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Abstract 

Background  The perineural invasion (PNI)-mediated inflammation of the tumor microenvironment (TME) varies 
among gastric cancer (GC) patients and exhibits a close relationship with prognosis and immunotherapy. Assessing 
the neuroinflammation of TME is important in predicting the response to immunotherapy in GC patients.

Methods  Fifteen independent cohorts were enrolled in this study. An inflammatory score was developed and vali-
dated in GC. Based on PNI-related prognostic inflammatory signatures, patients were divided into Clusters A and B 
using unsupervised clustering. The characteristics of clusters and the potential regulatory mechanism of key genes 
were verified by RT-PCR, western-blot, immunohistochemistry and immunofluorescence in cell and tumor tissue sam-
ples.The neuroinflammation infiltration (NII) scoring system was developed based on principal component analysis 
(PCA) and visualized in a nomogram together with other clinical characteristics.

Results  Inflammatory scores were higher in GC patients with PNI compared with those without PNI (P < 0.001). 
NII.clusterB patients with PNI had abundant immune cell infiltration in the TME but worse prognosis compared 
with patients in the NII.clusterA patients with PNI and non-PNI subgroups. Higher immune checkpoint expression 
was noted in NII.clusterB-PNI. VCAM1 is a specific signature of NII.clusterB-PNI, which regulates PD-L1 expression 
by affecting the phosphorylation of STAT3 in GC cells. Patients with PNI and high NII scores may benefit from immu-
notherapy. Patients with low nomogram scores had a better prognosis than those with high nomogram scores.

Conclusions  Inflammation mediated by PNI is one of the results of tumor-nerve crosstalk, but its impact 
on the tumor immune microenvironment is complex. Assessing the inflammation features of PNI is a potential 
method in predicting the response of immunotherapy effectively.
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Introduction
Perineural invasion (PNI) is a common pathological 
phenomenon in malignant solid tumors, such as pan-
creatic cancer [1], gastric cancer(GC) [2], and pros-
tate cancer [3]. PNI was first reported by Batsakis in 
1985 [4], and the definition of PNI has been refined to 
become more accurate over the past few decades. Its 
clinical significance has been confirmed in multiple 
clinical cohort studies, and it is considered a prognostic 
risk factor [5]. Therefore, in some clinical tumor diag-
nosis and treatment guidelines [6, 7], nerve invasion is 
also listed as one of the indicators of adjuvant chem-
otherapy in addition to surgical resection in the early 
stage of cancer.

Although the poor prognosis of cancer patients 
with PNI has been recognized, the specific molecular 
mechanisms remain unclear. In previous studies, many 
researchers believed that peripheral nerve injury would 
cause inflammation around the nerve [8–10], trigger-
ing a series of physiological reactions, such as pain, 
fever and promoting tissue repair. Therefore, in the 
tumor microenvironment(TME), does tumor invasion 
of the nerve also trigger a similar neuroinflammatory 
response? It is important to note that a large number 
of studies have described a close relationship between 
chronic inflammation and tumor progression, espe-
cially in the study of gastrointestinal cancer [11–13].

In addition, some studies [14–16] have noted that the 
local inflammatory response is inevitably accompanied 
by an abundant response and recruitment of immune 
cells. Different levels of inflammatory response pat-
terns trigger different immune responses. It has been 
reported in several tumor studies that nerve invasion 
is closely related to the inflammatory response [5, 17, 
18]. It has also been suggested that nerve invasion 
mediates immune escape in tumor formation [19, 20]. 
These findings suggest a close relationship among PNI, 
inflammatory and immune responses.

In our study, we demonstrated that PNI was closely 
related to inflammatory responses in the TME and 
that both were associated with poor patient outcomes. 
Then, we identified two neuroinflammatory subtypes in 
GC patients with PNI and analyzed their RNA expres-
sion, somatic mutations and DNA methylation fea-
tures in the TME. Based on the difference between the 
two subtypes, we developed an neuroinflammation 
infiltration(NII) scoring system for GC patients and 
visualized it in a nomogram. Furthermore, we assessed 

the clinical application prospects of this system to pre-
dict the response to immunotherapy in GC patients.

Methods
Data retrieval and preprocessing
A total of 15 independent cohorts, which included 1623 
GC patients, 1175 colorectal cancer(CRC) patients, 413 
liver cancer patients and 259 pancreatic cancer patients, 
were enrolled in this study(GC:TCGA-STAD, GSE6225
4,GSE15459,GSE84437,GSE13861,GSE26899,GSE2690
1,Nanfang cohort 1 and Nanfang cohort 2;CRC:TCGA-
COAD,GSE39582,GSE17536;liver cancer:TCGA-
LIHC;pancreatic cancer:TCGA-PAAD,GSE85916). More 
details of cohorts for training and validating were showed 
in Supplementary file 1.

Patients enrolled in this study met the following inclu-
sion criteria: a) complete follow-up information;  b) the 
survival time of surviving patients must be more than 
100 days, and all patients who died were included; addi-
tional criteria c) clear PNI information(Applied in train-
ing cohort, TCGA-CRC cohort, Nanfang cohort1 and 2, 
for validating the prognostic value of PNI and construct-
ing NII cluster system.). Overall, the information of all 
the datasets enrolled in this study is summarized in Sup-
plementary Table S1.

Assessment of prognostic value of PNI in gastric cancer
To predict the prognosis of GC patients with PNI, 
Kaplan‒Meier analysis was applied to reveal the overall 
survival difference between PNI and non-PNI patients 
in the training cohort as well as Nanfang cohort 1. Mul-
tivariate Cox regression analysis was used to validate 
the independent prognostic ability of PNI. In addition, 
Gene Ontology (GO) enrichment analysis and Gene Set 
Enrichment Analysis(GSEA) were used to investigate the 
differences in signal transduction pathways between the 
PNI and non-PNI groups.

Development and pangastrointestinal neoplasm validation 
of the Prognostic Inflammatory Response‑Related Gene 
Signature in STAD
Table S2 provides 200 inflammatory response-
related genes retrieved from the Molecular Signatures 
database(MSigDB). The details about the calculation of 
inflammation score were described in Supplementary file 1.

For each patient, an inflammation score was generated 
using the formula below:
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Gene expression value Expi represents the coefficient for 
each gene in the final Cox model.

Inference of infiltrating cells in the TME
Gene expression data were employed to character-
ize the tumor immune microenvironment of samples 
using a variety of bioinformatics tools. A set of markers 
for the TME infiltration immune cell type was derived 
from Bindea et  al. [21]. More details were showed in 
Supplementary file 1.

