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Harmonious genetic combinations rewire
regulatory networks and flip gene essentiality

Aaron M. New® ! & Ben Lehner® 123

We lack an understanding of how the full range of genetic variants that occur in individuals
can interact. To address this shortcoming, here we combine diverse mutations between
genes in a model regulatory network, the galactose (GAL) switch of budding yeast. The
effects of thousands of pairs of mutations fall into a limited number of phenotypic classes.
While these effects are mostly predictable using simple rules that capture the ‘stereotypical’
genetic interactions of the network, some double mutants have unexpected outcomes
including constituting alternative functional switches. Each of these 'harmonious’ genetic
combinations exhibits altered dependency on other regulatory genes. These cases illustrate
how both pairwise and higher epistasis determines gene essentiality and how combinations
of mutations rewire regulatory networks. Together, our results provide an overview of how
broad spectra of mutations interact, how these interactions can be predicted, and how
diverse genetic solutions can achieve ‘wild-type’ phenotypic behavior.
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uman genomes contain millions of genetic variants. Each

of these variants can have diverse effects, for example

quantitatively increasing, decreasing, or changing the
activity of individual genes!. Understanding and predicting how
the particular combination of variants present in each individual
affects molecular processes and phenotypic traits is a fundamental
challenge for human genetics and evolutionary biology?. To date,
however, systematic analyses of how mutations in different genes
combine to influence phenotypes have used only one or a few
mutations in each gene, most often an inactivating null allele34. A
more complete understanding of how mutations combine in
individuals will require functionally diverse mutations in indivi-
dual genes to be combined in large numbers®.

The GAL regulatory (GALR) system from yeast is a promising
model to begin such studies because it is mechanistically well-
understood, has relatively few molecular players, and is an
important model of gene network function and evolution®’
(Fig. 1a). This network is required for sensing the sugar galactose
and then inducing transport (via Gal2) and the Leloir pathway
proteins Gallp, Gal7p, and GallOp necessary to metabolize this
sugar as a carbon source for growth. The core of this network
consists of three regulatory genes and their protein products:
GAL4, a transcriptional activator; GAL80, its repressor; and
GAL3, which acts as a GAL sensor by inhibiting Gal80p as an
activated Gal3p-Galactose-ATP complex® (Fig. la). The GALI
locus, encoding the first Leloir enzyme galactokinase (GALK)
Gallp, is a paralog of GAL3 that can also effect galactose sensing.
The ancestral GALK locus likely encoded a bifunctional protein
that was duplicated to give rise to the main sensor Gal3p and the
kinase Gallp®.

Here, we present a systematic analysis of how mutations in
GALR genes with diverse individual effects combine to alter gene
expression and growth phenotypes. We quantify the effects of
>5000 pairs of mutations and find that, despite strong genetic
interactions in the network, they typically exhibit a few stereo-
typical phenotypic behaviors, allowing their outcomes to be
predicted. However, for individual genotypes, unexpected genetic
interactions can be important. In particular, interactions between
gain-of-function mutations in the GAL4 and GAL80 regulators
can reconstitute wild-type (WT)-like switches, exhibiting multiple
phenotypes of the WT GAL system, including repression of the
pathway in glucose, and induction of the pathway and robust
growth in the presence of galactose. We show that these “har-
monious” combinations do not simply reconstruct the original
wild-type network but rather represent alternative, re-wired
switches in which the functions and importance of the galactose
sensors GALI and GAL3 have changed. This includes a case
where the essentiality of GALI and GAL3 are reversed. This
illustrates how the selective pressure on a pair of paralogous genes
can change substantially as a result of higher-order epistasis with
mutations in other genes. Taken together, our results illustrate
how gene essentiality and function can be flipped by interactions
between mutations in other genes.

Results

Systematically combining mutations in GALR genes. To sys-
tematically explore how mutations in the GALR genes GAL4,
GAL3, and GAL80 affect GAL pathway output we first tested all
combinations of GALR WT or coding sequence deletions (A) to
give 23 =8 unique genotypes (Fig. 1b, c and Methods). GAL
pathway activation and growth were quantified using flow cyto-
metry to measure cell density and the expression of a Gallp-
YeCitrine (YFP) reporter in two environments. The first envir-
onment was an initial “uninducing” condition where cells had
reached saturation in media with a low concentration of glucose,

and the second condition was “inducing” after 12 h of growth in
galactose. As expected, across these eight genotypes, the GAL
pathway exhibits three phenotypic classes: Inducible, Unin-
ducible, and Constitutive (Fig. 1d-f, Supplementary Fig 1, and
Source Data). The WT GALR system is Inducible because it is
repressed in glucose and activated in galactose. The single
mutants AGAL3 and AGAL4 result in Uninducible phenotypes
because they do not activate GAL expression in any conditions,
and AGALS80 drives Constitutive phenotypes because GAL
expression is activated in glucose. The triple mutant and all
double-mutant genotypes yielded Uninducible phenotypes except
the AGAL80 + AGAL3 mutant, which is Constitutive because WT
GAL4 is not repressed in the AGAL80 background. GALI-YFP
expression was highly predictive of growth rate across these
genetic backgrounds (Fig. 1f).

Generating a diverse set of GALR alleles. Next, to investigate
how richer spectra of mutations in the three-GALR genes inter-
act, we used PCR mutagenesis to generate variants of the three-
GALR genes and phenotyped them using flow cytometry (Sup-
plementary Tables 1-3 and Methods). We observed GALR alleles
that individually behaved as detrimental, mildly detrimental, and
WT-like. We also observed mutations in GAL80 (“GAL80S”) that
led to Uninducible phenotypes, as well as mutations in GAL4
(“GAL4C”) that caused Constitutive expression. Since these were
relatively rare, we generated a number of previously described
gain-of-function mutants in GAL80'®!! and we mutagenized
position L868 of GAL4, a site in the Gal80p-binding interface of
the Gal4p activation domain where mutation to P had previously
been shown to drive a constitutive phenotype!? (Methods and
Supplementary Tables 1-11).

Quantifying the effects of >5000 double mutants. We selected a
subset of these mutants based on their expression in glucose and
galactose representing these different phenotypic classes, includ-
ing strong loss-of-function alleles, gain-of-function alleles, and
phenotypically WT-like variants (Methods). We used these alleles
to perform a pairwise combinatorially complete experiment
where all pairs of GALR variants were combined together and the
resulting phenotype quantified. In total, we combined 46 alleles of
GAL3, 39 of GAL80 and 43 of GAL4. After transformation, this
library included 98% of the possible pairwise genotypes, giving
5317 unique double-mutant combinations (Fig. 2a and Methods).
We quantified GAL pathway expression and growth character-
istics for each genotype as before (Supplementary Fig 1 and
Source Data).

The resulting phenotypes were more diverse than when
combining gene deletions (Fig. 2b and Supplementary Fig. 2),
but most genotypes still grouped into a limited number of
phenotypic classes (Fig. 2c, Supplementary Fig. 3A-D, and
Methods), with 92% of the 5317 genotypes falling into the
Inducible, Constitutive and Uninducible expression classes
observed when combining gene deletions (Fig. 2c). A further
~5% of “Leaky” genotypes were closest to Inducible profiles but in
glucose exhibited a detectable fraction of ON cells with low mean
expression (Supplementary Fig. 3). Finally, 3% of samples fell into
a “Weak expression” class with low maximal expression in
glucose and galactose. Neither of these behaviors was observed
when combining null alleles.

Double mutants exhibit limited expression phenotypes. We
found that only a limited number of expression phenotype classes
were observed for double mutants when single mutants from
particular phenotypic classes were combined (Fig. 2d, e). For
example, when Leaky GAL80 mutants were combined with
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Fig. 1 Combinatorial genetic analysis of the GAL pathway. a Overview of GAL pathway regulation. b In vivo homologous recombination to combine alleles of
three GALR genes into a chassis strain with all three genes deleted. ¢ Cubic representation of combinatorially complete genetics experiments combining
alleles in multiple loci. d Three phenotypic classes of GALR deletion mutants. Lines and shading are the mean and + 1 SD of genotypes falling into the given
expression class (N =4 for N =2 independent transformations for each unique genotype). Blue lines are samples growing in glucose and red lines are
samples after 12 h of growth in galactose. e Expression distributions summarized by the fraction of cells ON in galactose and glucose. Points are mean
values for each unique genotype, and are colored to reflect the number of mutations. f Fraction ON in glucose and galactose predicts growth rate. Blue line
and shaded region are the expectation and 95% confidence interval of a linear model

Uninducible GAL3 mutants, 108/113 of the double mutants
(96%) fell into the Leaky phenotypic class, with the remaining 4%
classified as Inducible. The single mutants in GAL3, GAL4, and
GALS8O fell into two, four, and four phenotypic classes, respec-
tively, giving a total of 32 distinct paired-locus expression class
combinations in the double mutants. For 30/32 combinations
(94%), >90% of the resulting double mutants fell into a single
phenotypic class (Fig. 2d and Supplementary Table 4). The most
diverse double-mutant phenotypes were observed when com-
bining Uninducible GAL80 mutants with Constitutive GAL4
mutants, in which case all five phenotypic classes were observed.
However, even in this case, 56% (20/36) of the double mutants
were Constitutive, a significant enrichment (p = 1.5 x 104, Chi-
squared test and Fig. 2d and Supplementary Fig. 4). These results
suggest that gene expression in the GAL system changes in a
largely stereotypical manner when combining mutations in the
GALR genes, especially for loss-of-function mutations.

