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Spinal motoneurone distress during experimental allergic encephalomyelitis

 

The main pathophysiological feature characterizing mul-
tiple sclerosis (MS) is demyelination. However, the possi-
bility of  neural damage has recently been proposed as a
mechanism in chronic disease. Experimental allergic
encephalomyelitis (EAE) is the most widely used experi-
mental model for MS. We investigated occurrences of
microglial activation and astrocytosis in the spinal cord,
choline acetyl-transferase (ChAT) and calcitonin gene-
related peptide (CGRP) mRNA regulation in spinal moto-
neurones during EAE. EAE was induced in female Lewis
rats by injecting guinea pig spinal cord tissue in complete
Freund's adjuvant (CFA) to which heat-inactivated Myco-
bacterium had been added. Rats injected with CFA and
uninjected rats were used as controls. ChAT and CGRP

mRNAs were studied by 

 

in situ

 

 hybridization in the lumbar
spinal cord and a computerized grain counting procedure
was used for quantification. No differences in ChAT
mRNA level were found between control and CFA-injected
rats. ChAT mRNA level was strongly reduced in EAE
14 days after immunization and then recovered (29 days
after immunization). CGRP mRNA increased 14 days after
immunization, and then recovered to control level. Exten-
sive long-lasting gliosis developed in the spinal cord and
around motoneurones and a transient expression of
p75

 

LNGFR

 

 in motoneurones was also found. These data sug-
gest that during EAE, gliosis induces distress in spinal cord
neurones involving the synthesis enzyme for the main
transmitter.
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Introduction

 

Multiple sclerosis (MS) is a demyelinating disease charac-
terized by extensive inflammation and gliosis in the cen-
tral nervous system [1]. The main pathological feature of
MS is widespread demyelination and oligodendrocyte
degeneration [2]. MS has therefore been interpreted as an
oligodendrocyte disease. More recently, the possibility of
neural damage has been raised. In particular, it is accepted
that axonal loss occurs in different areas of  the central
nervous system [3,4] including the spinal cord [5] and

corpus callosum [6]; this lesion is involved in permanent
disability characterizing the later chronic progressive
stage of  MS [7–9]. Magnetic resonance imaging (MRI),
magnetic resonance spectroscopy (MRS) and MRS imag-
ing studies have provided evidence that axonal loss and
neural damage in MS can be both substantial and early
[10,13] and these noninvasive measures have demon-
strated the existence of  direct links between these axonal
changes and disability [14–16].

Histopathological studies have confirmed this clinical
evidence, indicating that both atrophy and decreased den-
sity contribute to substantial axonal loss in brain and spi-
nal cord [5,17] and that the highest incidence of  acute
axonal injury is found during active demyelination [18],
as well as in patients with secondary progressive MS [3].
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Evidence from work on animals has also demonstrated
that damage to axons can occur with central nervous sys-
tem inflammation, as indicated in mice infected with a
neurotropic coronavirus [19], in experimental allergic
encephalomyelitis (EAE) [18,20,21] and in nonhuman
primate models of  MS [22].

Neuroprotection has consequently come to be consid-
ered a possible strategy for MS patients [8,23]. However,
development of  neuroprotective strategies is dependent on
defining the precise mechanism whereby effector cells and
molecules damage axons, and on whether neural damage
is limited to the axon or also involves the soma. On the
basis of  behavioural data indicating severe neurological
disabilities, including force deficit and diffuse tissue
inflammation and gliosis in the spinal cord of  rats affected
by EAE, we investigated the relation between clinical pro-
file, gliosis and motoneurone neurochemical phenotype in
the spinal cord of  EAE-affected rats. We focused on the
acetylcholine synthesis enzyme [choline acetyltransferase
(ChAT)], calcitonin gene-related peptide (CGRP), which is
considered a trophic peptide for motoneurones, and nerve
growth factor (NGF) low-affinity receptor p75

 

LNGFR

 

, which
normally is not expressed by motoneurones in adult ani-
mals. Alterations of  all these markers have been described
in different experimental conditions associated with
axonal damage [24].