Identification and consensus clustering 
of neuroinflammatory genes for GC
To further explore the inflammatory differences within 
PNI, a more precise classification, or consensus cluster-
ing, was performed. Univariate Cox analysis was applied 
to identify genes associated with both inflammation and 
prognosis in patients with perineural invasion(26 genes in 
total). Detailed analysis procedures are provided in Supple-
mentary file 1.

Transcriptome analysis among PNI‑related subtypes
Signal transduction pathways were investigated using GO 
enrichment analysis, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis, and GSEA.Then, tumor-infil-
trating immune cell differences among the three subtypes 
were assessed using ssGSEA and the Estimate algorithm. 
In addition, we curated a set of gene sets based on Mari-
athasan et al. ’s description of specific biological processes 
[22].More details were showed in Supplementary file 1.

Multiomics data analyses
Differences in somatic mutations, CNVs and DNA methyl-
ation among three clusters were performed to comprehend 
the molecular characterization and differences among 
these three subtypes. Detailed analysis procedures are pro-
vided in Supplementary file 1.

Dimension reduction and generation of the NII Score
For transformation from qualitative clustering to quantita-
tive models, we developed an NII score system based on 
NII.cluster. Detailed analysis procedures are provided in 
Supplementary file 1. Finally, we applied the gene expres-
sion grade index to define the NII score of each patient:

Construction of integrated prognostic models
By using the R package rpart and the NII score, a decision 
tree was constructed to stratify risks based on recursive 

Inflammation score =

∑
βi ∗ Expi

NII score = (PCBi − PCAi)

partitioning analysis(RPA).Detailed analysis procedures 
are provided in Supplementary file 1.

TME characteristics, chemotherapy and immunotherapy 
response prediction of NII score subtypes
To further characterize the correlation between the NII 
score and TME, methods for evaluating and quantifying 
the TME mentioned above were assessed. Then, func-
tional enrichment analysis was executed to demonstrate 
signaling pathway heterogeneity. Detailed analysis proce-
dures are provided in Supplementary file 1.

Cell cultures and short hairpin RNA knockdown of VCAM1 
in GC cells
The GC cell line SNU-216,HGC-27 and SNU-1 were pur-
chased from American Type Culture Collection(ATCC), 
and NCC-24 was purchased from Korean Cell Line 
Bank. The GC cells were cultured in RPMI-1640 
(Gibco,C11875500BT) with 10% fetal bovine serum, pen-
icillin (100U/ml), and streptomycin (100 g/ml) in a humi-
dated incubator with 5% CO2 at 37 ℃. Lentiviral shRNA 
and overexpression vectors targeting VCAM1 were pur-
chased from GeneChem(Shanghai,China).The inhibitors 
of STAT3 phosphorylation(MCE,HY-13818) was added 
in culture medium to stimulate GC cells for one day.

Cell proliferation and motility in GC cells
Cell proliferation were performed with Cell Counting Kit-
8(Beyotime,C0041) in 37 ℃,5% CO2 for 1 h and tested by 
microplate reader(HBS-1101) at 450 nm. Motility analy-
sis was performed in Transwells system(Corning,3422) 
with 5% CO2 at 37 ℃ for 48 h,and the fixation and stain-
ing were under manufacturer’s protocol.

Western blot, immunohistochemical, immunofluorescence 
and qPCR analyses
Cancer cells were collected by treatment with 
trypsin(Gibco,25,200,072).Tumor tissues were processed 
prior to lysis using a tissue grinder(JXFSTPRP,CLN-24) 
at 4℃.The protein was extracted in RIPA 
buffer(EpiZyme,PC102) containing a complete protease 
inhibitor cocktail(EpiZyme,GRF101) and phosphatase 
inhibitors (EpiZyme,GRF102).Western blots were per-
formed using the primary antibodies listed in Supple-
mentary file 1.

Tissue sections and antigen retrieval were deparaffi-
nized according to standard protocols.Preblocking was 
performed with goat serum(ZSGB-bio,ZLI-9022). The 
primary antibodies were used for immunohistochemistry 
and listed in Supplementary file 1. DAB staining(ZSGB-
bio,ZLI-9018) and fast-red staining(ZSGB-bio,ZLI-9045) 
were used to stain markers in brown and red, respec-
tively. Multiple fluorescent targets were enhanced with 
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the tyramide signal amplification(TSA) staining system 
and listed in Supplementary file 1. Images were obtained 
with an LSM980(ZEISS) confocal microscope.

TRIzol reagent (15,506,026, Gibco) was used to 
extract total RNA from cancer cells.The cDNA was 
prepared using the High-fidelity cDNA Synthesis kit 
(Accurate Biology,AG11706) according to the manufac-
turer’s protocol.Quantitative RT‒PCR gene expression 
analyses were performed with QuantStudio 5(Applied 
Biosystems,A28139).The primers were listed in Supple-
mentary file 1. Gene expression data were normalized to 
GAPDH mRNA expression and are presented as 2∆CT.

Statistical analysis
The Kaplan‒Meier method and log-rank test were used 
to generate survival curves to judge differences between 
groups.The Wilcoxon test was used for comparisons of 
two groups.Kruskal–Wallis and one-way analysis of vari-
ance tests were used when comparing more than two 
groups.Clinical information was analyzed using chi-
squared or Fisher’s exact tests. R-4.0.5 (https://​www.r-​
proje​ct.​org/) was used for all statistical analyses.We 
conducted all comparisons two-sided with an alpha level 

of 0.05 and applied the Benjamini–Hochberg method to 
control the false discovery rate(FDR).

Results
Construction, verification and universality 
of the inflammation score
First, we confirmed a significant difference in survival 
between patients with PNI and those without PNI in 
the training cohort and Nanfang cohort 1(P < 0.001, 
Fig.  1A, P = 0.02, Figure S1A).Patients with PNI had a 
worse prognosis. We constructed a model to measure 
the inflammatory level of patients based on the results 
of univariate analysis (Table S4) among 200 inflamma-
tory response-related genes (Table S2) altered in GC 
patients with or without PNI. Afterward, we obtained 
22 prognosis-related candidate genes (Table S3) from 
the three clusters, and provided an inflammation score 
for each patient with the LASSO Cox regression analy-
sis model (Figure S1B-D).Patients were stratified into low 
or high inflammation score groups based on the medium 
value. As shown in Fig. 1B, age,PNI and the inflammation 
score were independent prognostic factors(P < 0.001).On 
the one hand, the prognostic difference was consider-
able in two groups in survival analysis (Fig.  1C).On the 