Abundant epistasis when combining GALR mutations. We
next asked whether the growth rate in galactose of double
mutants could be predicted from the phenotypes of single
mutants. We first tested the extent to which the growth rates of
double mutants were predicted by simply multiplying the relative
growth rates of the single mutants. This is the most commonly
used null model for how mutations combine in both quantitative
genetics and functional genomics and assumes that mutations
have independent effects on growth313. The multiplicative model
of single mutants explained 55% of the variance in the growth
rate of the 5120 double-mutants (Supplementary Fig. 5A, Meth-
ods). There is therefore substantial epistasis when combining
pairs of mutations in the GALR genes. Predictive performance
varied widely across different combinations of single-mutant
classes with some combinations being generally poorly predicted.
For example, all pairwise combinations of Constitutive GAL80
and Uninducible GAL3 were Constitutive and therefore grew at
high rates, when the prediction was that they would grow
slowly due to GAL3’s low growth rate. Similarly, fast-growing

Constitutive GAL4 variants were predicted to grow slowly in
Uninducible GAL3 backgrounds, when the double mutant
remained Constitutive.

Single mutants predict the fitness of double mutants. We next
asked whether knowing the expression class of each single mutant
allowed more accurate prediction of the growth rates of the
double mutants. Specifically, we tested a model in which all the
mutations in a particular gene in a given gene expression phe-
notypic class combine with all the mutations in a second gene in a
given expression phenotypic class to give the same double-mutant
growth phenotype. Using five gene expression classifications for
each single mutant (Inducible, Constitutive, Uninducible, Leaky,
and Weak Expression) gives a total of 23 double-mutant classes in
the dataset (e.g., Uninducible GAL3 x Constitutive GAL80). We
simply used the mean growth rate of all of the genotypes falling
into each of the 23 double-mutant classes as the prediction of the
growth rate of each double mutant in the class. So, for example,
the mean of all double mutants of an Uninducible GAL3 plus a
Constitutive GAL80 was used as the predicted growth rate for all
double mutants whose single GAL3 variant was Inducible and
whose single GAL80 variant was Constitutive. These mean values
explained 89%, 90%, 91% of total growth rate variance for double
mutants in GAL3 vs. GAL4, GAL80 vs. GAL3, and GALS80 vs.
GAL4 pairings, respectively (Methods). Across all double
mutants, this model explained 91% of growth rate variance.
Using a coarser classification of only three single-mutant
expression phenotypes (Inducible, Constitutive, and Uninducible)
gives 14 possible double-mutant classes. Using the mean growth
rate in each of these 14 classes to predict the growth of all double
mutants still explains 89% of growth rate variance (Fig. 2f,
Supplementary Fig. 5B, C, D, Methods, and Source Data).
Moreover, even if we only used the mean growth rate of one
random genotype from each expression class pairing, the
predictions remain accurate, with a median of 86% (IQR=
84.0-88.0%) and 88% (IQR = 86.3-89.6%) of the total growth
rate variance explained in the remaining >5000 double mutants
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(Methods)

for the three and five expression class models, respectively.
Double-mutants arising from pairings between Constitutive
GAL4 alleles with Uninducible GAL80 alleles were the least
predictable in their resulting growth rates (Fig. 2d, points with
growth predictions at ~0.15/h) and gene expression classes
(Supplementary Fig. 4). Knowing the identity of the mutated

genes is, however, useful for making accurate predictions: three-
and five-class expression models that ignore the identity of the
mutated genes, respectively, explain 77% and 79% of the growth
rate variance, with large errors for particular class combinations
(Supplementary Fig. 5E, Methods). Thus, despite the strong
epistasis in this system, simple models that capture the main
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“stereotypical” genetic interactions between loci based on their
gene expression can accurately predict how pairs of diverse
mutations interact.

“Harmonious” allele combinations make functional switches.
Although most double mutants exhibited highly stereotyped gene
expression and predictable fitness patterns, particular combina-
tions of mutations sometimes had very different phenotypes
compared to those expected from their individual phenotypic
effects. For example, 12% of pairings of Constitutive GAL4 alleles
and Uninducible GAL80 variants yielded Inducible phenotypes,
examples of genetic suppression (Supplementary Fig. 4). Similar
interactions have been previously described for distinct GAL4-
GALS80 allele combinations!®1%14. Other suppressor combina-
tions yielding WT-like Inducible or Leaky phenotypes included
all pairings of Uninducible GAL3 with Leaky GAL80 variants
(Fig. 2d and Supplementary Fig. 4). These examples of suppres-
sion reconstitute multiple aspects of WT-like Inducibility traits,
including low gene expression in glucose, high expression in
galactose, and high growth rates in galactose and can be con-
sidered as examples of “harmonious” allelic combinations!>:
alternative genetic solutions to the core Inducible phenotype of
the GAL pathway.

Harmonious combinations can rewire the network. We hypo-
thesized that the harmonious combinations of GAL80 and GAL4
alleles could simply reflect reconstitution of the original reg-
ulatory network that exists in WT cells, with all GALR genes
functioning as in the WT network. Alternatively, the functionality
of these mutants might reflect different solutions to the same
regulatory task, with the roles of other genes changed!®17. To
distinguish between these two possibilities, we tested whether
mutating the additional GALR genes, GAL3 and GALI, had the
same effect in these combinations of GAL80 and GAL4 alleles as
in the WT system.

We tested a subset of GAL80 and GAL4 alleles in a
combinatorially complete set of genotypes incorporating
additional third- and fourth-order deletions in the potential
galactose sensors GAL3 and GALI (Fig. 3 and Supplementary
Figs. 6, 7, 8). All Inducible allelic combinations depended on
GALI or GAL3 for robust growth, reflecting the importance of
galactose sensing for pathway induction (Fig. 3b, c). However,
the consequences of deleting GAL3 or GALI sensing activity
varied extensively across the different genotypes. For example,
whereas the WT switch is completely dependent upon GAL3
(Figs. 1d and 3), GAL3 was not required for induction in the
Leaky GAL80.07 mutant (Fig. 3), nor was it required for
Constitutive expression in GAL4C mutants (Fig. 3d). Moreover,
GAL80S-1 + GAL4C double mutants were still Inducible when
GAL3 was deleted (Figs. 3d, e and 4a, Supplementary Figs. 6
and 7, and Source Data).

GALTI’s galactokinase activity is required for growth in
galactose, so the dependency of a network on GALI’s sensing
activity cannot be determined by simply deleting the gene. To test
the dependency of each genotype on GALI sensing activity, we
therefore used a strategy in which GALK genes from other species
with different galactose sensing mechanisms were expressed from
the GALI promoter (“GALI:GALK”, Fig. 3a, Methods). Con-
sistent with GAL1 sensing activity being dispensable for induction
in WT cells, replacing GALI with GALK from other species had
no effect on gene expression or growth (Fig. 3b, ¢ and
Supplementary Figs. 6 and 7). In the Leaky GAL80.07 back-
ground, replacing GALI by GALI:GALK also had no effect.
However, in inducible GAL4 backgrounds, it completely
prevented growth and expression when GAL3 was also deleted.

In contrast, in GAL4C mutants, GALI:GALK reverted the
Constitutive expression phenotype to a Leaky or Inducible
phenotype (Figs. 3d and 4a). This would be consistent with the
GAL pathway of GAL4C single-mutant variants being de-
repressed in glucose not only because of reduced GAL8O
repression (Fig. 3d), but also due to positive feedback via
GALI, which, through a baseline level of leaky expression
(Fig. 3d) and ability to repress GAL80%, could reach sufficient
abundance to constitutively activate the system (Fig. 4a). Finally,
in GAL4C+ GAL80S-1 double mutants, GALI:GALK reduced
growth rate and expression more than deleting GAL3, including
one combination where GALI sensing activity was essential
(Figs. 3b-e and 4a).

