + o41p)
1 77 exp( Biliy + a/l/]l) 7 7 77 1 7T i
exp(Boy + o19) + exp(Byy + o3y) + exp(Byy + o,) exp(Boy + o59) + 1+ exp(Byy + ofy,)
2 . exp(B%y + “3112) . , . exp(Byy + oy,) . ,
exp(Boy + o19) + exp(Byy + o3y) + exp(Byy + o,) exp(Boy + o19) + 1+ exp(Byy + ofy,)
12 1 S A SR, W
exp(Bry + a151) + exp(Bry + 01) 1+ exp(Byy + 02)
) exp(Bay + ) exp(Byy + o))

exp(B1y + o51) + exp(Boy + o)

1+ exp(Byy + o)

The likelihoods are proportional to P(g|g,,, 5, y), corresponding to all combinations of (unordered) parent and offspring genotypes.

Here B, represent genotype effects, and oy, are
nuisance parameters modelling non-Mendelianism
and population stratification. The likelihood is
similar to Kistner and Weinberg’s QPL likelihood
equation (2), except for the summation in the
denominator. Columns 3 and 4 of Table II show the
conditional probabilities corresponding to all com-
binations of parent and offspring genotypes for the
QCPG method. By comparing column 4 of Tables I
and II, and ignoring constants of proportionality, it
can be seen that the QCPG likelihood is identical to
the QPL likelihood, except for the offspring of two
heterozygous parents. With two heterozygous par-
ents, the sum in the denominator of the QCPG like-
lihood is over a maximum of four possible off-
spring genotypes. However, Kistner and Weinberg
sum over a maximum of three possible offspring
genotypes. For example, for a heterozygous off-
spring, the contribution to the QPL likelihood is

1
exp(Boy + o110) + 1 + exp(Bz v + o412)

whereas for the QCPG method the contribution to
the likelihood is

Genet. Epidemiol. DOI 10.1002/ gepi

1
exp(Boy + o110) + 14+ 1+ exp(Boy + oh12)

Essentially, in the QCPG formulation, we distin-
guish between the two possible heterozygote off-
spring genotypes 1/2 and 2/1 in the summation
in the denominator (although in practice — assuming
no parent-of-origin effects — the likelihood will be
identical regardless of whether the observed off-
spring has genotype 1/2 or 2/1). As a result of the
different likelihood formulations, interpretation
of the nuisance parameters is different for the QCPG
method and Kistner and Weinberg’s QPL. The
difference is most noticeable under the null with
no population stratification or non-Mendelianism. In
Appendix A we show that, for the QCPG method,
the true values of the nuisance parameters o’ under
the null with no population stratification or non-
Mendelianism equal zero, whereas in Appendix B
we show that for Kistner and Weinberg's QPL
method, the true values of the nuisance parameters
o/ are non-zero. Provided all six estimable para-
meters (two offspring genotype effects and four
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Parents (g,,, &)

Offspring (g)

QCPG likelihood

Overparameterized model

Six estimable parameters estimated

00 0
02 1
22 2
01 0
1
11 0
1
2
12 1
2

1
1
1

xpUBy + %)
2 exp(Boy + %) + 2 exp(Bry + o17)

i eXI?(B/ly"‘ o1y .
2 exp(Boy + 9g10) + 2 exp(Biy + ogy1)

exp(Byy + 1)

1
1
1

exp(Boy + %0)
2 exp(Boy + %y0) +2

1
2 exp(Bpy + ogy0) + 2

exp(Byy + ot139)

exp(Boy + oy19) + 2 exp(Bry + o441) + exp(Boy + oyy,)

exp(Biy + %;)

exp(Boy + o110) + 2 + exp(Boy + oy,)

exp(Boy + o119) + 2 exp(Bry + otyy1) + exp(Boy + o41)

exp(Byy + 1)

1
exp(Boy + o110) + 2 + exp(Byy + o1)

exp(Bay + o11)

exp(Boy + o19) + 2 exp(Bry + o4y1) + exp(Boy + oyy,)

, eXE(B;y"‘ 1) i
2 exp(B1y + %) + 2 exp(Boy + o)

. exp(Byy + %5) .
2 exp(B1y + 0p1) + 2 exp(Boy + o155)

exp(Boy + o110) + 2 + exp(Boy + oy,)

1
2+2 exp(Boy + %15)

exp(Byy ’/*‘ %pp)
2+ 2 exp(Byy + op5)

The likelihoods are proportional to P(g|g,., &5, y), corresponding to all combinations of (unordered) parent and offspring genotypes.

nuisance parameters) are freely estimated during
likelihood maximization, inference for the para-
meters of interest (f; and B;, or B; and Bj,
depending on which genotype category is chosen
as reference) should not be affected by this result.
However, the QPL result is slightly counter-intui-
tive, as one would generally expect that parameters
that are specifically included in the likelihood to
model certain effects (such as population stratifica-
tion or non-Mendelianism) would take the value
zero (i.e. be removable from the likelihood) when
these effects do not, in fact, exist.

An additional difference between the QCPG and
QPL arises with regard to the number of nuisance
parameters estimated (see Appendix C).

Liu et al. [2002] described a method that is closely
related to the QCPG. Although the nuisance
parameters are different, the likelihood is essen-
tially of the same form. Rather than having six
possible parental mating type parameters (o), Liu
et al. [2002] have a single baseline parameter, «, and
a number of additional parameters for the clusters
of individuals whose trait differs from the popula-
tion mean due to population stratification, §;.
However, without knowing the underlying popula-
tion stratification, the 8; parameters are unknown
and cannot be estimated from the data. Liu et al.