Fig. 1  A Overall survival curves for of all GC patients in the training cohort. B Multivariate Cox regression analyses of significant prognostic factors. 
C, D Kaplan–Meier curves for the patients with high/low inflammation score in the training cohort and CRC cohort. E, F Gene Set Enrichment 
Analysis (GSEA) of high/low inflammation score groups in the training cohort and CRC cohort. G GO enrichment analysis of the significantly 
enriched biological processes between high and low inflammation score groups. H Derived ssGSEA scores of immune signatures obtained 
from STAD gene expression data for the groups of high and low inflammation score. I, J The comparing of Inflammation score between PNI 
and non-PNI groups in the training cohort and CRC cohort

https://www.r-project.org/
https://www.r-project.org/
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other hand,comparing the low and high inflammation 
score groups, biological cytology, angiogenesis, epithe-
lial mesenchymal transition, inflammatory response and 
TGF- signaling were enriched in GSVA (Fig.  1E), and 
extracellular matrix organization, extracellular structure 
organization, external encapsulating structure organiza-
tion and collagen containing extracellular matrix were 
enriched in GO analysis (Fig.  1G). For ssGSEA, sig-
nificant differences in the immune microenvironment 
were observed between the low and high inflammation 
score groups. More CD8+ T lymphocytes and T helper 
cells were noted in the low inflammation score group 
(Fig. 1H).For the ESTIMATE-related score, the Immune-
Score of high-inflammation score group was significantly 
lower than that in the low group, while the StromalScore 
were in direct contradiction (Figure S1E). In addition,PNI 
patients had higher inflammation scores than patients 
without PNI (Fig.  1I). The proportion of two groups 
in patients with or without PNI is shown in Figure S1F. 
These analyses were also applied to patients with CRC, 
and the results were consistent (Fig. 1D, F, J).

Transcriptome traits of NII cluster subtypes
Development and validation of the NII cluster system
In the training cohort, batch univariate Cox regression 
analysis for patients with and without PNI was per-
formed to identify inflammation-related genes with sig-
nificant prognostic values,including 48 genes in PNI 
patients, and 66 genes in non-PNI patients (Table S4). 
Twenty-six candidate PNI-related specific inflammatory 
genes were selected from the Venn diagram (Figure S2A). 
We investigated the biological significance of these genes 
in analysis of infiltrating immunocytes and pathways. 
Noticeably, we found STAB1, RGS1, P2RX7, KCNA3, 
IL12B, IL10RA and EBI3 had strong correlation with 
infiltrating immunocytes,which were regarded as factors 
in extensive immune activation (Fig. 2A). In Fig. 2B, the 

activity of tumor-specific pathways, such as the cell cycle, 
NOTCH and RAS pathways, was closely related with the 
expression of selected genes.

Based on 26 genes, two NII clusters(NII.clusterA and 
NII.clusterB) were divided with unsupervised clustering 
in the training cohort and Nanfang cohort 2 (Figs.  2C 
and S2C). The clustering process at different k values 
were shown in Figure S2B. The weight of 26 genes in 
clustering was shown in Figure S2D. Based on the sur-
vival analysis of patients with and without PNI (Fig-
ure S2E and S2F), three subtypes were divided: NII.
clusterA-PNI, NII.clusterB-PNI and No PNI. Subgroup 
analysis of the above mentioned immune activation 
genes(STAB1, RGS1, P2RX7, KCNA3, IL12B, IL10RA 
and EBI3) in training cohort and Nanfang cohort2 
showed that these genes were significantly up-regulated 
in NII.clusterB-PNI (Fig.  2F and G).We further exam-
ined PNI-related markers in these three subgroups with 
reference to other reported PNI-related markers [23–26]
(BDNF,GDNF,NGFR,NTF3,NCAM1 and DCLK1),and 
found most PNI-related signatures were also up-regu-
lated in NII.clusterB-PNI (Fig.  2H and I).Marked sur-
vival differences were observed among subtypes(Fig. 2D). 
Then, we analyzed the differentially expressed genes of 
the two subtypes of PNI, obtaining 357 downregulated 
genes and 1200 upregulated genes (Figure S2G and Table 
S5, FC = 1.4 and adj.P < 0.05).

The biological and TME characteristics of NII subtypes
We compared NII subtypes in PNI by GO, KEGG (Table. 
S6) and GSVA analysis (Fig.  2E). The same analysis of 
comparison with the No PNI group is shown in Table 
S5, Table S6 and Fig. 2E. Summarizing the results above, 
most inflammatory signaling pathways were significantly 
enhanced in NII.clusterB-PNI, such as epithelial mes-
enchymal transition (EMT), KRAS,and inflammatory 
response.

(See figure on next page.)
Fig. 2  A The correlation between 26 inflammation-related genes and immune-related signatures. B The correlation between the expression 
level of the 26 inflammation-related genes and crucial tumor-specific pathways is shown in the heatmap. C Unsupervised clustering of 26 
inflammation-related genes in the training cohort. The distribution of clinicopathological characteristics, including age, survival status, overrall 
survival, PNI, inflammation score and TNM stage, as well as the NII.cluster, are shown above. Rows represent genes, and columns represent 
samples. D Kaplan–Meier curves for overall survival (OS) of all GC patients in three subtypes(NII.clusterA-PNI, NII.clusterB-PNI and No PNI) (Log 
rank test, p < 0.0001). E GSVA analysis reveals enriched vital signal pathways in HALLMARK among three subtypes. Rows and coloumns are defined 
by the HALLMARK signal pathway and consensus scores for each subtype, respectively. F, G The genes expression of STAB1, RGS1, P2RX7, KCNA3, 
IL12B, IL10RA and EBI3 in different NII clusters of training cohort and Nanfang cohort2(RT-PCR).The asterisks represented the statistical P-value 
(*P < 0.05; **P < 0.01; ***P < 0.001). H, I The PNI related marker expression in different NII clusters of training cohort and Nanfang cohort2(RT-PCR).
The asterisks represented the statistical P-value (*P < 0.05; **P < 0.01; ***P < 0.001). J The thermogram exhibits variations in gene expression 
of chemokines, interlukins and other cytokines among the three subtypes (Kruskal–Wallis test). Asterisk indicates P-value(*P < 0.05; **P < 0.01; 
***P < 0.001). K The expression of immune-activation-relevant genes (CD8A, CXCL10, CXCL9, IFNG, GZMA, GZMB, PRF1) among three subtypes. 
(L)The fraction of tumor-infiltrating immune signatures calculated by ssGSEA algorithm in three subtypes. Within each subtype, the scattered 
dots represent immune-signature values. The asterisks represented the statistical P-value (*P < 0.05; **P < 0.01; ***P < 0.001). M Pie charts showing 
the Chi-squared test of clinicopathologic factors for three subtypes in the Multi-cohort. N, O The comparing of immune-checkpoint genes in three 
subtypes of training cohort and Nanfang cohort2(RT-PCR), including PD-L1, TGFB1, BTLA,LAG3, HAVCR2, IDO1, TIGIT. The asterisks represented 
the statistical P-value (*P < 0.05; **P < 0.01; ***P < 0.001)
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In the analysis of immune-related factors, the expres-
sion of chemokines, interleukins and other cytokines 
was significantly different among the three subtypes 
(Fig. 2J).Further,we compared the differences in infiltrat-
ing immunocytes and immunity activation factors among 
the three subtypes (Fig. 2K, L).The results hinted at great 
variation in the immune microenvironment.The results 
of ESTIMATE-related indicators were consistent: scores 