Our dataset therefore contains multiple examples of “harmo-
nious” combinations that exhibit the key WT-like Inducible
phenotype of low expression in glucose, high expression in
galactose, and high rates of growth in galactose (gray squares in
Fig. 4a). Four are particularly notable in their altered dependence
on the GAL3 and GALI sensor genes (“HC*” squares in Fig. 4a).
The first combination is the WT itself, which depends on GAL3
completely but does not require GALI sensing activity in these
conditions. The second combination is GAL80.07 + WT GAL4,
where GAL3 is no longer essential and where deleting GALI has
no effect except in combination with a GAL3 deletion. The third
combination is the Inducible GAL4C+ GALI:GALK back-
ground, where GAL3 serves as a single essential sensor, and
where GALI sensing activity is deleterious, causing high
expression in glucose. Finally, the combination of GAL80S-I +
GAL4C has a flipped dependence on GAL3 and GALI compared
to the WT system, with GAL3 no longer essential and growth and
expression dependent on GALI.

Discussion

In summary, by combining mutations with diverse individual
effects, our approach provides a more complete view of how var-
iants in different genes combine to alter the activity of a model
regulatory network. We found that the phenotypes of thousands of
pairs of mutations fell into a small number of phenotypic classes,
with the classes of individual mutants predicting very well their
combined effects. In other words, once the phenotype of a single
mutant is measured, its effect in combination with many other
mutations is normally straightforward to predict, even when there is
strong epistasis between loci. If this is also true for other systems
including human disease, it will mean that accurate phenotypic
prediction will often be possible without the need to resort to
detailed mechanistic models, provided measurements of inter-
mediate phenotypes such as gene expression can be made.

Rare combinations of mutations in the GALR genes did, how-
ever, have unexpected outcomes, including combinations of indi-
vidually detrimental mutations that reconstitute a functional
regulatory switch. These and other “harmonious” combinations of
mutations constituted a functional system not because they resus-
citated the original WT switch but because they formed alternative
“re-wired” regulatory networks with altered “functions” for addi-
tional components (Fig. 4b). For example, combining the indivi-
dually deleterious GAL4C with GAL80S-1 variants not only restored
an Inducible system, an example of reciprocal sign epistasis, but also
switched the system’s dependence on the other two GALR genes,
GAL3 and GALI, an example of higher-order epistasis. Such
changes in gene essentiality have been widely observed between and
within species'®-22, but the genetic causes are poorly understood.
The altered requirement for GALI and GAL3 across combinations
of mutations in GAL4 and GAL80 shows that selective pressures on
paralogous genes can substantially change with variation in other
molecular players.
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The molecular mechanism underlying the GAL4C + GAL80S-1
double-mutant phenotype is intriguing. The GAL pathway is
tightly repressed in glucose for GAL4C + GAL80S-1 backgrounds,
suggesting that GAL80S-1 associates more tightly than WT
GAL80 to GAL4C variants. Similarly, the dominant-repressive
nature of the GAL80S-1 mutant is suppressed in the GAL4C
backgrounds, allowing high expression in galactose. This implies
that GAL80S-1 must not only bind less efficiently to Gal4Cp, but

also retain the ability to interact with Gallp and Gal3p to allow
relief of repression in galactose media.

Mechanistically, it is still not clear why this mutant background
exhibits a higher dependency on GALI compared to GAL3. For
example, we did not observe this in other GAL80S+ GAL4C
pairings. Most other GAL80S variants showed abilities to repress
GAL4C, however tended to exhibit more “Constitutive” or
“Uninducible” characters, with similar degrees of activation in
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Fig. 3 Higher-order genetic interactions in the GALR pathway. a Experimental design to determine the requirement for GALT and GAL3 sensor activity for
GAL pathway induction across combinations of GAL80 and GAL4 alleles (Methods). b The effects of deleting GALT and GAL3 change depending on GAL80-
GAL4 combinations. The mean for the WT GAL80-GAL4 pairs is indicated as a blue circle. Samples deviating significantly from the gray line where Y =X
are colored red (two-tailed t-test, FDR < 0.05 and mean effect > 0.03 pu/h). These points reflect harmonious genetic combinations that depended on GALT
(left facet panel) or GALT and GAL3 (right facet panel) for high rates of growth. ¢ Requirement for GALT or GAL3 for high growth rates from an initially
uninduced state. In the AGAL3 4+ GALT:GALK-double mutants, the mean expression level for each GAL4-GAL8O pair in glucose is used as a measure of GAL
pathway “leakiness” or constitutivity to generate a null expectation for growth rate (black line, logistic fit). Samples colored red grew significantly faster
(one-tailed t-test FDR < 0.05) than this expectation. Each point in b and ¢ is the mean growth rate observed for a GAL80-GAL4 pair in a given GALK and
GAL3 background (N = 8 across four independent transformations). d Distributions of GALTpr-YFP expression for alleles across four genotypic dimensions.
Lines and shading reflect within-genotype mean and SD. GALT::GALK backgrounds bear the E. coli GALK construct. e Effects of GALT::GALK and AGAL3 on
growth rate across GAL4-GAL8O pairings. Lines originate and terminate at mean values for the given genotype and gray bars indicate the 95% confidence
interval
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Fig. 4 Rewiring of regulatory networks in harmonious genetic combinations. a Snowflake fitness landscape showing the dependency of GAL4-GAL80
genotype pairings on GALT and GAL3 sensor activity. The shape of each node indicates expression phenotype and shading the growth rate in galactose.
While many “harmonious” combinations of WT-like phenotypes are present, we highlight particular combinations to illustrate where galactose sensing
requirements have changed appreciably (HC*). While all harmonious combinations require some combination of GALT or GAL3 for growth and expression
in galactose, the dependence on GAL3 and GALT varies across every GAL4-GAL80 background. b Rewiring of the GALR network across harmonious
combinations. Each network’s inferred wiring is illustrated for a given allelic combination, including Leaky GAL80.07 (“80L"), super-repressor GAL80S-1
("80s"), the GALT sensor deletion construct GALT:GALK (“K"), and Constitutive GAL4-L868G ("4C"). “Inducible” classes include Leaky phenotypes, which
show low but detectable expression levels in glucose and high expression in galactose

glucose and galactose environments that did not depend on GALI ~ Gal80S-1p variant exhibits altered binding affinity towards Gallp
or GAL3 (Supplementary Figs. 6 and 7). This suggested that these in addition to Gal4p.

mutants might bind less strongly to Gallp and Gal3p in addition Taken together, our results illustrate how the genetic interac-
to (or instead of) tighter association to Gal4p. Mutant combi- tions between diverse alleles can be accurately predicted from
nations including GAL80S-2 in combination with GAL4-L868K or  gene expression in single mutants using models that capture the
GAL4-L868P exhibit partial Inducibility in galactose, with highly = “stereotypical” epistasis in a system. However, they also demon-
leaky expression in glucose but increased expression and growth strate the importance of rare unexpected pairwise and higher-
in galactose that is partially dependent on GALI and GAL3 order epistasis for the fitness of individual genotypes, and illus-
(Supplementary Figs. 6 and S7). However, in contrast to the trate how combinations of mutations can flip the essentiality of
GAL4C+ GAL80S-1 backgrounds, in these cases the increased additional genes and rewire regulatory networks.

expression in galactose is more dependent on GAL3 than

on GALI (Supplementary Figs. 6 and S7). Given these results, we

conclude that the GAL80S-1 + GAL4C backgrounds represent a ~Methods _ _ _ '

special case in their increased dependency on GALI compared to Yeast and E. coli strains. Primers, strains, and specific construction notes for

. plasmids are in Supplementary Tables 1 and 2, respectively. All S. cerevisiae yeast
GAL3. It seems plausible that, compared to the WT Gal80p, the strains were generated starting from BY4741 (MATa his3A1 leu2A0 met15A0
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ura3A0%3). All cloning in E. coli was performed using DH5-alpha or its commercial
derivative NEB 10-Beta (New England Biolabs product number C30191 or C3020).
Genomic DNA of BY4741, DH5-alpha and C. albicans strain SC5314 were used as
templates to generate GALR and GALK constructs.

Polymerase chain reaction. For high-fidelity PCR reactions we followed manu-
facturer’s instructions using either Extaq (TaKaRa # RR001C), KOD hotstart
(Merck Millipore # 71086) or Q5 (NEB # M0491) with 0.6 uM final concentration
primers.