[2002] avoid having to estimate these nuisance
parameters by showing that even in the presence
of unobservable population stratification, it is still
valid to test the null of no genetic effect via a
score test, since population stratification has
no effect on the null distribution of the test.
Gauderman [2003] refers to the method of Liu
et al. [2002] as the retrospective QTDT (RQTDT).
To implement this method via a likelihood ratio test,
Gauderman assumed that the quantitative trait
follows a normal distribution with mean o+
and variance o?, without consideration of the
0; parameters. In this implementation, o does not
use information on the parental genotypes to
model population stratification, although some
information on the parental genotypes is still
incorporated via the genotypes of the offspring
and the pseudocontrols.

EXTENSION OF QCPG
TO MULTI-LOCUS HAPLOTYPES

Cordell et al. [2004] showed that the case/
pseudocontrol approach can easily be extended to
fit models for parent-of-origin effects, multiallelic
markers, multiple linked loci in multiple unlinked
regions, and gene-gene and gene-environment

Genet. Epidemiol. DOI 10.1002/ gepi
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interactions, via an adjustment to the conditioning
argument that results in differing numbers of
pseudocontrols depending on the model being
fitted. Here we extend this approach to quantitative
traits. Consider models in which the genotype
effects depend only on child’s phased genotype.
Define g, gim, 8ir as the offspring, maternal and
paternal phase-known genotypes respectively, and y;
as the offspring’s quantitative trait. The likelihood
is very similar to that in equation (3) but we define
an event £ as the event that the set of transmitted
and untransmitted haplotypes from the parents
can be deduced. The contribution to the conditional
likelihood is

P(gilgim- Sifs Yi» §)
_ P(igim, 8- Y18 P(8i, Gims &ifs Yir )
 PGim 8- Yin ) > g (8T Gim» &if» Yis §)
_ P@ilgi, Gims Sif> €) P(SilGim, &if» ) P(&im. i, €)
X PilgE gim: & &) P(&FIGim: &t &) P(Gim- 8if &)
P(yilgi) P(gilgim- Gif» &)
B Zg;‘eS;w P(yilg?) P(8}18im 8if» €)

where Zg‘* denotes summation over all possible off-

spring genotypes and Eg,*es'M denotes summation

over all possible of fspring genotypes that could have
been transmitted to the offspring given the parental
genotypes. Under Mendelian inheritance the prob-
abilities P(g7|gim,gif» &) are equal for all g € {Sj; N
G:} and equal zero otherwise, where G: denotes the
set of of fspring genotypes determined by &. Then the
contribution to the likelihood under Mendelian
inheritance is given by

P(yilgi)
8 €(5),NGz) P(yilg)

Note that, provided the models that are to be fitted
do not depend on phase, one could also use the
QCPG for analysis of unphased multilocus genotype
data, in the same way that the CPG method can
be used for unphased genotype data [Cordell
et al., 2004].

P(gilgims 8if>Yi &) = 5

EXTENSIONS FOR MATERNAL GENOTYPE
AND PARENT-OF-ORIGIN EFFECTS

Kistner et al. [2006] proposed an extension to
the QPL approach to allow testing for maternally
mediated effects and parent-of-origin effects. The
likelihood factors into two parts. The first factor tests
for genotype effects in the offspring and can be
modelled using the original QPL method. The
second factor tests for maternal genotype or par-
ent-of-origin effects via a logistic regression model.

Genet. Epidemiol. DOI 10.1002/ gepi

Maternal genotype effects are incorporated by
modelling the probability that the mother has more
copies of the variant allele than the father for each
mating type. Parent-of-origin effects are incorpo-
rated by additionally including a binary indicator
variable, indicating whether the offspring inherited
only one copy of the variant allele. This implies the
child is heterozygous, and since the mother has more
copies of the variant allele than the father, the variant
allele must have been inherited from the mother.

We may also extend the QCPG method to allow for
maternal genotype and parent-of-origin effects. The
‘conditioning on exchangeable parental genotypes’
(CEPG) method [Cordell et al., 2004] is an extension
of the CPG approach to detecting parent-of-origin
or maternal genotype effects by assuming exchange-
ability of parental genotypes. The method conditions
on the set of parental genotypes but not on their
order, generating additional pseudocontrols con-
structed by exchanging the genotypes of the mother
and father. Here we extend this approach to
quantitative traits. Maternal genotype effects are
defined to be the direct effect of the maternal
genotype on the offspring’s quantitative trait, and
parent-of-origin effects are defined (as in Weinberg
et al. [1998]) to allow the offspring’s quantitative
trait to vary according to the parental origin of the
variant allele, if present. Like Cordell et al. [2004], we
introduce an additional conditioning event & corre-
sponding to the event that parent-of-origin and
maternal genotype can be deduced in the trio. For
quantitative trait CEPG method (denoted here
QCEPG), the contribution of a trio to the QCEPG
likelihood is

P(gi, gims Sif{Gim- Gif}> Vi &)
_ P(8i, 8im> Sif (8im>» &if}> Yir €)
P({gim» i} vir &)
_ P(gi’gim,gify{gimygif}’yis&)
ng,gfm,g; P(g,’-‘, gfm,gf}, {gim’gif}a Yi, E.;)

_ P(yilgi, Sim» if> E)YP(Si Gims Sif{&ims &if}> EYPUGims &if}» &)
2 gy PWil8T s 8hs 8 OPST 8o 81 {8ims Gif} P (i 8if}s ©)

P(yi'gia gim,gifs E,»)
Zg’*,g;”,gi*fgc; P(yilg,’-‘,g?m,g}}, £)

)

where {gin, gif} denotes the unordered set of parental
genotypes and the final restricted sum is over the
possible trios in which parent-of-origin (as well as
maternal genotype) are deducible. Unlike Kistner
and Weinberg’s extension of the QPL method, the
QCEPG method does not involve factoring the
likelihood. In addition, the null hypothesis of no
parent-of-origin effects considers the transmission of
variant alleles from the mother to all offspring, not
only those who are heterozygous. The contribution
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of the likelihood (see Appendix D) is assumed to be
of the form

EXP((B/gI + B/gmz +By,)yi + o‘/g,mngg,)

(6)
2 g gl <Ge exp((By: + Bg;, +B7,)yi + e grg)

im:

The offspring genotype effects are denoted by f'y,
the maternal genotype effects by B;: and parent-of-
origin effects by B;, where I, is an indicator of

whether an offspring inherits a variant allele from
the mother. The nuisance parameters og: 88 depend

on the offspring genotype and the genotypes of the
parents. For the QCPG, in the absence of maternal
genotype or parent-of-origin effects, the nuisance
parameters only depended on the parental mating
type and the offspring genotype. However, in the
QCEPG, the maternal genotype is of interest and
needs to be included. No additional information is
gained by incorporating the parent-of-origin indica-
tor into the nuisance parameter since once the phase-
known genotypes of the parents and offspring are
specified, and conditional on the fact that parent-of-
origin can be deduced, parent-of-origin is also
established. If only maternal genotype effects are
of interest then the parent-of-origin indicator can
simply be removed from the model and the nuisance
parameters remain the same. However, if only
parent—of—origin effects are of interest then the
nuisance parameters are of the form o’ Mg l,,s which
depend on the parental mating type, the offspring
genotype and the parent-of-origin indicator.

The QTDTy method can also be extended to
include maternal genotype effects, B, , and parent-
of—orlgm effects, BI , through flttlng the linear
regression model

yl = Om + Bg; + Bgim + BIm'

Trios in which parent-of-origin can be resolved can
be found by first generating a case/pseudocontrol
dataset as described in Cordell et al. [2004], specify-
ing that the parental genotypes are exchangeable
and parent-of-origin can be resolved. For the
QTDTy method, only the original offspring (the
‘case’) from the case/pseudocontrol dataset
(together with information about maternal genotype
and parent-of-origin status) is used in the prospec-
tive likelihood, whereas in the QCEPG method, the
full set of cases and pseudocontrols is required for
the retrospective likelihood.

SIMULATION STUDY

SINGLE-LOCUS SIMULATIONS

Simulations were performed to investigate the
power and properties of the various methods
described. Initially, a single diallelic QTL locus was

considered. One thousand replicates of data were
generated, each consisting of a number of genotyped
trios (i.e. a single offspring with a quantitative trait
and both parents). Bias in the resulting parameter
estimates, 95% confidence intervals, power and type
I error were examined. A method that performs well
would be expected to give unbiased parameter
estimation and to show approximately 95% con-
fidence interval coverage. The importance of the
nuisance parameters in the retrospective models
was also investigated by examining the estimates
obtained when they are removed from the model
and also when the offspring genotype is used as a
substitute.

For the single-locus model, six generating scenar-
ios were considered as shown in Table 1 (online).
Three different sampling schemes were employed:
random sampling, one-tail sampling from the upper
tail of the offspring trait distribution and two-tailed
sampling from the upper and lower tails of the
offspring trait distribution. Under random sam-
pling, 500 parent-offspring trios were simulated
per replicate where the offspring’s quantitative trait
was drawn from a normal distribution with geno-
type mean and standard deviation as shown in Table
1 (online). Population stratification was simulated
by combining data in different proportions from two
subpopulations, each of which was in Hardy-
Weinberg equilibrium and showed random mating.
The subpopulations had different allele frequencies
and mean quantitative trait values, producing a
spurious correlation between the quantitative trait
and genotypes when the populations are combined.
Under selected sampling from the extremes, 5,000
trios were generated per replicate, from which a
subset were selected for analysis. For the two-tailed
sampling scheme, 500 trios were selected from the
5000 (i.e. the top and bottom 5% of the trait
distribution). For the one-tail sampling scheme, we
selected 1,000 trios from the 5,000 (i.e. the top 20%),
as convergence problems were encountered when
using only 500 trios under this sampling scheme.

Table III shows results for the first three scenarios
with no population stratification and where the trios
were randomly sampled. Under the null, all the
methods gave unbiased estimates and reasonable
confidence intervals, except for the QPL method
where the nuisance parameters have been removed.
This is expected since under the null, the o”
parameters in the QPL are nonzero and so their
removal affects the resulting B estimates. Similarly,
under the first alternative model (Alt 1) all the
methods performed well except the QPL and QCPG
methods where the nuisance parameters have been
removed. The retrospective models in which the
nuisance parameters have been replaced by the
offspring genotype parameters give B and B’

Genet. Epidemiol. DOI 10.1002/ gepi
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estimates very close to the true means and reason-
able coverage.

The results for the three scenarios in the presence
of population stratification and under random
sampling are shown in Table IV. Simple linear
regression showed the expected bias in the estimates
of B and poor coverage of the estimated 95%
confidence intervals since the population stratifica-
tion is not accounted for in the method. Under the
first null model, as in the case without population
stratification (Table III), the QPL method with the
o parameters removed did not perform well (cov-
erages 0.87 and 0.92 instead of 0.95). The remainder
of the methods perform well under both null
models, even under population stratification. Sub-
stitution of the four nuisance parameters by the
offspring genotype in the retrospective methods
appears to account sufficiently for the population
stratification. Under the alternative with population
stratification, only the prospective QTDT)y; method
produced unbiased estimates and correct coverage.
The retrospective methods (QCPG and QPL) pro-
duced biased estimates, as expected (see Appendices
A and Q).

Parameter estimates under one-tail selected sam-
pling are shown in online Tables 2 and 3 (online).
The results under the null (both with and without
population stratification) are the same as those
found in the unselected case. Under the alternative
with no population stratification, both prospective
models (simple linear regression and QTDT,) show
biased estimates and incorrect coverage of the 95%
confidence intervals. This is because the methods
cannot account for the selection on quantitative trait
value. By conditioning on the trait values, the
retrospective models should be robust to selection.
However, Table 2 (online) suggests that these
methods are producing biased estimates. By looking
at the median genotype effect estimates (data not
shown), we found that the bias is due to a small
number of outlying observations. The medians for
the QCPG and QPL methods (with the true nuisance
parameters and with the nuisance parameters
replaced by the offspring genotype) are very close
to the true means. Under the alternative with
population stratification, all methods performed
poorly, producing biased estimates and incorrect
coverage. Here, the prospective model QTDT), fails
since it cannot account for selection on quantitative
trait value and the retrospective models, QCPG and
QPL, fail to estimate the nuisance parameters under
the alternative with population stratification. Similar
results were observed using the two-tailed sampling
scheme (Tables 4 and 5 (online)). Without popula-
tion stratification (Table 5 (online)), it can be seen
that the bias in the estimates using simple linear
regression is not as great under two-tailed sampling

as found when sampling only from the upper
tail of the trait distribution (note that under the
alternative, the assumption of homoscedasticity of
the residuals is violated under the one-tailed
sampling scheme).