 

Materials and methods

 

Animals

 

Female pathogen-free Lewis rats, 150–175 g body weight
(Charles River, Italy) were used. A group of  rats was sen-
sitized with a medium containing 0.15 g/ml guinea pig
spinal cord tissue in complete Freund's adjuvant (CFA,
Sigma, St. Louis, MO, USA), 50% v/v to which 5 mg/ml of
heat-inactivated Mycobacterium (H37Ra Difco, Detroit,
MI, USA) was added. A further group of  rats was injected
with CFA + heat-inactivated Mycobacterium. Uninjected
rats were also used as controls. Rats were regularly
weighed and examined for clinical signs of  EAE up to
79 days after immunization by a trained observer and
scored on a neurological disability scale according to
which grade 1 = loss of  tail tone; grade 2 = weakness in
one or both hind legs or middle ataxia; grade 3 = ataxia or
paralysis; grade 4 = severe hind leg paralysis; grade
5 = severe hind leg paralysis accompanied by urinary
incontinence. Uninjected and CFA-injected rats were rated

as O in all observations. In all experiments, groups of  EAE
animals were sacrificed at 14, 21 and 79 days after immu-
nization, adjuvant-injected animals at 14 and 79 days
after sensitization, and control animals 79 days after
inclusion in the experiment.

All animal protocols described herein were carried out
according to the European Community Council Directives
of  24 November 1986 (86/609/EEC) and approved by our
intramural committee and the Italian Health Ministry, in
compliance with the guidelines published in the 

 

NIH Guide
for the Care and Use of  Laboratory Animals

 

.

 

Immunohistochemistry and quantification

 

For immunocytochemical experiments, five to six animals
in each experimental group were sacrificed at set times.
Animals deeply anaesthetized with ketamine (Ketalar,
Parke Davis, Italy) 10 mg/kg of  body weight, i.p. + diaz-
epam 2 mg/kg, i.m., were perfused through the ascending
aorta with 100 ml (50 ml at 37

 

∞

 

C, 50 ml ice cold) Tyrode-
Ca

 

++

 

, pH 6.9, followed by 4% paraformaldehyde in
Sorensen phosphate buffer 0.1 M pH 7.0 for 25–30 min.
During perfusion the animals were bathed in ice-cold
water. The brain and spinal cord were then removed and
immersed for 2 h in ice-cold fixative, before rinsing for
48 h in ice-cold 0.1 M phosphate buffer. For immunocy-
tochemistry, the following antisera were used: mouse anti-
glial fibrillary acid protein (GFAP) (Chemicon Temecula,
CA, USA), mouse anti-nestin (BD PharMingen, San Jose,
CA, USA), mouse anti-rat CD11b (OX42, Sera-Laboratory,
Crawley Down, UK), mouse anti-oligodendrocytes
(Chemicon Temecula; immunogen: oligodendrocytes cul-
tured by the rat olfactory bulb), goat antip75

 

LNGFR

 

 (Santa
Cruz Biotechnology, Inc., Santa Cruz, CA, USA). For
immunofluorescence experiments, tissue was fast frozen
in CO

 

2

 

 and cut on a Leitz cryostat (thickness of  section
14 

 

m

 

m, 

 

-

 

20

 

∞

 

C). Sections were first incubated in 0.1 M
phosphate-buffered saline (PBS) at room temperature for
10–30 min, followed by incubation at 4

 

∞

 

C for 48 h in a
humid atmosphere with the primary antibody diluted in
PBS containing 0.3% Triton X-100, v/v. Staining specific-
ity was assessed by 

 

in vitro

 

 overnight preincubation of  the
antiserum with the respective antigen (100 

 

m

 

g of  antigen/
ml diluted antiserum). This treatment prevented staining.
After rinsing in PBS for 30 min (3 