For mutagenic PCR, 25 pl reactions of standard Taq (New England Biolabs #
MO0273) were used with plasmids bearing WT templates of the GAL genes
(pPAMN14 (GAL3), pAMN15 (GAL80) or pAMN31 (GAL4)). Initial template
concentration was varied to allow 8-12 duplications of template.

Components added to mutagenic PCR (order: Material, volume in ul;):
Standard Taq buffer (10 x ), 2.5; 50 mM MgCl2, 2.75; dCTP (100 mM), 0.25; dTTP
(100 mM), 0.25; dATP (100 mM), 0.05; dGTP (100 mM), 0.05; MnCI2 (50 mM),
0.25; oligol (20 uM), 0.625; oligo2 (20 uM), 0.625; template (5 pl per 50 pl
reaction), variable; Taqg DNA pol. (5U/ul), 0.25; Water, 14.9.

Generation of yeast chassis strains AN612 and AN634. Primers and strains are
in Supplementary Tables 1 and 2. AN612, a Gallp-YFP fusion, was used for the
first two experiments, and AN634, a GALIpr-YFP transcriptional fusion was used
for the final experiment. Standard lithium acetate transformation was used in all
stages. BY4741 (S288c MATa AHIS3 ALEU2 AMET15 AURA3) was used as a
starting strain. Starting from BY4741, we first integrated the YeCitrine-KANMX
cassette from pKT140 as a fusion protein with GALI protein (AN612) or as a
disruption of the GALI reading frame (AN634). KANR clones were screened at the
cytometer, and those that exhibited high-FITC-A measurements in galactose and
autofluorescent-equivalent levels of FITC-A signal in glucose were saved. For
deletion of GALR genes, full loci, including promoter and terminator sequences
were deleted (the deleted sequences was exactly the same as the sequence of the
genes used as complementation cassettes in plasmid complementation constructs).
Upon transformation, potential deletion transformant clones were screened by
phenotype. For GAL3, clones with GAL80 + GAL4 WT backgrounds were
screened by inoculating a 2-day-old colony (1 colony = 107 cells) into 200 ul in 96-
well plates containing YP + 2% galactose media and making four fourfold serial
dilutions. After 12-18 h, those with no expression of the GAL1-YFP construct were
selected and saved as the correct deletion strains. For AGALS8O strains in the GAL4.
WT background, after integration of the deletion cassette, clones were screened for
constitutive expression of GAL1-YFP. For deletion of GAL4, clones were screened
for lack of GAL1-YFP expression similarly to the GAL3 clones. To make the
combinations of allele deletions, clones were generated in the the appropriate order
to allow phenotypic characterization. For AGAL3 GAL80.WT AGALA4 strains, after
deletion of GAL3 locus, AGAL4 integrants were screened for integration of the
deletion cassette at the GAL4 locus by traditional PCR screening of 5’ junctions.
The final resulting strains, AN612 and AN634 were screened by PCR at the end for
proper integrations of all constructs. To complement GALK activity in AN634,
PCR products from plasmids pAMN50 (GAL1pr-GALK E. coli), pAMNS51
(GAL1pr-GALK C. albicans), pAMN52 (GAL1pr-GAL1) and pAMN53 (GALlpr-
HIS5 S. pombe) were transformed into the GAL4:URA3 locus.

Generation of screening plasmids for mutagenesis. Primers and strains are in
Supplementary Tables 1 and 2. Supplementary Tables 3-11 include information
specific to the PCR products and transformations used. To ensure that all phe-
notypic variation observed in the PCR mutagenesis experiment were due to the
locus targeted by mutagenesis and not the result of mutations in the other two
GALR loci (potentially generated in the assembly or PCR process), we generated a
screening plasmid with unique cutting sites between the GALR genes. These
plasmids were generated by assembling three-GALR plasmids with the targeted
GALR flanked by Notl sites and linker sequences. One plasmid was assembled per
GALR locus. After in vivo gap-repair assembly of these plasmids, they were
prepped and transformed into E. coli and screened for correct digestion patterns.
These plasmids were named pAMN26, pAMN27, and pAMN28. After identifying
correct banding patterns and phenotypic behavior, plasmids were prepared for
downstream analysis by removal of the gene of interest. The locus of interest for
each one (GAL4, GAL3, and GALSO, respectively) could be liberated with a NotI
digest. Recircularization of these plasmids with a 5-min room-temperature T4
ligase reaction and transformation into E. coli yielded plasmids pAMN32,
PAMN33 and pAMN34 with deletions of their locus of interest.

Each GALR-specific screening plasmid (pAMN32, pAMN33 and pAMN34)
was digested at a concentration of 100 ng/ul overnight in 7 ml in a 15 ml Falcon
tube at 37 °C with NEB Cutsmart Buffer 4 10 units of Notl-HF (New England
Biolabs # R3189) per ml. After at least 12 h’ incubation, the reaction was brought to
30 °C, and ten units of Mungbean nuclease added to chew away overhanging ends.
After 1h incubation at 30 °C, reactions were terminated by extraction of enzyme
and other protein with one volume of TE-buffered phenol/chloroform/isoamyl
alcohol mixture at pH 8.0 (Sigma Aldrich P-2069). Extracted samples were washed
twice with one volume of ether to remove excess phenol. Ether was dried off under
a flow hood for 30 min. DNA was precipitated by addition of 1/10 volume of 3 M

sodium acetate and one volume of isopropanol, frozen at -80 for 20 min to
overnight, and then centrifuged 20 min in a bucket centrifuge at 4 °C. Pelleted
DNA was washed twice with 2 ml of room-temperature 70% EtOH (10 min spins
each). EtOH was pipetted off and tubes allowed to dry. DNA was resuspended in
1 ml of TE buffer and purity and concentration checked on a Nanodrop and digest
confirmed by running on an agarose gel. These vectors were used downstream as
recipient vectors for mutagenic PCRs.

Primers used to generate mutagenic PCR fragments contained blunt-ended
Notl scar sites + novel Pmel digest sites + linker sequences, allowing in vivo gap-
repair assembly and downstream confirmation of plasmid structure (via Pmel dual
cuts + a mid-vector Ndel site). Vectors for the single GALR mutant screen were
co-transformed with mutagenized PCR product using high-efficiency
transformation into yeast and clones selected and screened as described below.

Generation of mutagenic libraries and targeted mutations. Supplementary
Tables 1, 2, and 3 describe strains and primers. See supplementary tables 4, 5, and 6
for information specific to the PCR products and transformations used. Primers for
these constructs encode a linker, a short barcode, a NotI cloning site, and template
binding sites for amplification. Targeted mutations and random mutants generated
in this study used NotI-digested plasmids pAMN32, pAMN33, and pAMN34 to
receive one or two fragments of the given GALR gene. Each plasmid generated in
these steps were used downstream as templates in the combinatorial genetics
experiments.

Generation of combinatorial mutant constructs. Supplementary Tables 1, 2, and
3 describe strains and primers. See Supplementary Tables 7 and 8 for information
specific to the PCR products and transformations used. All assemblies for com-
binatorial genetics used four PCR products (the vector 4 one allele of each of the
three-GALR loci) and were co-transformed into chassis strain AN612 or AN634.
pRS415 (LEU2 marker) was used for combinatorial genetics experiments.

Generation of GALIpr-GALK constructs. Supplementary Tables 1, 2, and 3
describe strains and primers. See Supplementary Tables 9, 10, and 11 for infor-
mation specific to the PCR products and transformations used. Plasmid pAMN45
(pGAL1pr-MET15) was first generated, and GALK orthologs or HIS5 from .
pombe were cloned downstream of the GAL1 promoter. MET15 was used as a
marker because all usual markers in the final chassis yeast strain AN634 were used.
The final constructs were designed to disrupt the CaURA3 cassette that was used to
delete the GAL4 locus. pAMN45 was made by six-fragment PCR product assembly
and was used downstream as a template for parts to assemble the final GALK
constructs. Clones bearing plasmids assembled in these transformations were
screened for the ability to grow in 0.2% galactose and GAL-inducible growth in SC-
HIS + 0.5, 0.1, 0.2, and 2% glucose + 0.2% galactose media. Correct clones were
used downstream to transform strain AN634 with a GAL4::URA3:GALIlpr-
GALKxx-Met15 PCR product.