Powers/type 1 errors are shown in Table 6
(online). Since the powers to achieve P value of
0.001 for the different methods are all 1.0 under two-
tailed sampling, we also investigated the power to
achieve a more stringent significance level in this
case. Under the null with no population stratifica-
tion, removal of the nonzero nuisance parameters in
the QPL method generates a bias in the estimates
and hence increased type I error rates, most clearly
seen in Table 6 (online) for the random and one-tail
sampling schemes. The remaining methods all have
type I error rates close to or less than the critical
values. Highest power to detect a genotypic effect
is seen with the linear regression method for the
random and two-tailed sampling schemes and with
the QCPG method with the o’ parameters removed
for the one-tail sampling scheme (powers are mean-
ingless for the QPL method with no o” parameters
since the type I errors are incorrect). In all cases, the
highest powers to detect a genotypic effect are seen
for the two-tailed selected sampling scheme, select-
ing from the upper and lower tails of the offspring
trait distribution. In contrast, selection from only the
upper tail of the offspring trait distribution actually
decreases the power to detect a genetic effect
compared to the random sampling scheme, despite
having the largest sample size, except for the QCPG
method with the o parameters removed. These
results also show that, although under the alter-
native with selected sampling the QTDTy; method
showed biased estimates and poor coverage of the
95% confidence intervals, the method can still be
used to test for a genetic effect, as the type 1 error is
correct. In fact, the large bias in the estimates seen
when using a two-tailed sampling scheme actually
increases the power to detect an effect compared to
random sampling, although this power increase may
also be due to the fact that the selected subjects carry
more information, since they are concentrated at the
extremes of the trait distribution.

Under population stratification, Table 6 (online)
shows that for all sampling schemes the simple
linear regression method has increased type I error
rates. Since linear regression cannot account for the
population substructure, the resulting bias in the
estimates generates a large number of false-positive
associations. The QPL method with the o” para-
meters removed also has type I errors larger than the
nominal values, particularly when selecting from the
upper tail of the offspring trait distribution, as found
in the case of no population stratification. The type I
errors for the QTDTy method under population

Genet. Epidemiol. DOI 10.1002/ gepi
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stratification for the first null model are slightly
larger than expected, across all three sampling
schemes. Similarly, the type I error is inflated for
the second null model under the two-tailed sam-
pling scheme. The remainder of the methods have
type I errors close to the nominal values. Therefore,
the retrospective methods (QCPG and QPL) with the
correct nuisance parameters or with the nuisance
parameters replaced by the offspring genotype can
be used (and indeed have high power) to test for a
genetic effect, even under circumstances where they
produce biased estimates.

MULTI-LOCUS HAPLOTYPES

Simulations were carried out to investigate the
effect of the nuisance parameters (intended to
account for population stratification) when the
methods are extended to multi-locus haplotypes.
Note that, as originally proposed, the QTDTy
method (and simple linear regression) only apply
to single loci: to extend these methods to multi-locus
haplotypes it is necessary to first infer the child’s
(and if necessary, the parents’) haplotypes given
the observed genotype data, as is done in the
first stage of the CPG and QCPG methods [Cordell
et al., 2004]. The resulting haplotype variables
may then be entered as predictor variables into
equation (1).

Tables V and VI show the results of simulations in
which the offspring quantitative trait was influenced
by genotype at two linked diallelic markers assumed
to be in moderate LD. The four possible haplotypes,
1-1, 1-2, 2-1 and 2-2, had haplotype frequencies and
haplotype means as shown in Table 7 (online).
Additive effects of haplotypes were assumed so that
for each trio, the offspring’s quantitative trait was
drawn from a normal distribution whose mean was
the sum of the two haplotype means. For each
simulation, 1,000 replicates of data were generated,
each replicate consisting of 1,000 parent-offspring
trios with random selection or 1,000 trios selected
from 10,000 in either one-tail (top 10%) or two-tailed
(top and bottom 5%) sampling from the extremes of
the offspring trait distribution.

Three methods were considered, simple linear
regression, QTDTy; and the retrospective method
QCPG. The QPL method was not considered as it
is so closely related to the QCPG. Simple linear
regression does not have any additional parameters
to account for population stratification. The QTDTy
and QCPG methods, however, have a significant
number of nuisance parameters when the methods
are extended to multi-locus haplotypes. For exam-
ple, for QTDTy,, the number of possible mating
types (assuming parental mating symmetry) is 55,
a large increase from the 6 in the single-locus case.

Therefore, in addition to considering the models in
which the ‘correct’ nuisance parameters are used,
we considered models in which the number of
nuisance parameters were reduced. For the QTDTy
we considered either including in the model
the single-locus mating-type parameters for each
locus, or including maternal and paternal genotype
(rather than mating-type) parameters. For the QCPG
method, replacing the nuisance parameters by the
offspring genotype (g) was considered.