were the highest in NII.clusterB followed by non-PNI 
group,and the lowest scores were noted in NII.clusterA 
(Figure S2H). In addition,we analyzed the expression of 
immune checkpoints among the three subtypes in train-
ing cohort and Nanfang cohort2 (Fig.  2N, O).The rela-
tionship between subtypes and the TNM system is shown 
in Fig.  2M.The division of subtypes was significantly 

Fig. 2  (See legend on previous page.)
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related to lymphatic metastasis, infiltration degree and 
survival(all P < 0.001).

Noteworthy differentially‑expressed genes and pathways 
among NII cluster subtypes
To determine the specific molecular characteristics of 
neuroinflammation with PNI, we obtained 5 gene signa-
tures from a Venn diagram between the DEGs of Tumor 
vs. Normal (Figure S3A) and NII.clusterA-PNI vs. NII.
clusterB-PNI (Table S5), including VCAM1, SFRP4, 
ASPN, GREM1 and FNDC1 (Fig. 3A).However, only the 
VCAM1 survival analysis was statistically significant in 
PNI (Fig.  3B, C and Figure S3E-S3H).VCAM1 expres-
sion was also significantly different in other validation 
sets(Figure S3B-S3D).Further,we noticed that IL6-JAK-
STAT3 SIGNALING was enriched in both tumor and 
NII.clusterB-PNI (Fig. 3D).This pathway is reported to be 
closely related to VCAM1 in past reports [27].

Immunohistochemistry(IHC) analysis of VCAM1, 
P-STAT3 and cytokeratin(CK) was performed in NII.
clusterA-PNI and NII.clusterB-PNI samples (Fig.  3E). 
VCAM1 and P-STAT3 were also highly expressed in 
NII.clusterB-PNI compared with NII.clusterA-PNI 
(Fig. 3F). In the analysis of Western Blot(WB) of tumor 
tissue,VCAM1,p-STAT3 and PD-L1 in NII.clusterB-PNI 
were up-regulate than that in other subtypes (Fig.  3G, 
H).In addition,we successfully constructed VCAM1 
shRNA cell models of the GC cell lines SNU-216,NCC-
24,HGC-27,SNU-1 (Supplementary Figure S10A-D). 
When VCAM1 expression was downregulated, STAT3 
phosphorylation was inhibited,and PD-L1 was also be 
down-regulated (Fig. 4A).

Further,CCK8 cell proliferation assay and transwell cell 
shuttle assay were performed on shVCAM1 and shNC 
gastric cancer cells.VCAM1 silencing will suppress the 
cell proliferation and motility of cancer cell.(All P < 0.001, 
Fig. 4B, C) In the results of immunofluorescence between 
shVCAM1 and shNC,we could also observe that PD-L1 
was down-regulated in shVCAM1 GC cells compared 
with shNC GC cells.(All P < 0.001, Fig.  4D, E, F) To 
validate the factor of VCAM1 in regulating the PD-L1 
expression by affecting STAT3 phosphorylation, we suc-
cessfully constructed VCAM1 overexpression model in 
GC cells (Supplementary Figure S10E) and used stattic 
to inhibit STAT3 phosphorylation in gastric cancer cells.
In Fig.  4G-H,STAT3 phosphorylation could be inhib-
ited well at 40 μm of stattic in SNU-216.In Fig.  4I-L,we 
could observe p-STAT3 and PD-L1 were up-regulated in 
VCAM1-OE,while that process were stopped by stattic.

Mutational and methylation features of NII clusters
For somatic mutations, specifically mutated genes as well 
as mutation types in the top 20 genes of the 3 subtypes 

were shown in Fig. 5A and Figure S4A. A higher mutation 
frequency was noted in NII.clusterA-PNI compared with 
NII.clusterB-PNI. For instance,in NII.clusterA-PNI, TP53 
showed the highest mutation frequency(78%) followed 
by TTN(56%) and CSMD3(44%), and missense muta-
tions were the most common. In contrast, TTN(38%), 
ARID1A(31%), and TP53(27%) were the top three most 
frequent mutations in NII.clusterB-PNI. Genes with sig-
nificantly differential mutations between subtypes NII.
clusterA-PNI vs. NII.clusterB-PNI were selected for 
comparison in Fig. 5B. The same analysis of No PNI vs. 
NII.clusterA-PNI and No PNI vs. NII.clusterB-PNI are 
shown in Figure S4B. In the analysis of the cooccurring 
and exclusive mutation patterns,distinct frequent comu-
tations were noted in NII.clusterB-PNI (e.g.,MUC16-
ADCY8, AHNAK2-COL6A3, and CTNND2-DNAH5) 
and NII.clusterA-PNI (e.g., MDN1-NAV3, DMD-
VPS13B, and CELSR3-PLEC) (Fig. 5C). The same analysis 
was performed for the non-PNI group (Figure S4C).Arm-
level deletion frequencies in 6p, 6q, 12p and 17p were 
not noteworthy distinctions between NII.clusterA-PNI 
and NII.clusterB-PNI (Fig.  5F). The results of non-PNI 
vs. NII.clusterA-PNI and non-PNI vs. NII.clusterB-PNI 
are shown in Figure S4H-I. According to Fig.  5G, the 
distribution of G-scores on chromosomes 1–22 of sub-
types was shown.The burden of copy number gain and 
loss between NII.clusterA-PNI and NII.clusterB-PNI at 
both focal and broad levels showed a remarkable differ-
ence, whereas the non-PNI subgroup showed no appar-
ent discrepancy(Fig.  5H). Detailed cytobands with focal 
amplification(upside) and focal deletion(downside) of 
NII.clusterA-PNI and NII.clusterB-PNI were shown in 
Fig.  5I. The results of the non-PNI group are shown in 
Figure S4F-S4G.