High-efficiency gap-repair transformation in yeast. In vivo homologous
recombination (“gap repair”) was used for generation of all plasmids except
PAMN31, which was made by Gibson cloning. For gap-repair, yeast clones were
generated using combined with a high-efficiency yeast transformation adapted
from on a protocol described in ref. 24. Appropriate yeast strain backgrounds were
streaked from the freezer and incubated 2-3 days at 30 °C. A patch of cells were
picked from the center of the streaked cells to prevent genetic bottlenecks of single
clones. The cells were inoculated into 5-50 ml of YPD and grown 12-16 h until
saturation with vigorous shaking at 30 °C. These overnight cultures were then
inoculated into 30 °C YPD media to a 1 cm OD600 absorbance of 0.3, ~2 x 107
haploid BY4741 cells per ml. Cells were incubated in Pyrex glass bottles with
vigorous shaking every 30 min to 1 h. After 4 h, cultures were aliquoted, appro-
priate to the scale, to 50 ml falcon tubes or 250 ml centrifuge bottles and cen-
trifuged at 1250 x g for the a the time required to pellet the cells (~2 min for 50 ml
falcon tubes and 5 min for the 250 ml centrifuge tubes). Cells were resuspended in
10-50 ml of SLAT bulffer, and centrifuged again in 50 ml falcon tubes for 5 min at
1250 x g, enough to pellet most cells.

Thereafter, per 50 ml of culture: cells were resuspended in SLAT buffer by
agitating the cell pellet with a long pipette, followed by vigorous shaking. The
volume of SLAT was adjusted depending on the volume of DNA transformation
product being added such that a final volume of SLAT was 2.5 ml per 50 ml
original culture. The protocol differed hereafter for library vs. targeted GALR allele
clones.

For library generation, DNA was directly added to cells, including 50 pl of
recently boiled-then-snap-chilled 10 mg/ml ssDNA (salmon sperm DNA Agilent #
201190), 1 mg vector, and 1 mg each PCR product for in vivo gap-repair assembly.
The mutagenized PCR product was added directly to the cells. Cells + SLAT +
DNA mixtures were left with occasional agitation at room temperature for at least
30 min. Thereafter, 10 ml of PLATE mixture was added to cells, and cell-SLAT-
DNA-PLATE mixtures were shaken and left to rest at least 30 min at room
temperature. Then dimethylsulfoxide (DMSO) was added to PLATE + cell
mixtures to 8% final concentration, and they were heatshocked in a water bath for
20 min. Cells were then centrifuged 5 min at 1250 x g, resuspended in 0.5 M
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sorbitol +- YPD media and allowed to recover 1h at 30 °C. After recovery, cells
were centrifuged again at 1250 x g, and pellets resuspended in selection media and
either recovered in 500 ml of liquid (200 RPM shaking for 48 h) or spread onto
solid plates.

For high-throughput gap-repair assemblies with specific combinations of GALR
alleles, cell mixtures were resuspended in 1.375 ml SLAT, 50 pl of recently boiled-
then-snap-chilled 10 mg/ml ssDNA and 1 mg PCR vector per 50 ml original
culture. Then 11 pl of cells + SLAT were aliquoted to 9 pl of DNA-SLAT mixtures
pre-aliquoted to 96-well polyethylene PCR plates (Thermo Scientific AB-0700).
Each gap-repair assembly mix had 0.1 pl of each of the three-GALR’s PCR product
+ 8.7 ul SLAT. No shaking or agitation/mixing was used to blend the cells with
DNA. After adding cells to 96-well plates, 80 ul of PLATE was added and plates
sealed carefully using Biorad Microseal B seals. Samples were shaken vigorously by
inversion to mix cells with the PLATE buffer. Cells were centrifuged in a swinging
bucket centrifuge at 300 rpm for 3 s and then left at room temperature for at least
30 min and up to 3 h. After incubation, plate seals were removed and 8 pl of DMSO
was added to cell 4 PLATE mixtures. Seals were reapplied to the 96-well plates and
the samples shaken vigorously by inversion, followed by centrifugation in a
swinging bucket centrifuge at 300 rpm for 3 s (to bring samples down to the tube
bottoms), followed by heat shock at 42 °C for 20 min in a pre-warmed PCR block.

After heat shock, cells were centrifuged for 1 min at 1250 x g, PLATE + SLAT
mixture dumped out, and cells resuspended in 80 pl YPD + 0.5 M sorbitol and
incubated for 1h. Plates were then spun down for 3 min at 1205 x g to pellet cells,
and cells were resuspended in 500 pl of SC-LEU + 2% glucose + ampicillin 100 mg/1
selection medium in 96-well plates. Plates were sealed with Biorad Microseal B
seals or unsealed and covered as a stack of plates with the same plastic sheaths in
which the plates were shipped. Efficiency of transformation of each well could be
assessed after 36-48 h growth by counting colonies on the bottom of the wells.
Transformations with fewer than 20 colonies could be accurately counted.
Although most wells had >20 colonies, those with <10 single colonies were
excluded from analysis downstream. Cells were then resuspended and 3 pl
inoculated into 75 pl of selection media and allowed to grow overnight. Cells were
resuspended with 75 ul of 50% glycerol and frozen at —80 °C until experiment
measurement.

Pre-growth of clones before flow cytometry. To begin flow cytometry analysis,
plates with combinatorial genetic assemblies were taken from freezer and in total
sat at room temperature for 20-25 min. Plates were put on orbital shakers once
thawed and shaken 1-5min before inoculation of 10 ul into 190 ul (200 ul final
volume) of SC-[LEU or HIS] + 0.1% glucose + 100 mg/l ampicillin a + 20 mg/1
chloramphenicol, and grown without agitation in stacks encapsulated in the plastic
sheaths in which the plates were shipped (Sarstedt 82.1581) for 12-24 h to
saturation. Cells were resuspended on the plate shaker and diluted 1/50 into 75 pl
SC-[LEU or HIS] 4 0.1% glucose (no antibiotics here) grown 18-24 h to saturation
in stacks of unsealed plates encapsulated in the plastic sheaths in which the plates
were shipped in preparation for inoculation to galactose and measurement at the
cytometer the next day.

Growth and YFP measurement of cells by flow cytometry. Plates containing
75 ul 0.1% glucose-grown cultures (either from the single clones picked in the
mutagenesis experiment or the clones generated to have targeted allele combina-
tions) were grown 18-24 h unsealed in stacks of plates encapsulated in the plastic
sheaths in which the plates were shipped (Sarstedt 82.1581). After growth, samples
were placed on an orbital shaker for 1-5min to resuspend cells, then 150 pl of
ddH20 was added to the cells to make a threefold dilution of the original cell
density, with continued shaking for another 1-5 min. Nine microliters of the
ddH20-diluted cultures was added to 4 °C plates containing 141 pl of 1.06x con-
centrated SC-[LEU or HIS] + 0.2% galactose media. Inoculated galactose plates
were sealed with Microseal B seals and placed immediately at 4 °C to prevent
growth or gene expression prior to beginning of growth experiment. We found that
only turbid cultures could be resuspended by shaking on the 2.5-mm-radius orbital
shaker. Therefore, while inoculating into galactose, we took care to distribute the
cells evenly across the whole well. Plates were then sealed with Microseal B seals
and put at 4 °C. At the end of the day all glucose-pregrown cultures that had
been inoculated into galactose media were placed at 30 °C in stacks of 1-2 plates to
begin growth.

After inoculation of galactose plates with glucose-grown cells, we put the
glucose plates at 4 °C until measurement at the flow cytometer (BD FACS Canto;
FACS Diva v 5.0.3 Firmware V 1.4). Prior to measurement at the cytometer, plates
were put back on the shaker for 2 h. Plates were visually inspected to be sure that
the cells in all wells were well-suspended. We measured cell density and gene
expression (bandpass filters “FITC-A” 530 + 15 nm and “PE” 585 + 21 nm were
used for YFP signal and 488 + 5 nm for SSC signal). High-throughput sampling
mode was used with no mixing. The median time to complete a plate was 18 min.
During this time, we determined that cell density measurements did not
appreciably change. If any problem was encountered during the cytometry and the
measurements needed to be stopped, we took the plate out and put back on the
plate shaker briefly to resuspend the cells before resuming the cytometry.

After 12 h of growth at 30 °C in SC-[LEU or HIS] + 0.2% galactose, samples
were placed on ice or on a cold surface in a 4 °C room to arrest growth and allowed

to cool at least 30 min prior to exposure back at room temperature. Prior to
measurement at the cytometer, Microseal B covers were removed and samples put
on the orbital shaker for 2h covered by a breathable plate seal. As mentioned
above, samples that did not grow appreciably could not be easily resuspended by
the orbital shaker. Therefore, prior to measurement, all cultures were pipetted up
and down five times with a multichannel micropipette, and then placed
immediately in the FACSCanto for analysis. Prior to sampling in the cytometer,
wells were scored by eye for high growth or low growth. The cytometer template’s
sampling rates were adjusted according to these by-eye scores: high-density
samples were sampled at 0.5 pl per second, while low-density cultures were
sampled at 2.0-3.0 pl per second, with occasional intermediate sampling rates for
obviously intermediate cell densities. Each sample’s sampling rate can be found in
all supplementary tables where we report data for these experiments.