 

¥

 

 10 min), the sections
were incubated at 37

 

∞

 

C for 120 min in a humid atmo-
sphere with fluoresceine isothiocyanate-conjugated anti-
mouse or anti-goat immunoglobulin (Dako, Glostrup,
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Denmark) containing 0.3% Triton X-100. For double
experiments, two primary antisera raised in different ani-
mal species and appropriate secondary antisera were
applied concomitantly. Sections were then rinsed in PBS
(as above), mounted in glycerol and PBS (3 : 1, v/v) con-
taining 1,4-phenylendiamine, 0.1 g/l. They were then
examined using a Nikon Microphot FXA microscope.

For the avidin-biotin complex (ABC) technique,
vibratome sections (50 

 

m

 

m thickness) were immediately
processed for the ABC technique according to a free-
floating procedure. In each experiment, sections from all
animals were run in the same assay. Sections were first
incubated in 0.1 M PBS at room temperature for 10–
30 min, pretreated with H

 

2

 

O

 

2

 

 to quench endogenous
peroxidase activity and then incubated with 1.5–2.0%
normal serum, followed by overnight incubation at 4

 

∞

 

C
with the primary antisera diluted in PBS containing 0.3%
Triton X-100, v/v. Sections were rinsed in PBS for 30 min
(3 

 

¥

 

 10 min) and then incubated with biotinylated anti-
mouse or antigoat immunoglobulin (Dako); they were
rinsed again in PBS and finally incubated using streptavi-
din biotinylated horseradish peroxidase complex (Amer-
sham, Little Chalfont, UK) 1 : 250. Diaminobenzidine
(0.5 mg/ml in Tris HCl 0.1 M pH 7.5 + H

 

2

 

O

 

2

 

 0.03%) was
used to detect the immunocomplex. Preparations were
then examined using a Nikon Microphot FXA microscope
and Tmax 400 film (Kodak, Hemel Hempstead, UK) was
used for photography. Color slides were then loaded via
Nikon SuperCool Scan 4000 and Figure 2 was generated
using Adobe Photoshop 6.0 software.

Quantification of  immunocytochemical staining for
glial reaction was carried out on an immunofluorescence
preparation using the analytical imaging station (AIS)
(Imaging Research Inc., St. Catharines, Canada). Three
animal/group/times were used and six sections from the
lumbar spinal cord were analysed in each animal. In each
case, the ventral horn on both sides, including layers 8
and 9, was analysed in order to evaluate the percentage
immunoreactive area of  each antigen [25,26]. Briefly, a
contrast-enhancing procedure was first applied to clearly
identify the edge of  immunoreactive cells. A threshold pro-
cedure was then applied to sample the immunoreactive
area over the entire sampled area (% area). The average
values from each animal were used for statistical analysis.
Spinal cord inflammation was then scored on the same
section after toluidine blue contro-staining according to
Hickey 

 

et al

 

. [27] using a previously described computer-
ized image analysis procedure [28] in which

1 = occasional mononuclear cells; 2 = sparse cellular
infiltrate; 3 = large patches of  infiltrate with numerous
mononuclear cells; 4 = dense accumulation of  mononu-
clear cells.

 

In situ

 

 hybridization

 

Four to five animal/group/times were used for 

 

in situ

 

hybridization experiments. Animals were sacrificed by
decapitation, the spinal cord was quickly dissected out and
frozen using CO

 

2

 

. Coronal sections were cut in a cryostat
from L5 and collected on ProbeOn microscope slides
(Fisher Scientific, Pittsburg, PA, USA). Oligonucleotide
probes complementary to mRNAs encoding ChAT (nucle-
otides 1818–1860) and 

 

a

 

CGRP 664–698, respectively,
were synthesized in a Beckmann OLIGO 1000 DNA syn-
thesizer (Fullerton, CA, USA). The oligonucleotide probes
were labelled at the 3