Regarding methylation, the heatmap showed the 
distribution of differential CpG sites in NII.clusterA-
PNI and NII.clusterB-PNI (Fig.  5D).The results indi-
cated that patients in NII.clusterB-PNI have more 
hypermethylated sites. In addition, the proportions 
of hypermethylated and hypomethylated sites in the 
screened promoter regions(5’ UTR, TSS200, TSS1500 
and 1st Exon) are shown in Fig.  5E. NII.clusterB-PNI 
patients had more highly differentially methylated sites 
in four promoter regions compared with NII.clusterA-
PNI patients.Similarly, we present a comparison of 
the non-PNI and NII.clusterB-PNI subtypes in Figure 
S4D-E. Patients in NII.clusterB-PNI have more differ-
entially hypermethylated sites.

The analysis of inflammation score and NII cluster subtypes 
in race,TCGA classification and ACRG classification
In order to learn the relation of inflammation and dietary 
or living habits,we performed inflammation score among 
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the white,the Asians and the Black or African American.
In GC patients, the white people have a higher inflam-
matory burden in the tumor microenvironment than the 
Asians, while the Black or African American people have 

an intermediate inflammatory burden level between the 
two groups (Fig.  6A).In No PNI, NII.clusterA-PNI, and 
NII.clusterB-PNI, the distribution of these three groups 
of people is also different (Fig. 6B, P < 0.05).

Fig. 3  A Five overlapping genes (VCAM1, SFRP4, ASPN, GREM1 and FNDC1) in the intersection of “Tumor vs. Normal” and “NII.clusterA-PNI vs. NII.
clusterB-PNI” are considered as genes playing potential regulatory roles in the inflammation mediated by perineural invasion. B-C Kaplan–Meier 
curves for the patients with high and low VCAM1 expression in PNI group (Log rank test, p = 0.023.) and No PNI group(Log rank test, p = 0.73.) 
D A marked signal pathway (IL6-JAK-STAT3 SIGNALING) tabbed by red box is regarded important in the inflammation mediated by perineural 
invasion. E Representative IHC results of VCAM1, P-STAT3 and CK in tumor slices of NII.clusterA-PNI and NII.clusterB-PNI patients.(S100 marked 
nerves in brown,VCAM1,P-STAT3 and CK were in pink) F The statistical results of VCAM1 and p-STAT3 in (E).(All P < 0.001) G, H The WB results 
of VCAM1,P-STAT3 and PD-L1 protein expression of tumor tissue from No PNI,NII.clusterA-PNI and NII.clusterB-PNI patients.Statistics are based 
on the average of the gray values of the bands from three independent experiments.The asterisks represented the statistical P-value (*P < 0.05; 
**P < 0.01; ***P < 0.001)
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Further,we have performed inflammation score and 
NII cluster subtypes analysis in TCGA classification and 
ACRG classification.In TCGA classification,genomically 
stable (GS) had the highest inflammatory burden 
(Fig.  6C), while microsatellite instability (MSI) had the 
lowest. In the distribution results of TCGA classifica-
tion in NII cluster subtypes (Fig.  6D), GS was mainly 
distributed in NII.clusterB-PNI.MSI was mainly distrib-
uted in No PNI and NII.clusterA-PNI.As for ACRG clas-
sification (Fig.  6E),EMT had the highest inflammatory 
burden,while MSI had the lowest.The majority of EMT 
patients were distributed in NII.clusterB-PNI, in con-
trast, the majority of MSI patients were distributed in No 
PNI and NII.clusterA-PNI (Fig. 6F).

Construction and validation of the NII scoring system
To predict the prognosis of and immune infiltration 
level in STAD patients,we generated the NII score as a 
quantitative indicator of the NII landscape using princi-
pal component analysis(PCA).In the training cohort,we 
obtained 1207 upregulated genes and 351 downregu-
lated genes by comparing NII.clusterA and B (Figure 
S5A and Table S5). A detailed description of the enriched 
biological pathways is provided in Table S6. Then 47 
representative genes were ultimately selected for PCA 
construction by univariate Cox regression (p < 0.05) and 
random forest(ntree500, nPerm50) (Table. S7, Figure 
S5B). Unsupervised clustering was performed in the 
classification of STAD patients(Gene clusters A and B) 
and representative genes(NII gene signatures A and B)
(Fig.  7A). The prognosis between gene cluster A and B 
was remarkably different in training cohort (Figure S5C). 
Finally,each patient acquired an individual NII score 
according to PCA. We ranked the GC samples accord-
ing to their NII score and analysed correlativity with 
other factors (Fig.  7B). The score construction process 
and its relationship with PNI, survival status and other 
clustering methods were shown in Fig. 7C. Based on the 
training cohort, the best cutoff value was -3.105 which 
was used to divide high or low NII score.The NII score 
manifested as a remarkable prognostic indicator via mul-
tivariate regression analysis in the training cohort as well 
as the other three validation cohorts (Fig. 7D, S6A-S6C). 
Subgroup analysis verified the independence of the NII 

score (Figure S6D-S6G). There were considerable dif-
ferences in survival analysis between high and low NII 
score subgroups (Fig. 7E-H). Furthermore, the prognostic 
power of the NII score was examined in a wide spectrum 
of gastrointestinal tumors (Figure S5D-S5I). In addition, 
we discovered that the NII scores of NII.clusterA and 
Gene cluster A were both increased (Fig. 7I, J).

Analyse of immunotherapy and chemotherapy sensitivity 
for NII score system
In Fig.  8A and B, though more abundant immunocytes 
infiltrated in low NII score patients, these cells also exhib-
ited more immunosuppressive characteristics, including 
multiple immune checkpoints and Treg cells. Similarly, 
patients with low NII scores had higher immune scores, 
stromal scores and ESTIMATE scores (Figure S7A). We 
found that the angiogenesis signaling pathway, epithe-
lial mesenchymal transition signaling pathway, inflam-
matory-response signaling pathway, TGF-β signaling 
pathway, Notch signaling pathway and other immune 
response pathways were activated in the low NII score 
subgroup (Fig. 8C). To analyze the relationship between 
the NII score and PNI, we found patients without PNI 
distinctly obtained higher NII scores (Fig.  8E, F), and 
their prognosis was subsequently more optimistic. The 
scores of each patient in the training cohort and Nan-
fang cohort 2 were listed in Tables S9, S10. The non-PNI 
group exhibited a higher frequency(72% vs.52%) com-
pared with the high NII score subgroup (Figure S8A). In 
the representative results of multiple immunofluores-
cence staining (Fig. 8D), patients with a low NII score had 
more immune cell infiltration than those with a high NII 
score (DAPI, Figure S8B-S8E). Similar findings are noted 
in Fig.  8A. In addition,we analyzed the immunotherapy 
response in the tissue of GC patients after anti-PD1 
treatment (Fig. 8G, CPS score obtained from pathologi-
cal report), and found CD3 + /CD8 + /CD28 + T cell infil-
tration increased in the TME of PNI patients with a low 
NII score and the non-PNI patients (Fig. 8H). Upon anti-
PD1 treatment, no CD8 + /CD28 + T cells were noted in 
PNI patients with a high NII score,and tumor cells(CK 
marked, Fig. 8G) were still diffused in the TME. Various 
degrees of T-cell activation were noted in other groups, 
and tumor cells could be seen in small clusters.