Selection of single clones for combinatorial genetics. After screening and
phenotypically characterizing mutagenized GALR variants by flow cytometry (see
above) we isolated plasmids of interesting phenotypes. Clones were selected to
reflect either outlying phenotypes or more typical behavior. “Outlying phenotypes”
included samples where both fracon.glu and fracon.gal measurements were >0 and
<1, indicating that the clones had a constitutive character but could not fully induce
the GAL pathway. Another rare phenotype we tried to isolate were clones where
mean signal in ON cells was less than mean signal of typical inducible ON clones
(as discussed in the text this phenotype was quite rare). Although some GAL3
mutants appeared to have constitutive characters in the first screen, we found that
none of these phenotypes were recapitulated upon subcloning.

After selection based on phenotype, clones were thawed from the freezer and
struck to single colonies. These were inoculated into SC-HIS + 2%glucose media in
PCR plates and genomic DNA (gDNA) prepped in 96-well plates as described
above. Clones were transformed into electrocompetent 10-Beta cells (New England
Biolabs # C3020) using a 96-well plate electroporator using fresh electroporation
plates (BTX 45-0450-M). Cells were recovered in deep-well plates (Thermo
Scientific # 260252) and recovered in 0.6 ml SOC media for 1 h prior to inoculation
into 0.6 ml LB + 100 mg/ml ampicillin. The next day plasmids were prepped in 96-
well plates as described above. Preps were digested with Ndel and Pmel enzymes,
which yielded three bands in correctly assembled constructs. Plasmids with the
correct banding patterns were used downstream in the combinatorial genetics
experiment.

Analysis of the raw flow cytometry data. R was used for all analyses. Scripts and
data are available at the github link: https://github.com/AaronMNew/
HarmoniousCombinations. FCS3 files were exported from the computer control-
ling the FACSCanto measurements and sampling rate information extracted from
exported .xml files generated from export of “Experiment Template”. Scripts for
extracting metadata from these .xml files are found in the supplementary code.
Experiment “layout” files were generated including clone information, known
genotype information and censorship information (censored either if they had very
low transformation efficiency or a contamination), and this was merged with
metadata of sampling rates in the .xml file. As a basic overview of the analysis, the
Bioconductor FlowCore package tools were used to open the binary FCS files and
filter first based on cell shape and size information using first a rectangle including
95% of observations in side scatter (SSC) and forward scatter (FSC), then a centroid
algorithm was used to identify the most dense observations in these two dimen-
sions, excluding between 30-50% of outlying original observations. FITC-A signal
was used to quantify YFP expression. The predicted FITC-A value of a PE-A
reading was predicted by a linear model of FITC-A signal as a function of the
correlated signal PE-A using the function Im (log(FITC-A)~log(PE)), and these
predicted values were used in the rare cases where a cell's FITC-A signal exceeded
the machine’s maximal measurement value. Then, key parameters of FITC-A
distributions were extracted, including the mean YFP signal, fraction ON (the
proportion of cells falling above an empirically determined cutoff based on auto-
fluorescent cell controls). As many lowly expressing cells gave negative values at the
flow cytometer, we calculated a pseudo-logl0 FITC-A measurement as the log10
value of of the raw FITC-A plus 1000 A.U. -3 logl0 arbitrary units using the
function logl0(raw FITC-A measurement + 1000) - 3. These pseudo-logl0 fluor-
escence intensity values were broken into 60 equally spaced bins using the function
cut(). Cells were counted in the glucose and galactose environments by determining
the slope term corresponding to events/second information of each FCS file using a
linear model Im (events~ms). Glucose-grown biological replicate clones were
then matched with their next-day galactose measurements. We calculated cell
densities by multiplying the events/second measurement by the known sampling
rates extracted from the .xml file. The density of the culture in galactose was
calculated as this measured cell density parameter multiplied by the inverse of the
dilution factor from glucose the day before (150/9). The log2 change of the culture
Log2(Density.GAL.grown.culture/Density. GLU.grown.Culture) was scored as the
number of generations, and the growth rate parameter 4 was calculated as the
Malthusian growth rate parameter determined by the natural log of of the final
density of the culture minus the natural log of the initial density divided by the
number of hours of growth (log(Density.GAL.grown.culture/Density.GLU.grown.
Culture)/12 h.)
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Plotting and basic analysis of data. All scripts are online at github
https://github.com/lehner-lab/HarmoniousCombinations. Custom functions,
data.table and ggplot2 packages were used for summarizing data and plotting.
Minor esthetic changes were made in Adobe Illustrator. The final two panels of
Fig. 4 were made in Adobe Illustrator.

Gene expression distribution clustering. For gene expression distribution clus-
tering, we used the HDBScan* function (R package dbscan)?>. This algorithm
establishes hierarchical clusters based upon distance-weighted graphs assembled
according to the density of data points across n-dimensions. Its final cluster
assignments are mainly sensitive to the “minPts” parameter, which sets the
minimum cluster size. This sensitivity arises primarily from a (1) the size of the
dataset (because more points for a large dataset will yield the same number of
clusters as for a small dataset) and (2) how distantly the clusters of data points are
spread in n-dimensional space.

For gene expression distribution clustering, we wanted to cluster based on
expression in both glucose and galactose. For this, we first paired the densities of
expression across 60 bins of pseudo-logl0-transformed A.U. FITC-A signal for
each sample at time 0 (glucose expression) and after 12 h of growth in galactose
(galactose expression) to generate vectors of 120 units for each observation. The
mean vector for each unique genotype was then calculated. These mean values were
then pseudo-log transformed to exaggerate signal within bins exhibiting low-
density values, for example such that a small fraction of cells active in glucose
would be more salient to the HDBScan* algorithm (Supplementary Fig. 3A). For
this, the density values for each bin transformed as the log of the density value
rounded to the nearest 1/1000 plus 1/1000 as follows:

V = logl0(round(v, 3) + 0.001)

Where V is the final pseudo-log density value and v is the original density value. A
matrix was made comprised of rows corresponding to each genotype’s vector of
measurements of V, with pseudo-logl0 A.U. expression distribution bins as
columns. As a final step, each bin’s V across genotypes was scaled by z-score. The
scaled 120 dimension matrix was then clustered using HDBScan* algorithm.

We evaluated clusters identified by the HDBScan* algorithm by how well the
cluster assignments could explain total phenotypic variance, determined by a linear
model of phenotypic values scaled by phenotype using the function

Im (within_genotype_mean_value ~ cluster * phenotype_id)

Where phentoype_id was one of the five phenotypes, including fraction ON in
galactose, fraction ON in glucose, mean YFP expression in galactose, mean YFP
expression in glucose, and the growth rate parameter y.

For experiment 1, with three clearly defined clusters, three clusters emerged
consistently across minPts parameters. For experiment 2, across minPts
parameters, two levels of clusters were evident: the broadest category included the
three main inducible, uninducible, and constitutive clusters, and explained 84% of
total phenotypic variance across all phenotypes. A more narrow set of classes
comprised nine categories, explaining 97% of total phenotypic variance. Clusters
were then manually curated to five intermediate “constitutive”, “uninducible”,
“inducible”, “leaky”, and “weak expression” categories, which together explained
96% of total phenotypic variance. We chose the intermediate classifications for
discussion in the main text for prediction of double-mutant phenotypes from
single-mutant phenotypes due to their power to explain total phenotypic variance
in the dataset compared to the broad categories and limited number of parameters
compared to the more narrowly defined categories (see Supplemental
Analysis Code).