 

¢

 

-end with 

 

a

 

-

 

35

 

S-dATP (New England
Nuclear, Boston, MA, USA) using terminal deoxynucleoti-
dyltransferase (Amersham) in a buffer containing 10 mM
CoCl

 

2

 

, 1 mM dithiothreitol (DTT), 300 mM Tris base, and
1.4 M potassium cacodylate (pH 7.2). Afterwards, the
labelled probes were purified through Nensorb-20 col-
umns (New England Nuclear), and DTT was added to
obtain a final concentration of  10 mM. The resulting spe-
cific activity ranged from 1 to 4 

 

¥

 

 10

 

6

 

 dpm/ng oligonucle-
otide. The sections were brought to room temperature, air
dried, covered with a hybridization buffer containing 50%
formamide, 4

 

¥

 

 SSC (1

 

¥

 

 SSC: 0.15 M NaCl, 0.015 M
sodium citrate), 1 

 

¥

 

 Denhardt's solution (0.02% polyvi-
nyl-pyrrolidone, 0.02% bovine serum albumin and 0.02%
Ficoll), 1% sarcosyl, 0.02 M phosphate buffer (pH 7.0),
10% dextran sulphate, 500 mg/ml heat-denatured
salmon sperm DNA, and 200 mM DTT and 40 ng/ml of
the labelled probes [29]. The slides were placed in a humid
chamber and incubated for 15–20 h at 50

 

∞

 

C. The sections
were then rinsed in 1

 

¥

 

 SSC at 55

 

∞

 

C for 1 h with six
changes and washed in the same buffer for 1 h at room
temperature. Finally, the slides were rinsed in distilled
water followed by 60% and 95% ethanol (2 min each), air
dried and then dipped in NTB2 nuclear track emulsion
(Kodak) for 3 weeks before being developed with Kodak
D19 for 3 min and fixed with G333 (Agfa Gevaert,
Leverkusen, Germany) for 10 min. Quantitative analysis
was performed on emulsion-dipped sections, slightly
counterstained with toluidine blue using AIS (Imaging
Research Inc.) grain counting software. ChAT and CGRP
mRNAs expression was measured in the motoneurones on
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both sides in the ventral horn of  the spinal cord, in an area
corresponding to the lateral motor nucleus, by choosing
five matching sections in each animal. Eight to 10 cells on
each side were then measured. Cells were considered
labelled if  the silver grains were more than five times the
background silver level, as determined by averaging grain
counts over defined areas of  the spinal cord devoid of  pos-
itively labelled cell bodies. The average values from each
animal were used for statistical analysis.

 

Statistical analysis

 

One-way analysis of  variance (

 

ANOVA

 

) was used, followed
by Dunnet's test and Student's 

 

t

 

-test.

 

Results

 

Experimental animals

 

Clinical profiles expressing neurological disabilities in EAE
and body weight of  experimental animals are reported in
Figure 1. The severity of  EAE gradually increases, reaches
its peak between 8 and 14 days after immunization and
then partially recovers. Body weight growth stops at a
point corresponding to the acute phase of  the disease. The
growth curve then recovers but the body weight of  the
experimental animals remains significantly lower than
control animals. In our experience [28], as confirmed in
this experiment, the disease relapses with lower severity in
60% of  animals. Only relapsing animals have been
included in the study.

 

Glial activation in the spinal cord

 

As described in previous reports [28,30] and confirmed in
this study (images not shown), in only a few rats were
small scattered areas of  inflammation (1–2 according to
Hickey 

 

et al

 

.) [27] observed 14 days after immunization.
Conversely, severe inflammatory cellular infiltrate, mainly
composed by mononuclear cells, appeared in many areas
of  the brain and spinal cord between 14 and 20 days after
myelin immunization. Almost all EAE animals showed a
histological picture scored as 4. Histopathological exami-
nation of  EAE relapsing animals evidenced multiple, con-
fluent foci of  inflammation in both the white and the grey
matter of  the spinal cord, where also necrosis was
observed (scored 3–4 according to Hickey 

 

et al.

