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Introduction
Biodegradable polymeric nanoparticles (NPs) and 
nanosystems (NSs) are deemed to be very efficient drug 
delivery systems (DDSs) that are extremely safer than 
any other non-biodegradable polymers and lipids used 
for gene/drug delivery.1-4 The biodegradable polymers 
are also bioactive and hence can be used as polymer-
therapeutics,5-8 which can also be exploited for targeted 
delivery of a wide range of small and large molecules 
(e.g., human growth hormone,9 insulin,10 anti-tumor 
agents,11 contraceptives,12 vaccines,13 anticancer drugs,14 
and antibiotics15) in a controlled, sustained or pulsatile 

manner.16 It should be highlighted that the liberation of 
encapsulated/incorporated drugs from these polymers 
can be carefully controlled and the drug concentration 
in the target site is maintained within the therapeutic 
window.17 Biodegradable polymers are considered as 
ideal biomaterials for the development of controlled-/
sustained-release DDSs as well as therapeutic devices 
such as degradable implants, impermanent prostheses, 
and degradable 3D scaffolds for tissue engineering. To 
develop effective therapeutic devices, one needs to use 
the most compatible biodegradable polymers depending 
on the endpoint biological uses based on their specific 
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Abstract
Introduction: Polymeric nanoparticles 
(NPs) formulated using biodegradable 
polymers offer great potential for 
development of de novo drug delivery 
systems (DDSs) capable of delivering a 
wide range of bioactive agents. They can 
be engineered as advanced multifunctional  
nanosystems (NSs) for simultaneous 
imaging and therapy known as theranostics 
or diapeutics.
Methods: A brief prospective is provided on 
biomedical importance and applications of biodegradable polymeric NSs through reviewing the 
recently published literature. 
Results: Biodegradable polymeric NPs present unique characteristics, including: nanoscaled 
structures, high encapsulation capacity, biocompatibility with non-thrombogenic and non-
immunogenic properties, and controlled-/sustained-release profile for lipophilic and hydrophilic 
drugs. Once administered in vivo, all classes of biodegradable polymers (i.e., synthetic, 
semi-synthetic, and natural polymers) are subjected to enzymatic degradation; and hence, 
transformation into byproducts that can be simply eliminated from the human body. Natural and 
semi-synthetic polymers have been shown to be highly stable, much safer, and offer a non-/less-
toxic means for specific delivery of cargo drugs in comparison with synthetic polymers. Despite 
being biocompatible and enzymatically-degradable, there are some drawbacks associated with 
these polymers such as batch to batch variation, high production cost, structural complexity, lower 
bioadhesive potential, uncontrolled rate of hydration, and possibility of microbial spoilage. These 
pitfalls have bolded the importance of synthetic counterparts despite their somewhat toxicity.
Conclusion: Taken all, to minimize the inadvertent effects of these polymers and to engineer 
much safer NSs, it is necessary to devise biopolymers with desirable chemical and biochemical 
modification(s) and polyelectrolyte complex formation to improve their drug delivery capacity 
in vivo. 
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physicochemical, biomechanical and enzymatic/
hydrolytic degradation properties.18 In fact, significant 
efforts, time and resources are required to engineer 
biomaterial with unique properties towards development 
of sophisticated biotherapeutics. Further, the currently 
implemented biomaterials in various clinical settings need 
to be revisited to address all the issues associated with 
application of biopolymers in vivo. Most of these issues are 
in close association with the physicochemical interaction 
of the applied biopolymers with the target tissue/cells. Of 
these, for instance, inadvertent immunologic reactions 
can dramatically limit their uses while such drawback can 
be beneficial when the endpoint objective is the activation 
of immune system by vaccination/immunization. Besides, 
compelling evidence on long term safety of these materials 
seems to be necessary. In this review, we highlight the 
importance of biodegradable polymers and the key 
issues that have crucially contributed to their limits/
slow evolution towards thier applications in biomedical/
pharmaceutical fields. 

Structural properties of biodegradable polymers 
Structurally, biodegradable polymers possess bonds 
(i.e., ester, amide, or ether bonds) which are cleavable 
enzymatically or hydrolytically. Based upon their 
synthesis methodologies, biodegradable polymers can 
be categorized into (i) natural (e.g., fibrin, collagen, 
gelatin, cellulose, hyaluronan, pectin), (ii) semisynthetic 
(e.g., chemically modified natural polymers such as 
chitosan), and (iii) synthetic [e.g., poly(lactic acid)(PLA), 
poly(glycolic acid)(PGA), poly(lactic-co-glycolic acid)
(PLGA), poly(ℇ-caprolactone)(PCL), poly(dioxanone)
(PDO), poly(anhydrides), poly(trimethylene carbonate), 
poly(ortho esters) and poly(phosphazenes)]. 