(See figure on next page.)
Fig. 4  A VCAM1,STAT3, P-STAT3 and PD-L1 protein expression of shRNA cell models in SNU-216,NCC-24,HGC-27 and SNU-1(VCAM1 sh1,sh2 
and natural contrast).Statistics are based on the average of the gray values of the bands from three independent experiments.The asterisks 
represented the statistical P-value (*P < 0.05; **P < 0.01; ***P < 0.001). B The OD value of CCK8 analysis of VCAM1 silencing of three independent 
experiments in SNU-216 and HGC-27(shVCAM1 vs. shNC,*P < 0.05; **P < 0.01; ***P < 0.001) C The representative figures of transwell experiments 
of SNU-216 and HGC-27 for culturing 48 h.The statistical results were performed in 5 random views of per group under 20X. (*P < 0.05; **P < 0.01; 
***P < 0.001) (D) The representative immunofluorescence figures of SNU-216 and HGC-27(shVCAM1 vs. shNC,VCAM1 in red,PD-L1 in green and DAPI 
in blue,under 40X). E, F The statistical results of VCAM1 and PD-L1 in (D). (*P < 0.05; **P < 0.01; ***P < 0.001). G The WB results of SNU-216 stimulated 
with stattic. H The statistical result of three independent experiments in (G). (*P < 0.05; **P < 0.01; ***P < 0.001). I The WB results of SNU-216 
VCAM1-OE stimulated with stattic. J, K, L The statistical result of three independent experiments in (I). (*P < 0.05; **P < 0.01; ***P < 0.001)
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Fig. 4  (See legend on previous page.)
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Based on the CTRP database and PRISM database, we 
report some potentially effective chemotherapy drugs for 
high and low NII score patients (Figure S9A-S9C). The 
lower AUC and IC50 values of high NII score patients 

indicate sensitivity to these drugs, suggesting that 
patients with high NII scores might benefit more from 
chemotherapy(including 5-fluorouracil,gemcitabine,oxal
iplatin). More chemicals were shown in Figure S7B-S7C.

Fig. 5  A Mutation landscape of NII.clusterA-PNI and NII.clusterB-PNI subtypes. The 20 genes with the highest mutation frequency are shown 
and samples are sorted by the TMB in each subtype. The small figure above shows the TMB, the numbers on the right exhibit the mutation 
frequency of each regulator, and the figure laterally shows the proportion of each variant. B Waterfall plot reveals significantly differentially mutated 
genes between NII.clusterA-PNI and NII.clusterB-PNI subtypes(Fisher exact test, p < 0.05). Individual patient is represented in each column. The 
numbers on either hand show the mutation frequency of each gene. Different colors represent different mutation modes. C Interaction effect 
of genes mutating differentially in patients in the NII.clusterA-PNI and NII.clusterB-PNI subtypes. D Heatmap of differentially methylated CpG sites 
in the promoter region between samples of NII.clusterA-PNI and NII.clusterB-PNI subtypes. F The diversity of methylation of the different regions 
of genes in the promoter region including 1stExon, SUTR, TSS1500 and TSS200. G Comparisons of arm-level amplification and deletion frequencies 
between NII.clusterA-PNI and NII.clusterB-PNI subtypes. H Copy number profiles for three subtypes, with gains in orange and losses in green. 
Gene segments are placed according to their location on chromosomes, ranging from chromosome 1 to chromosome 22. I Distribution of CNV 
with focal-level and arm-level copy number alterations among three subtypes. (ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001) Detailed 
cytoband with focal amplification (up) and focal deletion (down) in NII.clusterA-PNI and NII.clusterB-PNI
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Fig. 6  A The analysis of inflammation score among different races in training cohort. B The distribution of different races in NII classification 
in training cohort. C The analysis of inflammation score among TCGA subtypes in training cohort. D The distribution of TCGA subtypes in NII 
classification in training cohort. E The analysis of inflammation score among ACRG subtypes in training cohort. F The distribution of TCGA subtypes 
in NII classification in training cohort.(All of above,ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001)
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Fig. 7  A Identification of NII score subgroups of STAD patients. B An overview of the association between known clinical and inflammation features 
(TNM stages, NII.clusters, gender and PNI) and NII score. Columns represent samples sorted by NII score from low to high (top row). Rows represent 
known clinical and inflammation features. C Alluvial diagram of NII.clusters in groups with different PNI groups, Gene.clusters, NII score, and survival 
status. D Forest plot displays the result of multivariate Cox regression analyses of significant prognostic factors. (Log rank test p < 0.001.) E–H Kaplan–
Meier analyses demonstrate that patients with higher NII score exhibit worse prognosis in the training cohort (P < 0.0001), validation cohort 1 
(P = 0.0026), validation cohort 2 (P < 0.0001) and validation cohort 3(P < 0.0001). I, J Relative distribution of NII score in groups with Gene.clusters 
and NII clusters. The thick line represents the median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). 
The differences between groups were both compared through the Kruskal–Wallis test (p < 0.0001)

(See figure on next page.)
Fig. 8  A Derived ssGSEA scores of immune signatures obtained from STAD gene expression data for the groups of high and low NII score. The 
range of P values were labeled above each boxplot with asterisks.(ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001) B The correlation 
of immune cells and NII score in the training cohort. The range of P values are represented by color from yellow to green. C The significantly 
enriched signal pathways from Gene Set Enrichment Analysis (GSEA) performed between the subgroups of high and low NII score in the Multi 
cohort. D The representative results of multiple immunofluorescence staining of subgroups(PNI with high NII score,PNI with low NII score,non-PNI 
with high NII score and non-PNI with low NII score).(S100 in red,CD68 in green,CD20 in orange,CD8 in purple,CD4 in white and DAPI in blue.The 
statistical results were performed in 5 random views of per group under 40X. *P < 0.05; **P < 0.01; ***P < 0.001) E, F The comparing between PNI 
and non-PNI patients in training cohort and Nanfang cohort 2. G The representative figures of IHC analyse of subgroups(PNI with high NII 
score, PNI with low NII score and non-PNI patients, CPS scores were obtained from clinical pathological report) accepting anti-PD1 treatment. 
(S100,CD3,CD8,CD28 and CK were stained with DAB in brown,nucleus were stained with hematoxylin in purple) (H)The statistical result of CD3,CD8 
and CD28 were performed in 5 random views of per group under 40X.(*P < 0.05; **P < 0.01; ***P < 0.001)
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Fig. 8  (See legend on previous page.)