 

 1983)
[27].

Glial cells in brain and spinal cord of  EAE and control
animals were studied using OX42 as marker for activated
microglial cells, GFAP as marker for astrocytes and nestin
as marker for activated and/or newly generated astrocytes
(Figure 2). Starting from day 14 after immunization, a dis-
aggregation of  white matter bundles in the spinal cord was
observed in EAE animals, which worsened during clinical
remission and relapse. Images in Figure 2

 

A

 

 and 

 

B

 

 refer to
immunostaining for oligodendrocyte in longitudinal sec-
tions of  the lumbar spinal cord, showing posterior funicu-
lus and grey matter of  the ventral horn in control (

 

A

 

) and
EAE animals, 79 days after immunization (

 

B

 

). OX42-IR
microglial cells are evident 21 days after immunization
and then decline as expected in the transient activation of
these cells. Nestin-positive elements, which are small,

 

Figure 1.

 

The time course of  body weight increase and neurological disability scores in experimental animals. Data are expressed as 
mean 

 

±

 

 SEM, ***

 

P 

 

<

 

 0.001.
EAE, experimental allergic encephalomyelitis; Adj, adjuvant-injected.
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finely and richly branched cells (Figure 2

 

G

 

,

 

H

 

,

 

N

 

), appear
as early as 14 days after immunization, for example, at a
disease stage in which cellular inflammation is not yet
pre-eminent (Figure 2

 

C

 

), and then decline (Figure 2

 

D

 

,
21 days after injection). GFAP-IR is higher in EAE animals
21 days after immunization than in controls and further
increases in relapsing animals, where an intense astrocy-
tosis is observed around motoneurones in the ventral
horn (Figure 2

 

E

 

, control; Figure 2

 

F

 

, EAE 79 days after
injection). Quantification of  nestin-, OX42- and GFAP-
immunostaining was performed in the ventral horn of  the
lumbar tract of  the spinal cord. The quantitative results
referring to the qualitative data described above are
shown in Figure 3. With the exception of  a small but sig-
nificant microglial activation in adjuvant-injected ani-
mals, no differences were observed between uninjected
and adjuvant-injected rats.

 

Motoneurone gene expression regulation

 

Large neurones in the ventral horn of  the spinal cord
express ChAT and CGRP mRNAs. Quantitative analysis of
ChAT and CGRP mRNAs levels in single motoneurones in
control animals and during EAE is shown in Figure 4.
ChAT mRNA level declines in the acute stage of  EAE and
remains lower than in control animals in the remission
phase. No differences between pathological and control
animals were observed at the end of  the experiment,
which corresponds to a partial recovery from relapse. Con-
versely, CGRP mRNA level is higher in motoneurones in
pathological animals in the acute phase of  the disease.
Finally, p75

 

LNGFR

 

-IR, which is never observed in control
animals, appears transiently in motoneurones of
pathological animals 14 days after immunization
(Figure 2

 

I

 

–

 

M

 

).

 

Discussion

 

In this study we showed that during the inflammatory-
autoimmune disease EAE spinal motoneurones undergo
phenotype changes involving ChAT, CGRP and p75 simi-

lar to those described following axonal lesion, which sup-
ports the view that long-lasting neurological disabilities
are related to neurone alterations that follow demyelina-
tion. We also confirmed that a severe gliosis results from
astrocyte hypertrophy and hyperplasy in EAE [1]. GFAP-
IR cells surrounds the cell body and dendrites of  spinal
motoneurones during acute EAE, and we found that
GFAP-immunostaining further increases after resolution
of  the acute phase.