It should be stated that a polymer with a C-C backbone 
can resist the degradation, while heteroatom-containing 
polymers can show some degrees of biodegradability 
depending on the structural properties of the polymer. 
Hence, inclusion of degradable chemical linkages (e.g., 
ester, amide and anhydride) can improve the degradation 
processes. Technically, several intrinsic physicochemical 
and formulation properties (e.g., structural chemistry, 
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Fig. 1. Chemical structures of some widely used biodegradable polymers in various biomedical/pharmaceutical applications.
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molecular weight, hydrophilicity/hydrophobicity, water 
absorption, surface charge, type and morphology of 
formulation, surface modification, and degradation 
and erosion mechanism) of degradable polymers can 
affect their compatibility and interaction with biological 
settings. Fig. 1 illustrates the chemical structures of some 
selected important biodegradable polymers used in 
various biomedical applications.

Natural biopolymers 
The natural biodegradable polymers, known as 
biopolymers, encompass various classes of counterparts 
such as polysaccharides (e.g., starch, cellulose, chitin, 
chitosan) and naturally existing proteins (e.g., collagen, 
laminin and fibronectin). Nowadays, many researches 
have been directed towards the use of natural polymers,19 
which are particularly suitable for medical and 
pharmaceutical applications due to their biocompatibility 
and biodegradibility.20 Fig. 1 epitomizes some commonly 
used natural biodegradable polymers.17,21 Natural polymers 
blending with synthetic polymers (e.g., poly(vinyl alcohol), 
poly(ethylene oxide), poly(vinyl pyrrolidone)) provide 
possibility for fabrication of bioartificial/biosynthetic 
polymers as a new class of advanced materials with 
improved mechanical properties and biocompatibility in 
comparison with those of single components. This class of 
biomaterials can be tailored to adequately mimic human 
tissue components, and are applicable in cell-based 

transplantation, tissue engineering and gene therapy.22 For 
example, chemically modified hyaluronic acid and gelatin 
is investigated to deliver the mesenchymal stem cells to 
repair the osteochondral defects in a rabbit model. After 
12 weeks, defects were completely ameliorated with the 
cartilage and repaired.23

Synthetic degradable polymers 
There exist various synthetic biodegradable polymers such 
as (poly(hydroxylbutyrate), poly anhydride copolymers, 
poly(orthoester)s, polyphosphazenes, poly(amidoester)s, 
poly(cyano acrylate)s and PLGA.14,24,25 PLGA is a widely 
used polymer that has been approved by the United 
State Food and Drug Administration (FDA) for various 
therapeutic/diagnostic applications. This class of polymers 
offer enormous potentials as drug carriers, in large part due 
to their biodegradability, biocompatibility, and possibility 
for development of  sustained-/controlled-/pulsatile-
release and targeted delivery.14,24,26 Table 1 represents some 
clinical trials that have used PLGA as delivery system. 
It should be noted that PLGA undergoes hydrolytic 
degradation in aqueous environment where ester 
linkages along with the polymer backbone are randomly 
hydrolyzed. The ratio of lactic acid (LA) to glycolic acid 
(GA) plays an important role in degradation mechanism of 
the PLGA. Additionally, degradation rate and accordingly 
drug release rate can be manipulated by varying the ratio 
of LA to GA. For instance, PLGA 50:50 degrades at a faster 

Table 1. Application of PLGA in clinical trialsa

Clinical trial identifier and description Application Drug/Device Phase; status Formulation
NCT02487186: Locally Delivered Doxycycline Adjunct 
to Nonsurgical Periodontal Therapy

Periodontal
disease

Doxicicline Phase IV; 
completed

PLGA microspheres

NCT02138110: Probable Benefit of the Neuro- Spinal 
Scaffold for Treatment of AIS A

Traumatic acute spinal 
cord injury

Neuro-Spinal 
Scaffold

Phase III;
currently recruiting 
participants

PLGA scaffold

NCT00836797: Radiographic Assessment of Bone 
Regeneration in Alveolar Sockets with PLGA Scaffold 
After Teeth Extraction