Table V shows the results for the case with no
population stratification. Also shown is the number
of replicates that converged from the original 1,000.
Convergence problems were probably a small
sample size problem, due to the large numbers of
parameters to estimate in the models. Under the
null, all the methods produced unbiased parameter
estimates, regardless of selection scheme. Under the
alternative with no selection, the prospective meth-
ods (simple linear regression and QTDT,; with
the different sets of o parameters) gave unbiased
parameter estimates. The retrospective QCPG meth-
od shows some small-sample bias in the estimates
when the full set of ‘correct’ o’ parameters was used
and similar bias when the o parameters were
replaced by the offspring genotype g. This bias
disappeared when 10,000 trios (as opposed to 1,000)
were used (data not shown). Under the alternative
with selection, only the retrospective QCPG method
when all the ‘correct’ o parameters are used, or
when the o are replaced by the offspring genotype,
gave estimates close to the true mean.

The sensitivity of the estimates to the way the
nuisance parameters are modelled is most pro-
nounced under population stratification as shown
in Table VI. Under the null with random selection,
the simple linear regression method produces
biased estimates, as does the QTDTy method in
which the correct o's are replaced by those that
would be generated by considering the loci indivi-
dually. The remaining methods, QTDT)y; with the
full set of o parameters or with parental genotype
parameters, and the QCPG methods with the
different sets of nuisance parameters, all have
unbiased estimates. Under the null with selection
from the upper tail of the offspring trait distribution,
all of the methods produced unbiased parameter
estimates. For the two-tailed sampling scheme,
linear regression showed the expected bias in
parameter estimates but QTDTy; with the correct
o's, QTDTy with parental genotypes and the
retrospective methods (with the different sets of
o parameters) produced unbiased parameter esti-
mates. Under the alternative with random selection
only the prospective QTDTy; method (with the
different sets of o’s) produced unbiased estimates:
as explained in Appendices A and C, the nuisance
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parameters for the QPL and QCPG will not be
correctly estimated under population stratification,
except under the null. Under the alternative with
selection, all the methods gave biased estimates as
found in the single-locus case.

We also investigated the QTDTy and QCPG
methods with a single replicate of data generated
under a three-locus haplotype model (data not
shown). Results were broadly similar to the two-
locus haplotype results, except that the QCPG
method required a very large number (50,000) trios
to produce unbiased estimates, while QTDTy; gen-
erally achieved convergence and unbiased para-
meter estimation with only 1,000 trios.

STEPWISE PROCEDURE

A stepwise procedure (results not shown), as used
by Cordell et al. [2004] for disease traits, was used to
compare the prospective QTDT)y (using the full set
of nuisance parameters) with the QCPG method
with the ‘correct’ o parameters replaced by the
offspring genotype, under models with and without
population stratification and selection. In general,
the pattern of results in terms of power and type
1 error was as expected, with the QTDTy; method
being the more powerful in general. Under popula-
tion stratification we found that the Type I errors
were slightly too large for the QTDT)y; method under
random sampling, consistent with the results
observed (Table 6 (online)) in the single locus simu-
lations. Additional simulations (data not shown)
indicated that this problem could be solved by use of
Wald tests incorporating robust ‘information sand-
wich’ variance estimates [Huber, 1967], rather than
likelihood ratio tests or Wald tests with the usual
variance estimate (which equals minus the inverse of
the Hessian matrix). We also investigated the power
and type 1 error of the stepwise approach when
applied to non-normally distributed traits and found
that both QTDT)y; and QCPG appear to be suitable
for the analysis of traits that deviate slightly from
normality. Neither method was found to
be suitable for the analysis of very nonnormally
distributed traits, although it is worth noting that
the prospective QTDTy; method could easily be
extended to enable the analysis of nonnormal traits by
use of robust regression, a generalised linear model
(GLM), or by assuming a variance-mean relationship,
according to the departure from normality.

MATERNAL GENOTYPE
AND PARENT-OF-ORIGIN EFFECTS

The previous single-locus simulations were mod-
ified to include maternal genotype and parent-of-
origin effects. For each replicate, 1,000 trios were
generated in which the offspring’s quantitative trait

Genet. Epidemiol. DOI 10.1002/ gepi

was influenced by its own genotype, and by either
the mother’s genotype, or whether the offspring
received a variant allele from the mother, or both.
Under the alternative, 100 replicates of data were
generated. Under the null (no maternal genotype
effects or no parent-of-origin effects) 1,000 replicates
of data were generated. The QCEPG and QTDTy
methods were implemented in Stata. For Kistner and
Weinberg’s approach [Kistner et al., 2006], the SAS
macro provided at http://dir.niehs.nih.gov/dirbb/
weinbergfiles/qpl.htm was used. The expected
effect estimates for QCEPG and QTDTy, should be
the same, since the traits were simulated to have unit
variance. The offspring reference category was
chosen to be the 1/1 genotype, and B; and P, are
the estimated effects for the 1/2 (2/1) and 2/2
genotypes respectively. Similarly, maternal genotype
effects are denoted as B,,; and B,,, and parent-of-
origin effects by B;. However, the expected estimates
for Kistner and Weinberg's method should
be slightly different. In their method the reference
category for the offspring genotype effects is the
heterozygous genotype, rather than the homozygous
(1/1) genotype. The maternal effects, denoted by J¢,
and §;,, compare the difference in quantitative trait
for a mother with 1 variant allele to a mother with 0
variant alleles, and a mother with 2 variant alleles to
a mother with 1 variant allele respectively (while in
the QCEPG method, both comparisons are made
with the homozygous 1/1 genotype category). The
estimates for the parent-of-origin effects (A;) in the
QPL represent the log odds that a heterozygous
child inherits a maternal copy of the variant allele
instead of a paternal copy, per unit increase in trait
value. Although based only on heterozygous off-
spring, these parameters are expected be the same as
for the QCEPG and QTDT)y; methods.