While axonal damage has been indicated as one of  the
typical features of  MS and EAE histopathology [3,15] ever
since it was first described, the possibility of  whole neu-
rone damage being a possible substrate for both perma-
nent motor disabilities and cognitive problems and
degeneration has only emerged in recent years. Gene
expression switching has been described in spinal moto-
neurones in response to axotomy and during regeneration
[31,32]. Sciatic nerve axotomy produces a transient loss
of  ChAT mRNA, re-expression of  p75

 

LNGFR

 

 [24] and
increase in cellular content of  CGRP and mRNA [33].
Demyelinating lesions located where motor roots emerge
from the spinal cord cause axonal lesions in motor neu-
rones [18]. We describe how a decrease in ChAT mRNA
expression is linked to increased CGRP mRNA levels and
the re-appearance of  p75

 

LNGFR

 

-IR in the acute stage of  EAE.
ChAT mRNA levels decrease concomitantly with dramatic
microglial (OX42-IR) and astroglial activation, as
described by nestin-IR. Nestin is recognized as an earlier
marker for astrocytic activation than GFAP [34]. CGRP in
motoneurone acts as cotransmitter for acetylcholine,
enhancing its spontaneous release in skeletal muscle, but
also has a perhaps prevalent trophic action [35]. The rise
of  CGRP-IR in deafferentiated motoneurones is generally
attributed to increased synthesis, although accumulation
because of  the blocking of  peripheral transport cannot be
excluded [36,37]. The neurotrophin receptor p75

 

LNGFR

 

,
which binds NGF, brain-derived neurotrophic factor
(BDNF), neurotrophin 3–4 (NT3–4) and tumour necrosis
factor-

 

a

 

 (TNF-

 

a

 

) [38], is expressed by developing moto-
neurones in the spinal cord, whereas in adult motoneu-
rones it re-appears after lesions, including sciatic nerve

 

Figures 2.

 

A

 

, 

 

B

 

: immunostaining for oligodendrocytes on the longitudinal section of  the lumbar tract of  the spinal cord in control (

 

A

 

) and 
EAE (

 

B

 

) animals, 79 days after injection; 

 

C

 

, 

 

D

 

: nestin-IR in longitudinal section of  the lumbar tract of  the spinal cord EAE animals 14 (

 

C

 

) and 
21 (

 

D

 

) days after injection. 

 

E

 

, 

 

F

 

: GFAP-immunostating in the ventral horn of  the spinal cord of  control (

 

E

 

) and EAE (

 

F

 

) animals, 79 days after 
injection; 

 

I

 

–

 

M

 

: p75

 

LNGFR

 

-IR in spinal motoneurones of  EAE animals 14 days after injection. 

 

G

 

, 

 

H

 

, 

 

N

 

: nestin-IR elements in the spinal cord of  
EAE animals 14 days after injection. Bars: 

 

A

 

, 250 

 

m

 

m; 

 

E

 

, 

 

I

 

, 

 

G

 

: 50 

 

m

 

m.
EAE, experimental allergic encephalomyelitis; GFAP, glial fibrillary acid protein.
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axotomy [39,40]. p75

 

LNGFR

 

 has also been associated with
cell death [41]. However, it is accepted that p75

 

LNGFR

 

upregulation possibly increases resistance to pathological
motor neurone degeneration [42] and is present only in
adult motor neurones that are allowed to regenerate [43].

Acute axonal damage is associated with an axonal con-
duction block, ion channel redistribution [20] and inter-
ruption of  axoplasmic flow [44], including also trophic
factors. We have already reported a dramatic drop in NGF
content in the spinal cord during the acute phase of  EAE
and this defect could be involved in the clinical symptoms
[30]. Indeed NGF administration attenuates neurological
deficits in EAE marmosets [45,46], and ciliary neu-
rotrophic factor (CNTF), which has been indicated as a
major trophic factor for adult motoneurones, is a protec-
tive factor for severe neurological deficits in EAE [47].
Finally, a proper axonal function is required for successful
remyelination in experimental pathologies [48]. Electrical
activity in the axon is actually involved in regulating dif-
ferentiation and the survival of  oligodendrocyte precur-
sors during development [49] and plays a key role in the
induction of  myelination [50].