Assessment of bone 
regeneration

Alveolar Sockets Phase I;
completed

PLGA bioscaffold

NCT01729195: Ankle Syndesmosis Fixation by 
Antibiotic Releasing Bioabsorbable Screw

Ankle fracture A ciprofloxacin 
containing 
bioabsorbable PLGA 
bone screw

Phase II;
completed

PLGA-based 
bioabsorbable thread 
(4.5 mm in diameter)

NCT02255188: Experimental Study of the Vascular 
Prosthesis Manufactured by Electrospinning

Arterial occlusive 
disease

Vascular Prosthesis Phase I; currently 
recruiting 
participants

Graft type - PLGA/
PCL/gelatin poorly 
permeable layer

NCT01681381: Evaluate Safety and Effectiveness of 
the Tivoli® DES and the Firebird2® DES for Treatment 
Coronary Revascularization

Ischemic heart 
disease; coronary 
artery lesions; acute 
coronary syndrome

Tivoli® DES 
rapamycin-Eluting 
stent

currently recruiting 
participants

Stent coated with 
a biodegradable 
polymer (PLGA)

NCT01753089: Dendritic Cell Activating Scaffold in 
Melanoma

Melanoma WDVAX Phase I; currently 
recruiting 
participants

PLGA scaffold

NCT02017275: Comparison of BuMA eG Based Bio 
Degradable Polymer Stent with EXCEL Biodegradable 
Polymer Sirolimus-eluting Stent in "Real-World" 
Practice (PANDA-III)

Coronary artery 
disease

BuMA and EXCEL 
Stent

Phase IV; 
completed

Biodegradable PLGA 
coating

a Data were obtained from clinicaltrials.gov on January 2017.
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rate in comparison with PLGA 85:15 due to the higher 
hydrophilic GA content of the copolymer.25,27-29 The 
attractive features of PLGA-based NPs/NSs (e.g., small 
size, high structural integrity, stability, ease of fabrication, 
tunable properties, sustained-/controlled-release 
capability, and surface functionalization characteristics) 
make them versatile therapeutic delivery vehicles. 
However, there exist some drawbacks for the PLGA-based 
NPs in terms of physiochemical and biological properties 
that limit their applications in pharmaceutical/biomedical 
fields. These pitfalls include (a) poor loading efficiency 
for hydrophobic drugs, (b) high burst release, (c) uptake 
by the reticuloendothelial system (RES), (d) poor stability 
in water, (e) difficulties in producing particles below 100 
nm in diameter, (f) less circulation time in the body, (g) 
aggregation, and (h) manufacturing scale-up issues. To 
resolve such constraints, the main focus is now on the 
development of hybrid PLGA NPs.30-32 Technically, PLGA 
NPs can be formulated by emulsification–diffusion, 
solvent emulsion–evaporation, interfacial deposition, 
or nanoprecipitation methods.33 However the scale-up 
process of PLGA NPs’ formulation by means of these 
methods appears to be costly. 

Biodegradable synthetic polymers with three-
dimensional scaffolds are widely used in tissue engineering. 
Ultrasonically blended suspension of cellulose-nanofibers 
(CNFs) with PLGA have been fabricated and the obtained 
scaffolds appeared to possess suitable mechanical strength 
and biocompatibility for the cultivation of NIH 3T3 cells, 
which have been used in tissue engineering.34 For example, 
PLGA coated beta-tricalcium phosphate (β-TCP) scaffold 
loaded with vascular endothelial growth factor was 
synthesized and cell proliferation and attachment was 
investigated. It was found that the scaffold with sustained-
and/or localized-release of VEGF could be favorable for 
bone regeneration in vitro.35