This clustering was sufficient to cluster all single-mutant profiles. However, a
certain 3-4% of double-mutant samples remained unclassified. A closer look at the
these samples showed that most expression distributions were “flavors” of the other
single-mutant phenotypes, however due to slight differences and their infrequent
numbers, they remained unclustered. For example, the three GAL4 clones in the
“weak expression” category all showed low-max gene expression level, however
otherwise behaved WT, for example exhibiting constitutive characters in
combination with AGALSO0. Repeating the clustering with unclustered samples plus
these less frequently observed weak expression clones showed that most
unclustered samples showed characteristics similar to these GAL4 alleles, and
indeed that they mostly included one of these three GAL4 single-mutant
backgrounds. Using a similar approach, we took the remaining unclustered
samples and repeated their clustering alone with samples from the three archetypal
samples identified in the first experiment, leaving all previously uncategorized
expression profiles with a classification. Finally, visual inspection revealed that
some clones with constitutive characters exhibited a nonetheless high degree of
activation in galactose relative to glucose. To quantify this we took the mean YFP
signal in galactose/mean YFP signal in glucose as a measure of a clone’s induction.
Using this parameter, we could identify clones mis-classified as constitutive to be
“inducible” or “leaky”. Similarly, some “inducible” clones displayed low mean
induction values, so were classified as uninducible, and some “uninducible” clones
actually showed > 40% of cells ON in galactose with high a mode of expression and
so were classified as inducible.

Multiplicative model to predict growth rates in double mutants. For calculating
expected growth rate based on single-mutant effects, we used a first-order geo-
metric model of phenotypic variation where the expected multiple mutant locus
(¢muT) phenotype is the product of the phenotypes of each (single) allele across
loci in the WT background normalized by the WT reference phenotype value. So,
for two loci:

EMUT = Hinue*Bmuz/ Pwr

Standard errors for these predictions were propagated as

Semut = A0S (pinee) SATE(((N—=1)" (sewr/pr) + Semu /Bt + Semuez/Pmu)"2)>
where N is the number of replicates. Phenotype values used for 4 were equal to
growth rate minus the background growth rate observed in the absence of any GAL
regulator. These expectation values were used to predict overall variance in the
dataset, explaining 52%, 20%, and 85% of variance for pairings between GAL3 vs.
GAL4, GAL80 vs. GAL3, and GAL4 vs. GAL80, respectively. Overall this model
explained 55% of variance across the dataset. These low values stem from the fact
that pathway-level epistasis leads to constitutive and leaky expression profiles,
which dominate signal in the dataset (Supplementary Fig. 5A). For example, all
pairwise combinations of constitutive GAL80 and uninducible GAL3 are con-
stitutive and therefore grow at high rates, when the prediction prediction is that
they will grow slowly due to GAL3’s low growth rate. Similarly, fast-growing
constitive GAL4 variants are predicted to grow slowly in AGAL3 backgrounds,
when the double mutant remains constitutive. Harmonious combinations of
uninducible GAL3 paired with leaky GAL80 lead to leaky or inducible double-
mutant phenotypes, which grow quickly. Similarly, harmonious combinations of
GAL80S-1 and GAL4C permit high rates of growth, when they are predicted to
grow slowly due to the dominant-repressive single GAL80S-1 backgrounds.

Expression class prediction of growth rate in double mutants. The expression
clusters of each single mutant were matched to each double mutant. Mean growth
rate values for each unique combination of single-mutant expression clusters were
then taken as an expectation of the double-mutant’s growth rate. For the 5-member
Intermediate classification scheme, these 23 unique numbers were used to calculate
the fraction of variance explained across all individual observations, and within-
genotype mean growth rate values were calculated and plotted against predictions
for the second figure. Note that these 23 unique combinations do not include all 32
possible combinations of 4 x4 x 2 GAL4, GAL80, and GAL3 classes. This is
because certain triple-mutant classes were not measured. Specifically Uninducible
GAL3 was never paired with the three classes of GAL80 and GAL4 that do not
include Inducible. These classes number 3 x 3 x 1 GAL4, GAL80, and GAL3 alleles
=9, so 32-9 =23 unique clusters arising from single-mutant combinations.

Notably, these missing classes are all almost included in the final experiment,
including constitutive GAL80, Leaky GAL80, Uninducible GAL80, Uninducible
GAL4, Constitutive GAL4. The only one not included are the Weak Expression
class of GAL4, three alleles of which all behaved very similarly to WT GAL4 (e.g.,
uninducible with uninducible GAL80S variants or uninducible GAL3 variants, and
constitutive with constitutive GAL80 variants) but with lower peak expression level.

Next, we repeated the same analysis using the Broad classification (with three
possible classes—Inducible, Uninducible, and Constitutive). With 3 x 3 x 2 GAL4,
GAL80, and GAL3 classes there were 18 possible combinations, but with four
triple-mutant combinations not observed, there were a total of 14 possible pairwise
combinations. Similarly, we examined model performance using the Narrow
classification scheme, which consisted of eight total classes and 66 unique pairwise
combinations.

We next performed a cross-validation by heavily downsampling our datasets
based on class membership. For this, we calculated growth rate expectations based
on sampling 1, 2, or 3 randomly selected alleles from each class, and predicted
phenotypes for the remaining >4500 double mutants. We performed 1000
iterations of this approach for the Broad and Intermediate classification schemes.
Median variance explained for these downsampled datasets ranged from 86% (one
allele in the Broad classification parameter scheme, with 0.4% of the dataset
downsampled for training to predict the remaining 99.6% of double mutants) to
92% (three alleles selected for the five-class Intermediate parameter scheme, with
6% downsampled to predict the remaining 94% of double mutants).

Finally, to test whether the locus identity was important for these models’
performance, we blinded the models to the identity of the GALR locus. Thus, for
the Broad three-class classification scheme, for any given double mutant, we
generated an expectation of its growth rate based upon the mean growth rate of all
other double mutants with matching underlying single-mutant gene expression
classifications combinations, to generate six parameters (Inducible + 1, I+
Constitutive, I + Uninducible, C+ C, C+ U, and U + U). For example, to predict
a double mutant whose single mutants were a Constitutive GAL80 variant paired
with an Uninducible GAL3 variant (C + U), we computed the mean growth rate of
all double mutants comprised of a Constitutive single mutant and an Uninducible
single mutant. This mean value then included genotypes with a Constitutive
GAL80 and Uninducible GAL3, a Constitutive GAL4 4 Uninducible GAL3, a
Constitutive GAL4 + Uninducible GAL80, or an Uninducible GAL4 + Constitutive
GALS0. This analysis was performed with the Broad and Intermediate
classifications, with six and 13 parameters calculated for each, respectively. This
model was highly predictive, explaining 77% of genetic variance for the Broad
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three-class scheme and 79% for the five-class Intermediate classification scheme.
However, gross errors were made (Supplementary Fig. 5E). For example, for the
Broad classification, all five combinations except C 4 U were predicted accurately
regardless which GALR locus contributed the underlying phenotype. For example,
an U+ U all yielded low growth rates regardless which locus contributed the
Uninducible single mutant. However, the model made gross errors in the cases of
C + U because the molecular mechanisms for these phenotypes depended on the
function of the underlying gene pairs involved. For example, all combinations of
Constitutive GAL4 or GAL80 + Uninducible GAL3 were fast-growing Constitutive
mutants, reflecting these variants’ circumvention of the need for a functioning
GAL3 gene. However, another C + U combination—Constitutive GAL80 +
Uninducible GAL4 was slowly growing because presumably all GAL4 variants were
likely detrimental to pathway transcription. Finally, the last C 4 U genotype were
Constitutive GAL4 4 Uninducible GAL80, and these double-mutant combinations
exhibited highly variable phenotypes (see Fig. 2d and Supplementary Fig. 4),
including re-wired WT-like double mutants.

Logistic fit of growth rate to GAL1-YFP expression. To demonstrate that GALK
orthologs from E. coli and C. albicans did not display signaling activity, we com-
pared expression of the GAL1pr-YFP fusion to growth rates in which all sensors
were deleted and found a sigmoidal relationship between mean YFP expression in
glucose. We used this latter expression in glucose a measure of “pathway leakiness”
or constitutivity to predict the expected growth rate of the culture in galactose. For
this, we fitted a logistic curve using R’s SSlogis() function of growth rate as a
function of initial gene expression level to demonstrate that inducible or leaky
“harmonious combination” mutant backgrounds are able to mount an induction
response and high growth rate from an initially OFF state. A one-sided f-test was
performed for each within-genotype mean across all backgrounds compared to this
null expectation. To account for the differential growth rates observed for C.
albicans vs. E. coli GALKs, we fitted separate curves for calculation of ¢-test sta-
tistics, while the main figure simply shows the logistic curve across all E. coli and C.
albicans backgrounds. See supplemental code for details.