Tables 8 and 9 (online) show the true effects, the
estimated means and standard deviations. All three
methods produce reasonable estimates under the
null. The results for the prospective QTDT); method
show the least bias. Under the alternative, the
retrospective methods show a bias when parent-of-
origin effects are present. The QPL appears to
produce parent-of-origin effects of approximately
0.5, when they would have been expected to be 1.
This may be due to some unrecognised difference in
the parameterizations: the QCEPG uses the original
parent-of-origin parameterization of Weinberg et al.
[1998], whereas the QPL uses a parameterization
closer to the alternative parameterization suggested
by Weinberg [1999]. Table 10 (online) shows the
powers and type I errors. The type I errors for the
QPL and QTDT)y; methods seem reasonable. How-
ever, the type I error for the QCEPG method when
testing maternal genotype effects is very large,
although this appears to be a small-sample issue as
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it improved in simulations with a larger number of
trios (data not shown). Overall, the extension of the
QPL method had the highest power to detect either a
maternal genotype or parent-of-origin effect.

DISCUSSION

In this paper, we have extended the case/
pseudocontrol association approach for dichoto-
mous phenotypes [Cordell and Clayton, 2002] to
perform association analysis with quantitative traits.
This approach is very similar to the QPL approach
proposed by Kistner and Weinberg [2004], but uses a
slightly more intuitive parameterization and extends
more naturally to allow analysis of multiallelic
markers, multiple linked loci, multiple unlinked
regions, parent-of-origin or maternal genotype
effects, gene-gene and gene-environment interac-
tions, using the same formulation as Cordell et al.
[2004]. We compared this approach to a prospective
aproach, the QTDTy; and also extended the QTDTy
to allow analysis of multiple linked loci (including
multi-locus haplotypes), parent-of-origin or mater-
nal genotype effects. Other extensions to the QTDTy
follow naturally.

All the methods incorporate nuisance parameters
intended to account for population stratification.
When considering multi-locus haplotypes, the num-
ber of nuisance parameters can dramatically
increase, and so it is important to find ways to
reduce the number of nuisance parameters. It was
found that replacing the nuisance parameters by the
offspring genotype in the retrospective methods
worked almost as well as the full model, and
replacing the nuisance parameters by parental
genotypes worked well for the QTDTy. In our
simulations, it was assumed that both parents came
from the same sub-population. If, in fact, matings
occurred between individuals from different sub-
populations, one might not expect these approxima-
tions to work as well as fitting the full set of nuisance
parameters.

Although the retrospective approaches had some
advantages with regard to estimation of parameters
under selected sampling, in general we found the
prospective QTDTy; to be the most efficient
approach, requiring smaller sample sizes to achieve
convergence and asyptotic behaviour. In addition,
the parameter estimates provided by the QTDTy
have a more intuitive interpretation, corresponding
to the direct genotype effects on the trait, whereas
the retrospective approaches estimate parameters
that are scaled by division by the unknown
(although potentially estimable) trait variance. Cov-
ariates are also more easily incorporated into the
QTDTy framework, simply by adding them in as
terms in the regression equation, although it would

be possible to incorporate covariates in the retro-
spective approaches, either by first regressing the
traits on covariates of interest and performing
subsequent analysis on the residuals, or by using
methods such as those described by Lim et al. [2005].

The QTDTy method was found to be the only
method suitable for estimation of effects under the
alternative hypothesis with population stratifi-
cation (assuming random sampling). Under popula-
tion stratification, it was necessary to use robust
‘information sandwich’ variance estimates to achieve
correct type 1 errors and confidence interval cover-
age with the QTDTy;. This is possibly because the
parental mating-type stratification parameters act as
a surrogate for population membership in the sense
that they soak up the mean level of bias induced
by population stratification, but do they not fully
account for population membership, so that the
distribution of trait within parental mating-type
classes violates the assumption of normality,
even if this asssumption holds within each
sub-population.

The analyses described here assumed availability
of a dataset consisting of parent-offspring trios, with
no missing genotype data. A natural extension of the
methods proposed here would be to consider
analysis of large extended pedigrees and/or missing
genotype data. The QPL has previously been
extended to allow analysis of multiple siblings and
missing parents [Kistner and Weinberg, 2005] while
an approach asymptotically equivalent to QTDT)y,,
namely the HQTDT of Abecasis et al. [2000], has
been extended to apply to pedigrees of arbitrary
structure [Abecasis et al.,, 2002]. However, these
approaches focus on testing rather than estimation
of effects and apply only to a single locus at a time.
A natural way to extend the QCEPG and QTDTy
approaches developed here for analysis of general
pedigrees would be to perform tests using Wald tests
and incorporate robust ‘information sandwich’
variance estimates that cluster observations accord-
ing to pedigree [Huber, 1967]. An alternative
approach would be to use a random-effects model-
ling framework [Xu and Shete, 2006]. With regards
to missing genotype data, methods that sample or
average over the possible genotype configurations
consistent with the observed genotype data, in the
correct proportions [Cordell, 2006], could be con-
sidered. Investigation of these approaches and their
behaviour under complex disease models, in the
presence of population stratification, will form the
basis of future work.
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APPENDIX A

EXPRESSION OF QCPG LIKELIHOOD

The retrospective QCPG likelihood is parameterized in terms of parameters of interest (offspring genotype
effects, denoted B') and several nuisance parameters (denoted o) as shown in Table II. Here we express the p’
and o' parameters in the QCPG likelihood in terms of various parameters (denoted o and B) in a prospective
model for trait given genotype. We do not propose to reparameterize the QCPG likelihood of Table II in terms
of these prospective parameters before maximization. Rather, we continue to freely estimate the p’ and o
parameters when we maximise the QCPG likelihood. However, we use the relationship between the
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retrospective and prospective parameters to inform our understanding and interpretation of the restrospective
parameters, since the o and B parameters in the prospective model are generally more intuitively interpretable
than those on the retrospective scale.