Semisynthetic degradable polymers 
The morphological and chemical modifications of natural 
polymers produce semisynthetic polymers that are better 
suited for processing and production of materials with 
potential of mineralization and conversion to biomass.36 
Chitosan is a semisynthetic natural based polymer that 
is primarily obtained from chitin, which is the second 
abundant polysaccharide in nature.37 Chitosan is obtained 
by deacetylation of chitin in alkaline condition mostly 
from the shell waste of shrimps, crabs, krills and lobsters.21 
Chitosan is soluble in 0.1 N acetic acid and is a positively-
charged linear polymer, which can be formulated as 
homogenous NPs through simple mixing of the polymer 
with negatively-charged drugs or nucleic acids. Chitosan 
NPs have shown great advantages, in large part  due to 
their  non-immunogenicity and possibility of introducing 
larger size of genes into host cells in comparison with 
the viral vectors.20,38-41 To improve the applicability of 
chitosan and its various derivatives (e.g., carboxylated, 
thiolated and acylated structures) for pharmaceutical/
biomedical applications, they have so far been decorated 

with various functional groups such as polyelectrolyte/
polyionic complexes.19 Polyelectrolyte complex of 
chitosan and gelatin hydrogels prepared at pH 6.5 could 
be optimized for tree-dimensional bioprinting at room 
temperature.42 Also, the modified chitosan with diacetate 
and triacetate is used as novel matrix to sustained release 
of doxorubicin (DOX). NPs loaded with DOX indicated 
high encapsulation efficiency, sustained-release pattern 
and enhanced cellular accumulation. Further, chitosan-
based NPs could improve the oral bioavailability of DOX.43

Targeted therapy of solid tumors 
Development and progression of solid tumors are in 
close relation with Warburg effect and aberrant glucose 
metabolism through glycolysis resulting in excess 
production of acidic byproducts whose efflux can 
deregulate the pH of tumor microenvironment (TME). 
In solid tumors, cancerous cells upregulate the expression 
of glucose transporter (GLUT-1) and some key enzymes 
and transporters (MCT-1, NHE-1, CA IX and H+ pump 
V-ATPase) to fulfill the high energy requirement. This 
deviant phenomenon provokes the efflux of protons 
into extracellular fluid (ECF), acidifying ECF (pH ~6.6), 
while the pH of cancer cells holds up to about 7.4.44 These 
anomalous phenomena form a permissive milieu in favor 
of cancer cells survival, proliferation and invasion. The 
cocktail of various enzymes with acidic pH can remodel the 
extracellular matrix (ECM) that favors (a) the epithelial–
mesenchymal transition (EMT) process necessary for 
survival of cancer cells, (b) migration of cancer cells 
form its primary setting to distant organs/tissues, and (c) 
formation of TME with altered interstitium in which the 
interstitial fluid pressure (IFP) is markedly high opposing 
the permeation and penetration of anticancer agents into 
the core of solid tumors.45 

It is believed that, during metastasis, the EMT process 
assists cancer cells to avoid anoikis through various 
mechanisms enabling them to circulate within the blood 
stream or even lymphatic routes and colonize beyond its 
primary niches.46,47 Further, neovascularization within 
solid tumors are often incomplete encompassing non-
integrated endothelial cells with pores and gaps (120-1200 
nm) between these cells, upon which the tumor vasculature 
shows an enhanced permeability and retention (EPR) 
effect.48,49 This latter phenomenon have widely been used 
for passive targeting of solid tumors50 despite opposing 
impact(s) of high IFP of TME.51,52

Stimuli-responsive polymers are able to alter their 
physical properties in response to environmental changes 
(e.g., temperature, pH, light, ultrasound, etc.), at which 
they are considered as superior carriers for targeted 
delivery of  drugs to and on-demand drug release at the 
site of solid tumors.53 The pH difference of TME with  
normal tissues seems to be the main driving force  for 
development of pH-sensitive DDSs. Biodegradable pH-
responsive polymeric carriers in the form of micelles, 
vesicles or NPs have great potential to provide selective/
on-demand drug release at tumor sites, which can be then 
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rapidly degraded with no/trivial undesired impacts. Poly 
(β-amino ester) as a biodegradable cationic polymer is 
used in development of pH-sensitive DDSs. At low levels 
of pH (≤6.5), the polymer dissolves rapidly and releases the 
drug.54 Hydrogels based on PCL, methacrylic acid (MAA), 
and Pluronic is developed as a potential biodegradable 
polymer for drug delivery uses. The hydrolytic degradation 
behavior of hydrogel was shown to be enhanced with the 
increase of PCL mainly due to the acid cleavage of ester 
bonds.55 Biodegradable polymeric micelles composed of 
PEG and polycarbonate functionalized with disulfide and 
carboxylic group can be synthesized as pH and redox dual 
responsive DDS. The DOX-loaded micelles with small 
particle size and narrow size distribution indicate high 
drug loading capacity. When NPs were exposed to the 
endosomal pH of 5.0, DOX release rate was found to be 
accelerated by at least two-fold. The DOX-loaded micelles 
showed enhanced cytotoxicity in nude mice bearing BT-
474.56 