Standard lithium acetate yeast transformation. PLI (Polyethylene glycol 3530 +
LIthium acetate + 1x TE buffer) is 50% polyethylene glycol 4 0.1 M LiAc in TE
Buffer and was prepared ahead. Cells were inoculated 200 ul into 25 ml YPD and
grown in Falcon tubes with occasional shaking at 30 °C for 4-5h. Cells were
pelleted by centrifugation on high in the Falcon tube in which they were grown,
washed once with 700 ul 0.1 M LiAc, spun again quickly in the Eppendorf tube to
pellet cells, and resuspended 200 ul of 0.1 M LiAc. 10 pl of boiled ssDNA (1 mg/ml)
+ 25 ul of PCR product was added and samples mixed by flicking. Tubes were
optionally incubated at room temperature for up to 30 min. Six-hundred micro-
liters of PLI was then added to cells and mixed well by vortexing. Tubes were
optionally incubated at room temperature for up to 30 min. Tubes were then
incubated at 42 °C for 30 min. Cells were pelleted at 1250 x g for 3-5 min and then
resuspended either directly in selection media (for auxotrophic markers) or in
0.5-5ml YPD media (for dominant drug resistance markers). YPD samples were
incubated 3-4 h at 30 °C. Samples were then spread on solid selective media (1-5
plates depending on expected transformation efficiency). Clones were visible after
2 days and were struck to single colonies on selective media and grown for 48 h
more. Clones that grew in the patches were picked for downstream phenotypic
screening and genotypically and correct clones were frozen from single colonies.

Small-scale genomic DNA (gDNA) prep. Yeast genomic DNA was isolated by
alkaline lysis and isopropanol precipitation using a scaled-down protocol based on
that provided by MasterPure™ Yeast DNA Purification kit (#MPY80200). One-
hundred fifty microliters of yeast cells were grown overnight in appropriate selective
media in 96-well PCR plates covered with breathable seals with no shaking. The next
day they were spun for 1 min in a swinging centrifuge centrifuge on high (~3200x g
or 4000 RPM on a swinging bucket centrifuge). Spent media was shaken out and
immediately after dumping spent media, plates were swabbed on ethanol-soaked
paper towel to remove most of the media still clinging to the sides of the plate. Cells
were resuspended in 50 yl lysis buffer by pipetting or inversion while covered with
Biorad Microseal B seals (catalog number fMSB1001) and inverted several times to
mix. Plates were spun briefly for 1s at 300 RPM to get the lysed cells back into the
wells and off of the plate sealer. Samples were incubated at 65 °C for 15 min for lysis,
and then plates placed on ice for 5 min. Plate seals were removed and 25 pl of MPC
precipitation buffer was added to the lysed cells. Plates were re-sealed and inverted
multiple times to be sure protein and other cellular debris was precipitated. Debris
was pelleted by centrifugation on high (~3200 x g, 4000 RPM) in a bucket centrifuge
for 10 min. Then, plate seals were removed and 50 pl of gDNA-containing super-
natant was transferred into 50 pl of isopropanol in a new 96-well plate. Plates were re-
sealed and inverted several times to mix the DNA and isopropanol. Samples were
then centrifuged on high (~3200x g, 4000 RPM) in a bucket centrifuge for 10 min.
After centrifugation, isopropanol was dumped off and while still upside down, the
plates gently dabbed on paper towels to absorb more isopropanol clinging to the plate.
Sixty microliters of 70% ethanol was then added, plates re-sealed and inverted gently
one time to mix the remaining isopropanol and ethanol together. Plates were then
centrifuged on high (~3200 x g, 4000 RPM) in a bucket centrifuge for 2-5 min. An

optional second 70% ethanol wash was was sometimes performed. Then ethanol was
dumped and while still upside down put the plate on a paper towel to absorb ethanol
clinging to the plate. Plates were then spun briefly to bring remaining ethanol to the
bottom of the wells, and using a Rainin multichannel P10 with LTS tips (very fine
tips) the remaining ~4-10 pl of ethanol was removed from the plates. Plates were
allowed to dry 10 min. DNA was resuspended in 25-50 pl EB buffer, mq H20 or TE
buffer (depending on downstream use). Quality of prep was confirmed by measuring
purity and estimation of DNA concentration on a Nanodrop and running an agarose
gel of 3 pl of 12 preps randomly selected across the plate.

Small-scale plasmid mini-preps. To isolate plasmids, we used a simple alkaline
lysis miniprep protocol using buffers P1, P2, and P3 from Qiagen (catalog numbers
19051,19052, and 19053 respectively), either at a “normal” scale, with 1.5 ml of
saturated bacterial culture yielding > 10 mg of DNA or scaled-down in a 96-well
plate with yields of >1 mg plasmid DNA per sample.

For normal mini-preps we first picked single colonies from a selective plate or
inoculated a stab of cells directly from the —80 freezer stock into at least 2 ml of
liquid LB containing the selective antibiotic and incubated overnight with vigorous
shaking. After incubation, 1.5 ml of cells were pelleted at 13,000 rpm for 1 min. Cells
were resuspended in 150 ul buffer P1 + RNAse, lysed for 1-5min in 150 pl buffer
P2, and then cellular debris precipitated with 150 pl buffer P3. Debris was then
pelleted at 13,000 RPM for 10 min. Plasmid DNA was precipitated by adding one
volume of isopropanol, the tubes inverted a few times to mix well, and then tubes
were centrifuged at 13,000 RPM for 10 min at 4 °C. Isopropanol was dumped from
the tubes and 0.5 ml of room-temperature 70% ethanol was added, the tubes gently
inverted one time, and spun at 13,000 RPM for 2-5 min. Sometimes the pellets were
washed again with ethanol. Ethanol was dumped, residual ethanol removed by a
quick spin and pipetting, and the tubes left to dry for 15 min. DNA was resuspended
in 1x TE buffer or EB buffer from Qiagen (catalog number 19086).

For 96-well plate mini-preps, a scaled-down version of the protocol used above
was followed. Single colonies or pools of transformants from yeast clones were
inoculated into LB + selection in a deep-well 96-well plate (Thermo Scientific
260252) and the plates sealed using breathable plate seals (Thermo Scientific # AB-
0718) and incubated overnight with vigorous shaking on a 2.5 mm radius orbital
plate shaker overnight at 37 °C. After growth, 150-160 pl of turbid cells were
pipetted into 96-well PCR plate and centrifuged on high (~3200 x g or 4000 RPM
on a swinging bucket centrifuge) for 5 min. Spent media was shaken out into an
autoclavable or bleachable container, and immediately after dumping spent media,
plates were dabbed onto an ethanol-soaked paper towel to remove most of the
media still clinging to the sides of the plate. Cells were resuspended in 25 pl P1
buffer + RNAse by pipetting up and down, then 25 pl buffer P2 was added to cells.
Plates were sealed with Microseal B seals and inverted several times to mix, then
left to let sit for 5 min. Plates were spun briefly for 1 s at 300 RPM to get the lysed
cells back into the wells and off of the plate sealer. Plate seals were removed and
25 pl of buffer P3 was added to the lysed cells and plates were re-sealed and
inverted multiple times to be sure protein and other cellular debris was
precipitated.

Debris was pelleted by centrifugation on high (~3200 xg, 4000 RPM) in a
bucket centrifuge for 10 min. Then plate seals were removed and 60 pl of plasmid-
containing supernatant was transferred into 60 ul of isopropanol in a new 96-well
plate. Plates were re-sealed and inverted several times to mix the DNA and
isopropanol. Samples were then centrifuged on high (~3200 x g, 4000 RPM) in a
bucket centrifuge for 10 min. After centrifugation, isopropanol was dumped off and
while still upside down, the plates dabbed on paper towels to absorb more
isopropanol clinging to the plate. Sixty microliters of 70% ethanol was then added,
plates re-sealed, and inverted gently one time to mix the remaining isopropanol
and ethanol together. Plates were then centrifuged on high (~3200x g, 4000 RPM)
in a bucket centrifuge for 5 min. An optional second wash was sometimes
performed. Then ethanol was dumped and while still upside down put the plate on
a paper towel to absorb of yet more ethanol clinging to the plate. Plates were then
spun briefly to bring remaining ethanol to the bottom of the wells, and using a
Rainin multichannel P10 with LTS tips (catalog number 17005873; very fine and
flexible tips) the remaining ethanol was removed from the plates. Plates were
allowed to dry 10 min. DNA was resuspended in 25-50 ul EB buffer, mq H20, or
TE buffer (depending on downstream use). Quality of prep was confirmed by
measuring purity and DNA concentration at a Nanodrop and running an
appropriate digest on an 0.8% agarose TAE-buffered gel.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The source data underlying Figures and Supplementary Figures are provided as a Source
Data file. Data used to generate the analyses and figures presented in this document can
be found at [https://github.com/lehner-lab/HarmoniousCombinations]

Code availability
All code used to generate the analyses and figures presented in this document can be
found at [https://github.com/lehner-lab/HarmoniousCombinations]
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