Changes in neurochemical phenotype in spinal moto-
neurones could be related to the axonal damage at the

point of  emergence of  the motor root in the extensive
demyelinating regions present in the spinal cord during
EAE, but also to other types of  attack, for example,
glutamate excitotoxicity, which is also related to perma-
nent gliosis [51]. We found that immunostaining of  an
astrocyte marker protein such as GFAP clearly high-
lights the cell body and dendrites of  motoneurones in
layers 8 and 9 of  the ventral horn of  the spinal cord.
Astrocytes in EAE animals actually have a decreased
capacity to metabolize glutamate, as indicated by the
severe decrease in the activity of  specific enzymes [51].
Damage to dendrites and synapses occurs in motoneu-
rones in inflamed spinal cord during EAE, as indicated
by quantitative analysis of  protein associated with these
cell components [32]. Dendrite damage recovers signifi-
cantly, although incompletely, during EAE remission
[52], such as molecular indices of  synaptic structures
[53]. The temporal profile of  alterations in dendrite and
synapse damage in spinal cord correlates with the neu-
rochemical changes we describe in the present study. In
spite of  the recovery, we cannot exclude that repeated
inflammatory attacks or permanent gliosis may lead to
permanent phenotype changes and even to motoneu-
rone degeneration.

 

Figure 3.

 

Quantitative evaluation of  glial reaction in control and experimental animals at different times (14, 21 and 79 days) after 
immunization. GFAP, OX42 and nestin-IR were evaluated as an area covered by the immunoreactive signal in the area of  the ventral horn of  
the spinal cord. Data area expressed as mean 

 

±

 

 SEM. Statistical analysis: one-way 

 

ANOVA

 

 and Dunnett test, *

 

P 

 

<

 

 0.05, **

 

P 

 

<

 

 0.01, ***

 

P 

 

<

 

 0.001.
Adj, adjuvant-injected; EAE, experimental allergic encephalomyelitis; GFAP, glial fibrillary acid protein.
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Because of  either axonal pathology resulting from
demyelination and consequent neuronal stress, or a direct
inflammatory attack on the cell body, modifications of  the
neurochemical phenotype in single spinal motoneurones
observed in acute EAE indicate that severe motoneurone
distress occurs in early phases of  the disease. Our study
was not designed to evaluate motoneurone cell number,
so we cannot speculate as to whether recovery of  normal
neurochemical phenotype in single neurones means
recovery in all neurones or only in surviving neurones.
Recently, Smith 

 

et al

 

. [54] described how motoneurones
are subject to lymphocyte attack leading to a 30% reduc-
tion in neurone density in the ventral spinal cord in acute
EAE. Neural cell loss has been indicated as one of  the pos-
sible causes of  brain and spinal cord atrophy in MS and
EAE [55]. Apoptosis actually causes severe cell loss sec-
ondary to axonal damage in retinal ganglion cells during
EAE [56] and it has been shown that cerebrospinal fluid
from MS patients induces neuronal apoptosis 

 

in vitro

 

 [57].
Imaging studies have indicated that while normal brain
atrophy is estimated at around 0.1–0.2% per year in nor-
mal subjects, it increases to approximately 1% in patients
with progressive MS [58,59]. Brain and spinal cord atro-
phy is also a common feature in remittance-relapsing MS
including also the spinal cord [60].

In conclusion, our data further suggest that distress, or
lesion or degeneration of  selective neural populations
including cholinergic motoneurones in the spinal cord
correlates with a temporal profile of  neurological disability

of  EAE and MS. Thus, not only axons, but also the whole
neurone should be investigated in order to define a possi-
ble neuroprotective strategy to include in MS multither-
apy [61].
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