Hydrophilic thermo-sensitive biodegradable polymeric 
nanocarriers, as another example of smart DDSs, are 
collapsed at hyperthermic condition of 42°C which 
causes greater drug release and may lead to a synergistic 

effect of chemotherapy and hyperthermia for treatment 
of solid tumors.57,58 A new pH-/temperature-sensitive, 
biocompatible, biodegradable, and injectable hydrogel 
based on poly(ethylene glycol)-poly(amino carbonate 
urethane) (PEG-PACU) copolymers is developed for the 
sustained delivery of human growth hormone (hGH). The 
prepared copolymer is sol at the low pH and temperature 
(pH 6.0, 23°C), while it forms gel in the physiological 
condition (pH 7.4, 37°C). In vivo investigation of the 
prepared hydrogel confirmed the in situ gel formation 
and controlled degradation at the injection site.59 Wang 
et al prepared a thermo-sensitive hydrogel of chitosan/
hydroxypropyl methylcellulose/glycerol and the hydrogel 
showed the in situ gel formation at physiological 
condition (pH ranging from 6.8 to 6.9 at 37°C). The 
synthesized hydrogel indicated low toxicity, good fluidity, 
thermosensitivity, biodegradability and controlled-release 
of bovine serum albumin.60

Furthermore, the biodegradable polymeric carriers have 
been modified by tumor targeting agents such as specific 
ligands (e.g. folic acid),61 antibodies28 and aptamers62 to 
enhance the NPs translocation into tumor cells. PEG-
PCL-PEG thermo-sensitive hydrogel containing a tumor-

Fig. 2. Schematic illustration of advanced multifunctional drug delivery systems. Image was adapted with permission from our previous 
publication.58
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targeted biodegradable folate-poly(ester amine)/DNA 
complexes has been synthesized and investigated for 
targeted gene delivery. The hydrogel composite indicates 
slight cytotoxicity with high transfection efficiency in 
vitro. The synthesized hydrogel with sustained gene 
release and local gene delivery could met the demand for 
the effective tumor-targeted gene delivery system.63 

Taken all these issues into consideration, it seems that 
the effective therapy of cancer demands specific targeting 
of the cancerous cells by smart NSs and delivery of 
anticancer agents to the target cells but not the healthy 
normal cells. An efficient delivery of anticancer drugs 
specifically to solid tumors requires implementation of 
nanocarriers with high payload capacity and suitable 
permeability and degradability within the TME.64,65 
Advanced biodegradable NSs armed with homing devices 
have the ability to penetrate into TME and target the 
cancerous cells solely while they impose no/little effects 
on the healthy cells and immunosurveillance activity of 
the immune system.14,45,66-68 Fig. 2 represents schematic 
structures of advanced DDSs and multifunctional NSs 
used for targeted therapy of cancer.

It should be also pointed out that because of the 
wide-range applications and different properties of the 
polymeric biomaterials, there is no ideal polymer with 
universal use. Hence, depending on the endpoint use 
of the biopolymer, the right structure and formulation 
must be selected/devised while there exists an array of 
macromolecular biomaterials that may meet the need(s) 
for development of therapeutic NSs. Biodegradable 
polymers, no matter synthetic or natural, can be 
degradable in vivo into biocompatible by-products 
through enzymatic transformation (e.g., hydrolysis).17 
Several factors (chemical structure and composition, 
distribution of repeat units in multimers, presence of 
ionic groups, structural configuration, molecular weight, 
morphology and pH) can affect the biodegradation process 
of polymeric system.25,70 Hence a better understanding 

about all these influencing factors can facilitate the 
development of advanced DDSs and multimodal NSs. As 
shown in Table 2, several biodegradable polymeric nano-
formulations are under investigation for treatment of the 
wide spectra of diseases. Further, the biodegradability 
of these polymers make them as the safest implantable 
systems that can be degraded, and hence need no 
subsequent surgical operation to removal of transplanted 
system.17 A multilayer cylindrical implant made of PLGA 
was used for the controlled- and extended-release of 
DOX molecules in murine breast cancer. This implant 
system compared to the DOX traditional IV route, could 
delivered greater amount of DOX with better coverage of 
local tumor, preventing metastatic spread and less drug 
toxicity without weight loss, splenomegaly and cardiac 
toxicity.79