Page 15 of 19Li et al. J Exp Clin Cancer Res          (2023) 42:206 	

Generation and validation of integrated prognostic model
With the goal of optimizing prognostic stratification, 
we used the decision tree to establish three risk levels 
(Fig. 9A). Patients with high NII scores were defined as 
the low-Risk, whereas the medium- and high-risk levels 
were defined based on a low NII score & non-PNI and 
a low NII score & PNI, respectively. Significant differ-
ences in overall survival were observed among the three 
risk subgroups(P < 0.0001,Fig.  9B). In multivariate Cox 
analysis,the NII score,age,TNM stage,PNI and lymph 
node positive detection rate were independent fac-
tors significantly associated with OS (Table S8). Then, 
the personalized scoring nomogram was generated to 
predict 3- and 5-year OS probability (Fig.  9C). In the 
calibration curves, the 3- and 5-year survival predicted 
by the nomogram were consistent with the ideal perfor-
mance (Fig. 9D). Decision curves indicated that the net 
benefits to patients offered by the nomogram surpassed 
TNM system (Fig. 9E). The nomogram appeared to be 
better at prominently predicting survival than TNM 
system in time-independent ROC analysis(training 
cohort: AUC of nomogram = 0.814 (0.753–0.875), AUC 

of TNM stage = 0.553(0.471–0.635),P < 0.001;validation 
cohort: AUC of nomogram = 0.765(0.696–0.834), AUC 
of TNM stage = 0.685(0.589–0.741), P = 0.002) (Fig. 9H, 
I). In the K-M curves(training cohort: P < 0.001; valida-
tion cohort: P < 0.001, Fig. 9F, G) and the time-depend-
ent ROC curves (Fig.  9J), the formidable prognostic 
capacity of the nomogram was distinctly verified, and 
patients with higher nomogram points tended to worse 
prognosis.

Discussion
PNI is a common pathological feature of solid tumors, 
which often leads to poor prognosis of patients [28–30]. 
PNI is listed as one of the recommended risk factors for 
chemotherapy in cancer guidelines [6, 7], even in the 
early stage of disease. Recently, the regulatory role of 
nerves in the tumor microenvironment has attracted the 
attention of researchers, especially their role in the regu-
lation of tumor immunity. As an increasing number of 
immunotherapies have made breakthroughs in clinical 
trials, immunotherapy has gradually entered the clinic 
as a powerful means to treat cancer patients, such as the 

Fig. 9  A A survival decision tree built to optimize the prognostic stratification combined with a alluvial diagram of risk stratification and survival 
status. B Significant differences of overall survival (OS) are observed among the three risk subgroups (P < 0.0001). C A personalized scoring 
nomogram is generated to predict 3- and 5-year OS probability with five parameters( TNM Stage, Age, PNI, Lymphv and NII score), and the arrow 
shows an example. D Calibration curves of 3-year and 5-year overall survival (OS) prediction are close to the ideal performance (45-degree 
line). E Decision curve demonstrates that the nomogram exhibited more powerful capacity of survival prediction compared with TNM stage 
system. F-G Kaplan–Meier curves for the patients with high and low overall survival of Nomogram points in the training cohort (Log rank test, 
p < 0.0001.) and validation cohort (Log rank test, p < 0.0001.). H-I The comparing between nomogram and TNM system with ROC in training cohort 
and validation cohort. J Time-dependent ROC curves of nomogram in training cohort
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anti-PD1 regimen in GC [31–33]. However, a new chal-
lenge is currently noted. Immunotherapy is not effective 
in all patients enrolled in cohort studies or in clinical 
practice [34, 35]. The identification of patients who can 
benefit from treatment is urgently needed. In this study, 
we focused on GC patients with PNI and analyzed the 
relationship among PNI, inflammatory reactions and 
immunity. Based on these results, we developed a PNI-
related scoring system and validated its performance in 
predicting the benefit of immunotherapy and chemother-
apy in GC patients.

In this study, GC patients with PNI had significantly 
worse outcomes than patients without PNI, both in the 
public database cohorts and the Nanfang cohort. Our 
results are similar to those of most PNI-related cohort 
studies [28–30]. Inspired by the inflammatory response 
triggered by peripheral nerve damage, we assessed 
whether similar inflammatory infiltrations might occur 
in the PNI of the tumor microenvironment. Based on 
the inflammation score results, we found that patients 
with high levels of inflammation had a worse prognosis 
than those with low levels. The degree of the inflamma-
tory response in GC patients with PNI was significantly 
higher than that in PNI-negative patients. In the GSEA 
results, we observed that inflammatory response path-
ways were enriched in PNI patients. Similarly, we 
obtained similar results from the TCGA cohort of colo-
rectal cancer patients. In past studies, researchers have 
also suggested that perineural invasion is closely related 
to inflammatory infiltration in various cancers, such as in 
keratinocyte carcinomas [36] and pancreatic cancer [37]. 
Different degrees of inflammatory response induction 
potentially cause differences in immune cell infiltration 
in the tumor microenvironment.

As shown in Figure S1F, not all patients with PNI have a 
high inflammatory response, and not all negative patients 
have a low inflammatory response. It is possible that the 
type of inflammatory response caused by PNI has some 
unique characteristics.This notion seems to be supported 
by previous studies of cancer with PNI [38–40].There-
fore, we further explored the relationship between PNI 
and the inflammatory response through unsupervised 
clustering.We found two PNI subtypes that exhibit oppo-
site prognoses and significant differences compared with 
PNI-negative patients.In subsequent analysis, many path-
ways associated with malignant progression were highly 
enriched in NII.clusterB-PNI, such as EPITHELIAL 
MESENCHYMAL TRANSITION and KRAS SIGNAL-
ING. This finding also suggested that NII.clusterB-PNI 
patients had the worst prognosis, which was consistent 
with the survival analysis results. However, NII.clus-
terB-PNI also had the most abundant immune cell infil-
tration, including CD8 + T cells, B cells, DCs and APCs 