For a normally distributed quantitative trait ¥ with mean p and variance o?, the probability distribution
function of the observed trait y; is given by

. 1 (vi — p’
f(yi, H, Gz) = Wexp (_ 262 ) (7)

For a trio with parental mating type M and offspring genotype g;, 1 equals the mean of the prospective QTDTy,
approach from equation (1), that is p = o + B,. Equation (7) becomes

L 2
oxp <_ (i — (o + By) ) @

f(yla oM, Bg,) Gz) =

2nc2 262

From equation (3), the contribution of a trio to the likelihood can be expressed as

P(yilg)P(gilgims &if)
greS), P(]/i|g?)P(g;k|gim,gif)

P(gilgim» &if> i) = 5 )

So, from equations (8) and (9), the contribution of a trio to the likelihood for a normally distributed trait with
mean oy + B, and variance o is given by

i— (o +Bg,)
J;T?exp (‘ %) P(gilgim» &ir)

(i—(oam+Bg))
D ges, = eXp <— Té) PG |8im» &if)

i—(om+Byg, )
eXp(—i(y e )P(gilgim,gif)

- i+ ) ' (10)
i M g
Ses, b - 2—) P I8im i)

P(gilGims 8if- Yi) =

2yi(om+Bg)  (m+By,)

2 2
eXP(_z%"‘ T T T agt )P(gi|gim’gif)

Zyi(otm+[5q

W ) (TIA/H'B
2 gres), ©XP (‘ 207 T T 7 ) P& Igins 81)

In each offspring’s contribution to the likelihood, the quantitative trait, y;, its variance, o2, and the parental
mating type parameter oy, are the same for the offspring (the ‘case’) and the pseudocontrols. Therefore,
cancelling terms from the numerator and denominator,

exp <yzﬁg, Lt )P(gz|gzm»81f)

P(gilGims Sif> Yi) = e (OCMH%
Zg;es;w eXp| 2 P(g}|gim- &if)
B, 2 120, +B,. 2
exp (Gzyz - W) P(gi\gim 8if)
- B om? +2’1M[57>_*+ﬁ(*i2
2gres, XP (%yi - +> P(g718im: 8ir)

By ByowtBy)

exp (Gzy, T) P(gilgim» if)

B Box (201+By
Ygres, eXp<§zyz 7> P(g7Igim 8if)

which can be written in the following form:
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Be. Be. (2 Be.)
eXP( [ﬁyz} + [—73’ S o 1n(P(gi|gim,gz‘f))D
Bex Bx (201+Bgx)
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This is in the general form of equation (4), where

P(Gilgims Gif- yi) = (11)

Bg;’ (ZOtMJng’* )

sor—— + In(P(g} 1gim> &if))

Thus the parameters from the retrospective QCPG formulation (equation (4)) may be interpreted as follows.

[
/ 8 ’
B&*Z?and aMg:f—_

The term By = z%* is the original genotype effect of genotype g} on the prospective scale, divided by the trait
variance. (Hence, given parameter estimates B+ from fitting the QCPG model, the genotype effects on the
prospective scale could be obtained by multiplying the estimate of ;- by the corresponding trait variance, if it were
known or estimable.) The terms oy = —Bg- (20 + Br)/ 262 + In(P(g;} |gim» gif)) correspond to nuisance parameters
that allow the model to account for non-Mendelianism and population stratification, as proposed by Kistner and
Weinberg [2004]. As discussed in the text, not all of the B’ and o/ are estimable, so restrictions must be made such as
setting some of these equal to zero (equivalent to choosing a reference genotype category to which the other
genotype effects are compared). This complicates the interpretation of the nuisance parameters. Suppose that all
parameters were in fact estimable. Suppose further that there is no non-Mendelianism, so that P(g} |gin, gir) = 0.25
for all offspring genotypes consistent with the parental genotypes. In that case, we could write out in full the
relationships between the retrospective and prospective parameters implied by equation (11):

/ B() ’ Bl / B2
B():?:Bl ZE,BZ Zg
2
o = — P02+ Po) 10,05
20
2
iy = — P12 HEPD 005
20
2
o = — P01+ Bo) + Po) | 1n0.25)
20
i = — PP 005
20
2
thip = — P22+ Pr) ot P2) | 1n0.25)
20
2
o121 = _PGm2 Py cx122+ P + In(0.25)
20
i = — 2222 B | 105
202

In practice, not all the parameters are estimable and we set 7, ap11, o111 and o427 (the reference parameters)
equal to zero. Assuming that on the prospective scale we also set ; = 0, and rearranging the expressions above,
the relationships become

Bo="0 p=0.p=2
B1(2oor 4 B1) _ Booor +Bo) _ _ Bo(2001 + Bo)

/ !
olo10 = %o11 +

/ /
A110 = A11
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/ /
X122 = A12

262

262

262

o+ Bioar +B1)  Boor +Bo) _  Bo(20u1 + By)
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Under the null hypothesis, the prospective genotype effects f, and B, equal zero, and so the true values of the
retrospective parameters (both the genotype parameters of interest and the nuisance parameters) will also equal zero.
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A similar argument applies if, instead of setting B; and B} to zero, we set By and B’y to zero, so that
the genotype parameters are all calculated relative to the homozygous 1/1 genotype. In this case, we still find
that under the null hypothesis that ; and B, equal zero, the true values of the retrospective parameters (both
the genotype parameters of interest and the nuisance parameters) equal zero (data not shown).

The above derivation for the nuisance parameters only works because P(g7|gim,gif) = 0.25 in all cases and so
is subtracted out when we express o9, %110 , %112 and oz, in terms of agyy, o411 and oy»;. If, in fact, there was
non-Mendelianism, we would have instead that

, Bi(aux + By)

Uy =~ 5+ In(P(g; = ll{gim» &if} = 1], k})
— In(P(g} = 11{gim» &if} = {j.k})
20 +
_ Bl( 2]2; B[)+‘~l/jkl, say.

In this case the term sy will be nonzero, but fitting o, allows the model to account for this, so that even under
the null hypothesis where By and B, equal zero, the nuisance parameters o will not equal zero.