Biodegradable scaffolds composed of PLA and 
β-tricalcium phosphate is developed for complex 
maxillofacial reconstruction. Biocompatibility tests with 
mesenchymal stem cells indicated better proliferation, 
without toxicity. The porous interconnected structures 
make possible cellular adhesion and vascular proliferation. 
The in vivo investigation in rats led to complete bone 
ingrowth within 30 days with minimal inflammatory 
impacts.80 

 
Final remarks 
To engineer the most compatible biomaterials, a number 
of central characteristics need to be met. These materials 
must (a) pose no/trivial inflammatory response; (b) 
possess a degradation time coinciding with their function; 
(c) have appropriate mechanical properties for their 
intended use; (d) produce nontoxic degradation products 
that can be readily reabsorbed or excreted; and (e) include 
appropriate permeability and processability for designed 
application.81 These properties are greatly affected by a 
number of features of degradable polymeric biomaterials 
including, but not limited to: material chemistry, 

Table 2. In vivo investigation of some selected biodegradable polymeric nano-formulations for clinical application

Polymer Encapsulant Formulation method In vivo biological impacts Ref.

PLA Hemoglobin Double emulsion method Reduced lever accumulation 60

PLA Ellagic acid Emulsion diffusion evaporation 
method

NPs protected the cyclosporin induced nephrotoxicity 
in rats

61

PCL Tamoxifen Solvent displacement Increased level of accumulation of the drug within 
tumor with time and extended their presence in 
circulation

62

Gelatin Paclitaxel Desolvation method Paclitaxel-loaded NPs were active against human RT4 
bladder transitional cancer cells

63

Alginate/Chitosan Insulin Ionotropic
gelation method

NPs adhere to intestinal epithelium and internalized 
by intestinal mucosa

64

Chitosan Cyclosporin A Ionic gelation
method

Cyclosporin A concentration were higher incornea 
than conjunctiva

65

Poly(n-butyl cyanoacrylate) Indomethacin Interfacial polymerization Permeate through rats skin in a period of 8 h 66

Glycol chitosan Doxorubicin Self-assembling Self-aggregates loaded with doxorubicin exhibited 
lower toxicity than free doxorubicin

67
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molecular weight, hydrophobicity, surface charge, water 
adsorption, degradation and erosion mechanism. 
Due to the wide range use of polymeric biomaterials, a 
single, ideal polymer or polymeric family does not exist. 
Instead a library of materials is available to researchers 
that can be synthesized and engineered to best match the 
specifications of the material’s desired biomedical function. 
Current efforts in biodegradable polymer synthesis  have 
been focused on custom designing and synthesizing  
polymers with tailored properties for specific  applications 
by: (i) developing novel synthetic polymers  with unique 
chemistries to increase the diversity  of polymer structure, 
(ii) developing biosynthetic  processes to form biomimetic 
polymer structures  and (iii) adopting combinatorial 
and computational  approaches in biomaterial design to 
accelerate the  discovery of novel resorbable polymers.  

Taken all, it should be taken into consideration that an 
ideal biodegradable polymeric DDS must be tailored in a 
way that it provides a number of imperative characteristics 
such as (a) suitable permeability and drug release profile 
based on physicochemical properties (e.g., lipophilicity and 
hydrophilicity) of cargo molecules, (b) biodegradability 
and biocompatibility, (c) tensile strength, and (d) 
possibility for surface modification and decoration.17 
It should be also pointed out that, for broadening the 
potential applications of biodegradable polymers, they 
should be modified utilizing several methods such as 
random and block copolymerization, grafting, blending 
and composites forming, which lead to new advanced 
biomaterials with unique properties including high 
performance, low cost, and good processability.82 

Given the fact that various non-biodegradable polymers 
and lipids used as DDSs and/or gene delivery systems 
(GDSs) impose intrinsic inadvertent cytotoxic and 
genotoxic impacts1-4, 83-87 and some inevitable downsides 
of the currently used biodegradable polymers, we need 
to advance DDSs/GDSs towards mimicking the natural 
polymers found in human body. Perhaps, it is the right 
time to move on and implement the biopolymers of the 
human body, and engineer human-origin polymeric 
scaffolds to be able to specifically deliver drugs into the 
target cells/tissue without any detrimental impacts on the 
healthy normal cells by delivery vehicles per se. 
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