(Fig. 2L). In previous studies, abundant immune infiltra-
tion often predicts a good antitumor immune response 
[41, 42],which suggests a better prognosis. Interestingly, 
we found that most immune checkpoint markers,such as 
PD-L1, LAG3 and IDO1, were highly expressed in NII.
clusterB-PNI (Fig.  2N, O). We also found that VCAM1 
may represent a key molecular signature causing these 
differences among the three subtypes (Fig. 3). It has been 
reported that VCAM1 is closely related to PNI [43]. In 
the past, many reports have shown that VCAM1 and 
STAT3 are closely related, but the specific mutual reg-
ulation mechanism is not clear at present,especially 
in tumor microenvironment. Luo et  al. [27] reported 
that IL6/STAT3 would promote VCAM1 expression in 
RAW264.7 in the cardiovascular system.In our results,we 
found that the VCAM1 expression of GC cells will also 
affect the phosphorylation of STAT3 in regulating PD-L1 
expression.There seems to be a positive feedback regu-
lation between VCAM1 and STAT3 in tumor cells. In 
addition,VCAM1 silencing will suppress the cell prolifer-
ation and motility of cancer cell,which were similar with 
Ye.et al. [44] reported in their study.These results explain 
the poor prognosis of NII.clusterB-PNI patients among 
the three subtypes.

In addition, we analyzed somatic mutations and DNA 
methylation among these subtypes.For somatic muta-
tions, compared with NII.clusterB-PNI, NII.clusterA-PNI 
and No PNI patients had higher levels of somatic muta-
tion frequencies.Comparisons revealed higher levels of 
arm-level amplification and deletion frequencies in NII.
clusterA-PNI and No PNI patients compared with NII.
clusterB-PNI patients.In previous reports, a copy num-
ber loss was related to the response to immune check-
point blockade therapy [45].Cancer-specific neoepitopes 
may be generated by somatic mutations and deletion fre-
quencies, and these may serve as good targets for cancer 
vaccines.More mutations might offer more opportuni-
ties for immunity against cancer [46], thus underscoring 
the better prognosis of NII.clusterA-PNI and No PNI 
patients than NII.clusterB-PNI patients. Regarding DNA 
methylation, it is worth noting that the promoter regions 
of BACH2 [47], MTAP [48], and RUNX1T1 [49] were 
hypermethylated in NII.clusterB-PNI patients compared 
with NII.clusterA-PNI patients.These genes act as inhibi-
tory factors in cancer.

Considering the relationship between gastrointestinal 
tumors and the dietary or living habits of patients,we 
analyzed the inflammatory burden of gastric cancer 
patients of different races and their distribution in the NII 
cluster system (Fig. 6A, B). In GC patients, white people 
have a higher inflammatory burden in the tumor micro-
environment than Asians, while Black or African Ameri-
can people have an intermediate inflammatory burden 
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level between the two groups.In No PNI, NII.clusterA-
PNI, and NII.clusterB-PNI, the distribution of these three 
groups of people is also different. These results suggest 
that different living or dietary habits may be related to 
the inflammatory burden in the tumor microenviron-
ment of patients with GC.The H. Pilory-infection is also 
an important factor in causing chronic inflammation in 
GC [50].Unfortunately, we were unable to obtain a suit-
able cohort of H. Pilory-infected gastric cancer patients 
in public database with clear information of PNI. There-
fore, this analysis could not be performed. Since the 
TCGA classification [51] and ACRG classification [52] 
of GC have been reported, these two classification meth-
ods have received extensive attention.We compared the 
differences in inflammatory burden across subtypes and 
their distribution in the NII cluster system.As reported in 
TCGA classification [51],PD-L1 was one of the molecular 
characteristics of EBV,we also observed the high expres-
sion of PD-L1 in NII.clusterB-PNI. However, the majority 
of CIN patients were widely distributed in different sub-
groups of our classification. This also suggests that our 
classification method may be useful for these patients in 
predicting response for immunotherapy. In ACRG clas-
sification [52], EMT had the worst prognosis while MSI 
had the better prognosis than other subtypes.This view is 
similar to our results in Fig. 1C and Fig. 2D. However, the 
other two subtypes were more evenly distributed, which 
also suggests that our classification method is useful in 
predicting response to immunotherapy, especially for 
MSS patients in the ACRG classification (Fig. 6C-F).

Based on our analysis in this study, inflammation 
caused by PNI was varied in GC patients, and the 
immune cell infiltration, somatic mutation and meth-
ylation of subtypes also differed among patients.These 
findings significantly affect the prognosis and treatment 
of GC patients.Therefore, we translated the NII cluster 
system into the NII score system and visualized it as a 
nomogram with other clinical characteristics.This infor-
mation is useful for clinicians to calculate a specific score 
for each patient.The NII score system and nomogram 
exhibited excellent performance in predicting patient 
prognosis.We have also demonstrated the stability and 
efficacy of the system in other tumor types.In addition, 
the NII scoring system can be used to identify patients 
who may benefit from immunotherapy and chemother-
apy.Compared with other prediction models based on 
the inflammation induced by PNI [53, 54], we offered a 
more precise classification of patients.GC patients with 
PNI and high NII scores may benefit more from immu-
notherapy and chemotherapy.Other applicable molecular 
drugs can be identified for other types of patients.

Some limitations in this study should be noted.First, 
given the influence of inflammation induced by PNI, it 

was difficult to understand whether the two PNI-related 
types had opposite developmental patterns or whether 
NII.clusterA-PNI patients develops into NII.clusterB-PNI 
patients during PNI progression.More in-depth explora-
tion is needed in the future.However, this phenomenon 
does not affect the ability of the NII system to judge and 
predict the immediate state of patients,especially before 
accepting immunotherapy.When patients choose to 
receive immunotherapy on the basis of PDL1 expression 
(CPS score), the prediction of treatment benefit is often 
imprecise (Fig. 8G). Understanding the regulatory role of 
the nervous system in the tumor microenvironment may 
bring more help. Second, the signature gene of NII.clus-
terB-PNI,VCAM1,is need to explore in the future about 
the interaction with STAT3 in regulating the expression 
of PD-L1,which will be a hopeful biomarker to develop 
new treatments for GC patients.Third, we lacked a large 
prospective cohort to verify the validity and accuracy of 
our model’s identification and prediction.However, we 
attempted to address this problem by validating our model 
with a large retrospective cohort and tissue samples.

In conclusion, we have identified different subtypes of 
neuroinflammation in GC patients.Based on the features 
of these subtypes, we developed and validated an NII 
scoring system and visualized it into a nomogram, which 
could be used to predict the prognosis, immunotherapy 
and chemotherapy benefit of GC patients.This instru-
ment represent a potential tool for clinicians in the treat-
ment of GC patients.
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