The effect of population stratification is modelled on the prospective scale via p = oy + B, which allows the
mean trait value for a child to vary according to the genotype of its parents. If there realfy were populatlon
stratification, the correct model would in fact be p = p, +[3 where (1, denotes the mean trait value in the
(unknown) sub-population p from which the child originates. If we replace o by p, everywhere above, we find that

, 2wy, + B
Okt = # Vi
Thus the true value of the nuisance parameters should vary according to sub-population, which we do
not allow for. However, under the null hypothesis where By and B, equal zero, o';; does not vary by sub-
population and so we should still obtain valid inference for the f’ under the null, even though the model
misspecification means we may not obtain valid inference under the alternative.

APPENDIX B

EXPRESSION OF QPL LIKELIHOOD

We may use a similar argument as in Appendix A to derive the relationship between the o” and
B” parameters in the QPL model and the prospective o and B parameters. The only difference is in the
summation in the denominator of equation (11), which is over either two or three possible offspring genotype
categories corresponding to the categories shown in Table I, (e.g. 1/1, 1/2 (unordered) and 2/2 for offspring
of two heterozygous parents, rather than over four genotype categories 1/1, 1/2, 2/1 and 2/2). The result of
this is that the relationships implied by equation (11) become

"o BO // _ Bl BZ
0 — _2’ BZ
c
2
oo = —7[30( Yot Po) | 1n0.5)
2o
2
oo = _hCoo ¥ Py 0(01;_ P + In(0.5)
2c
2
1o = — P01 1 Bo) °‘“2+ P) | 1025
2c
2
oty = — D1+ Py ot PV 4 no.5)
2o
” Br(2011 + By)
112 = — T + 1n(025)
2
o121 = —761( au;_ Py + In(0.5)
2c
2
i = — 222+ B) oélé;r P2 | 1n0.5)

Genet. Epidemiol. DOI 10.1002/ gepi



832 Wheeler and Cordell

where the terms P(g]|gin, gir) differ according to offspring genotype, for offspring of two heterozygous parents.
If, as in Appendix A, we set By, B, 0011, 0111 and a3z to zero, we obtain the following equations:

_B
=2
B1(2001 + B1)  Bo(2a1 + By) __ Bo(2001 + By)

By =" g1 = 0,6
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! 2c?2 2c2 N 2c2
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Under the null hypothesis that By and B, equal zero, the oc]/.;d do not all equal zero, and so it is necessary in the
QPL model that the o, be included in order to obtain correct inference, even when there is no population
stratification or non—l\/fendelianism.

APPENDIX C

DISCUSSION OF NUISANCE PARAMETERS

A difference between the QCPG and QPL methods arises with regard to the number of nuisance parameters
estimated. It can be seen in Table I that there are a total of four nuisance parameters, ogio, %110, %112/
a22.However, by fitting the model using a polytomous logistic model as proposed by Kistner and Weinberg,
two additional, essentially inestimable, nuisance parameters are estimated. These are referred to in Kistner and
Weinberg ([2004] p. 36) as a2 and o429, corresponding to the situations where either one parent has no copies
of the variant allele but the offspring has two copies, or one parent has two copies but the offspring has none.
There is no data to estimate these parameters (they correspond to impossible events) but the computer program
tries to estimate them since they are included in the model. Implementation of the QPL approach using SAS
code available from http://dir.niehs.nih.gov/dirbb/weinbergfiles/qpl.htm (data not shown) indicates that
estimation of these two inestimable o, and o159 parameters is poor, with very large estimates and confidence
intervals, although this does not appear to adversely affect estimation of the six genuinely estimable
parameters.

For the QCPG and QPL methods, if there are genotype effects present, the nuisance parameters are non-zero.
When population stratification exists, the true values of these nuisance parameters may differ in the different
sub-populations (due to differences in oy, between subpopulations). If estimated in the combined population,
the nuisance parameters will be an average of those from the different sub-populations and so will
not necessarily provide accurate population-specific estimates. Hence, although the type 1 errors will be
correct, we do not necessarily expect the QCPG (or QPL) method to have unbiased parameter estimates when
used for estimation of effects under the alternative hypothesis with population stratification, even though they
should be unbiased under the null.

When extending the QCPG method to multi-locus haplotypes, the number of nuisance parameters
dramatically increases since the number of parental mating types and offspring genotyg)es increases. The
nuisance parameters in the single-locus case are of the form o/per = —Bgf(ZocM + Bg?)/ZG + In(P(g7 |gim> &if))
(equation (11)).

Through simulations (described in the main text), we investigate whether the parental genotype information
still required in the nuisance parameters can be captured if the nuisance parameters are replaced by parameters
representing the offspring genotype alone (v,:), thus reducing the overall number of nuisance parameters.
Equation (11) would then become '

op([ot] + 1)
2 gres, P ( [iiz%} + Yg;)

P(gi|gimagif; yl) =
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The hope is that the population stratification can be accounted for by offspring genotype alone, rather than
by a combination of offspring and parental genotypes.

APPENDIX D

EXPRESSION OF THE QCEPG LIKELIHOOD

The rationale for expressing the likelihood equation (5) in the form of equation (6) is very similar to that used
for the QCPG approach. Previously, for the QCPG method, the population mean of the quantitative trait Y (u)
was assumed to equal the mean of the prospective QTDT)y; method such that for an offspring with genotype
Bg,, b= o + By, for mating type M and offspring genotype effect B, . To include maternal genotype or parent-
of-origin effects, the mean is now assumed to depend on parental mating type and the offspring genotype
effect as before, but it now also depends on the maternal genotype effect, B, , and the parent-of-origin effect
Bj,- Therefore,

= dm + Bg,- + ﬁgim + BIm

Hence, the trait distribution can be expressed as a normal distribution with mean p as above, and substituting
this into equation (5) gives

(vi — (0w + By, + By, +B1,))’
1 8i 8im m lo- .
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(V7 — 2yi(om + By, + Bg,, + By,) + (1 + B, + By, + B1,)°)
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where
ot = Bg;‘(ZOCM + Bg:‘) + Bg;”(ZcxM + Bg;”)
+ By, (2o + Bf,) + 2B (B + Bf,) + 2By, B,
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